
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 10. http://www.jstatsoft.org/

gWidgetsWWW: Creating Interactive Web Pages

within R

John Verzani
CUNY/College of Staten Island

Abstract

The gWidgetsWWW package provides a framework for easily developing interactive
web pages from within R. It uses the API developed in the gWidgets programming in-
terface to specify the layout of the controls and the relationships between them. The
web pages may be served locally under R’s built-in web server for help pages or from an
rApache-enabled web server.

Keywords: GUI, R.

1. Introduction

The gWidgets package (Verzani 2007) provides a programming interface (API) for R (R De-
velopment Core Team 2012) users to several different toolkits for producing user interfaces
(GUIs). The API trades off the full power of the underlying toolkits, for a simplified but
often sufficient set of GUI features that the R user can quickly learn. The gWidgetsWWW
package implements much of the gWidgets API for developing interactive web applications
programmed with R scripts.

There is a long history of integrating R with web browsers. For example, the browseEnv

function, which generates a web page summarizing the objects in the global environment,
has been in base R at least since version 1.9. A quick glance at the web interfaces part
of R’s frequently asked questions (R-FAQ, Hornik 2010) shows at least a dozen projects.
However, web frameworks have evolved quite rapidly and many listed on the FAQ are now
somewhat obsolete or no longer maintained.1 The gWidgetsWWW package provides another

1The gWidgetsWWW package will be no exception. Currently a gWidgetsWWW2 package is on GitHub,
http://www.github.com, and will replace this one. This new package provides a nearly identical user interface,
but underneath integrates with the Rook (Horner 2012) package for better integration with R’s internal web
server and uses reference classes, not the proto (Kates and Petzoldt 2011) package.

http://www.jstatsoft.org/
http://www.github.com

2 gWidgetsWWW: Creating Interactive Web Pages within R

framework for the R user to create interactive web pages, in this case using relatively modern,
yet mature technologies. This package is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=gWidgetsWWW.

A number of recent examples blend web interfaces with R in new ways, allowing R to be
run remotely over the internet. Most prominently, RStudio (RStudio 2012) is a complete
development environment for R built using industry standard web technologies (even the
desktop version). For developing interfaces, the rApache project (Horner 2010) provides a
module that embeds R within the Apache web server. In Oems (2010) are several beautifully
implemented R-based web applications using rApache. The Rwui application (Newton and
Wernisch 2007) provides a web interface to easily create basic applications powered by R within
a relatively complicated Apache setup (using Tomcat). Other means to integrate R with web
technologies include Rserve (Urbanek 2003); rpy2 (Gautier 2011), to interface Python web
frameworks with R; and RevoDeployR (Revolution Analytics 2012), which provides an API
allowing R to be used as a back-end engine within a web programming framework. Finally,
we mention that Tibco’s Spotfire (TIBCO Software Inc. 2012) application provides a facility
to easily produce dynamic web dashboards, although not directly a solution for the R user.

As of recent versions of R, a built-in web server has been provided for serving dynamically
generated help pages locally. This local server can be repurposed to integrate interactive web
pages with a user’s R session. For example, The helpr package (Wickham and Schloerke 2010)
uses this framework to provide a much enhanced help page displayer with“live”examples. The
googleVis package (Gesmann and de Castillo 2011) can use the help-page server to interface
R with Google’s visualization tools. More recently, the Rook package has been developed and
provides standard specifications for writing web applications for any web server, including R’s
built-in one.

A typical web programming environment mixes several technologies such as cascading style
sheets for styling the content and markup languages, typically HTML or XML, for providing
content – R provides a number of packages, such as hwriter (Pau 2010), for producing HTML
from R objects. Once one moves beyond static html files for web pages, templates are often
used. Within R, the combination of rApache and brew (Horner 2011) makes an able tem-
plating framework. The R.rsp (Bengtsson 2012) package provides another alternative. More
widely used frameworks are often based around PHP or Python (e.g., django, Django Soft-
ware Foundation 2010). All template solutions require the web server to call the underlying
template engine.

To add interactivity to a web page, JavaScript is typically used for creating dynamic effects
client side. JavaScript is executed by the browser and allows a programmer to manipulate a
web page’s content. For more complicated uses, standard JavaScript libraries are often used.
One such is Ext JS (Sencha Inc. 2012). The use of JavaScript allows for AJAX technologies
which have changed the way web applications are now programed. AJAX, unlike CGI, allows
asynchronous communication between a client and web server without interfering with the
display of the existing page unless requested.

A typical web framework then consists of numerous different technologies, a mastery of which
may be beyond the R programmer’s desire. For applications defined through the gWidgets
API, the gWidgetsWWW package hides these technologies from the R user, so that creating
interactive web applications can be done with only a knowledge of R. For this convenience,
the package trades off the power, flexibility, speed, and scalability of other web technologies.

http://CRAN.R-project.org/package=gWidgetsWWW

Journal of Statistical Software 3

Figure 1: Screenshot of “Hello World” example. The interface consists of a lone button, which
when clicked initiates the displayed message to appear.

The package uses the internal help-page server for local use and integrates in with rApache
for serving pages to a wider audience.

2. Usages

We begin with a simple “Hello World” example. The following script demonstrates the basics
needed to produce an interactive web page (Figure 1):

w <- gwindow("Hello world example")

g <- ggroup(container = w)

b <- gbutton("Click me", container = g)

addHandlerClicked(b, handler = function(h, ...) {

galert("Hello world", parent = w)

})

visible(w) <- TRUE

The gwindow constructor maps to a web page, the text specifying the page’s title. To this a
container (ggroup) is added and then a control (gbutton) added to that. (The container

argument specifies the parent container of a new widget.) This completes the basic layout of
this simple application. Afterwards, the interactivity is added by assigning a handler to the
event of clicking the button through the addHandlerClicked method. When the button is
clicked, a call to produce a dialog is initiated. This involves the browser making an AJAX
call back to the server, which then calls R, which in turn responds with JavaScript commands
instructing the web browser how to display the dialog. The last line of the script shows a
method call for the gwindow instance, in this case, one that causes the JavaScript commands
to be output to the web browser to instruct the browser to draw the page.

To run this script depends on whether the script is run locally or served through rApache.
If done remotely, then the script is placed in an appropriate directory and invoked through
a browser by a URL that reflects the script’s filename. For local use, the script’s filename is
simply passed to the function localServerOpen which calls browseURL with the appropriate
URL.2

2For gWidgetsWWW2 the local script is run through load_app.

4 gWidgetsWWW: Creating Interactive Web Pages within R

Figure 2: Screenshot of object browser created by gw_browseEnv, an alternative to browseEnv.

We present in the following a few examples and note that the package itself has a number of
examples and a package vignette. In addition, most basic gWidgets scripts can be run with
little or no modification.

2.1. An object browser

First to show how the package can be used to supplement features provided with a package, we
discuss a script used to enhance a user’s local command-line experience. In gWidgetsWWW
we provide the function gw_browseEnv as an alternate to browseEnv:

R> library("gWidgetsWWW")

R> gw_browseEnv()

This function just calls localServerOpen on a script that comes with the package. The main
GUI looks like Figure 2. Using the local help server allows such displays to be interactive,
unlike browseEnv, and the gWidgetsWWW package makes them easy to create. For example,
the code to create the table of items is basically:

workspace_objects <- gtable(list_objects(), container = g)

where list_objects creates a data frame of the objects in the workspace using a few generic
functions to give different levels of detail on an object. More detail is provided in a subwindow
after clicking on an item. For example, clicking on a matrix or data frame object dispatches
to:

Journal of Statistical Software 5

Figure 3: Screenshot of a web application for displaying a power calculator.

detailOn.matrix <- function(x, varname, cont, width, height, ...) {

g <- ggroup(container = cont, horizontal = FALSE)

glabel(sprintf("Detail on %s", varname), container = cont)

gbigtable(as.data.frame(x), container = g, width = width, height = height)

}

The gbigtable widget allows one to display very large data sets without having to push all
the data from the R process to the web browser at once.3

2.2. Using images in a GUI

For R there are several packages providing interfaces to underlying graphical toolkits (e.g.,
RGtk2, rJava, qtbase). However, the most widely used is the tctlk package. This popularity
can not be attributed to the inherent ease or power of using the underlying Tk toolkit, but
rather the fact that installation of the toolkit is nearly ubiquitous, as the libraries are shipped
with the base Windows installation of R. The gWidgetsWWW package provides an easy to
install alternative, as no external libraries are needed to create an interface. Once the package
is installed, one can then provide additional functionality, say to students, via scripts on the
web.

As an example, the following script (see Figure 3) will create a power demonstration modeled
after one in the TeachingDemos (Snow 2012) package. The script also illustrates the use of the
canvas package, which provides a graphic device for R that produces JavaScript to manipulate
a canvas element in an HTML5-ready browser. This allows us to update our graphic in
response to changes of the controls. The our.power.examp call below is to a function, not

3Paging is part of gtable in gWidgetsWWW2, so gtable can be used in place of gbigtable.

6 gWidgetsWWW: Creating Interactive Web Pages within R

shown, from the TeachingDemos package, only slightly modified to avoid the calls to legend,
which are not supported by the canvas device.

First, the layout of the canvas and primary controls:

require("canvas")

width <- height <- 400

w <- gwindow("Power example")

g <- ggroup(container = w)

cnv <- gcanvas(width = width, height = height, container = g)

f <- gframe("Parameters", container = g, horizontal = FALSE)

glabel("n:", container =f)

n <- gedit(10, container = f)

glabel("Standard Deviation:", container = f)

stdev <- gslider(5, 20, 1, value = 10, container = f)

glabel("True Difference:", container = f)

diff <- gslider(0, 10, by = 1, value = 1, container = f)

glabel("Alpha:", container = f)

vals <- seq(.05, .25, by = 0.05)

alpha <- gcombobox(vals, editable = TRUE, container = f,

coerce.with = as.numeric)

b <- gbutton("Make plot", container = f)

The following function to produce a plot is called to make the initial graphic and then added
as a callback to each of the controls so that the graphic is updated when there is a change,
suitably interpreted.

plotIt <- function(...) {

f <- tempfile()

canvas(f, width = width, height = height)

our.power.examp(svalue(n), svalue(stdev) / 10,

svalue(diff), svalue(alpha))

dev.off()

svalue(cnv) <- f

}

plotIt()

sapply(list(n, stdev, diff, alpha, b), addHandlerChanged, handler = plotIt)

visible(w) <- TRUE

The gcanvas widget is specific to gWidgetsWWW. There are other alternatives, such as gsvg
and gimage, for displaying plots produced by R’s device drivers.

Journal of Statistical Software 7

2.3. Remotely serving files

The previous examples emphasized the use of the package to run local web applications. For
this, no further configuration beyond installing the package is required. However, to allow a
script to run remotely does require additional configuration.

For serving pages remotely rApache is used. The rApache project creates a module for the
Apache web server that embeds an R process within the server. This greatly speeds up the
overhead of calling on R through a system call. Although rApache can be used with other
UNIX environments, it is easily installed within an Ubuntu distribution using the standard
installation procedures and a custom repository.

Once installed, Apache must be configured for the rApache module. Afterwards, configura-
tion for gWidgetsWWW is also needed. The package comes with a standard configuration
template that may be used. In addition to defining several variables employed by the R
process in the rApache model, this template:

� Specifies a base URL, with default gWidgetsWWWrun, that directs the server to return a
gWidgetsWWW script.

� Specifies one or more directories for rApache to look for such scripts.

� Specifies directories and URLs for static files such as image files, and

� Specifies the URL for any AJAX calls.

For an Ubuntu installation, the defaults may be used. In this case, one simply places a script,
say ex-poll.R, into the directory /var/lib/gWidgetsWWW and calls the file through the URL
http://domain.name/gWidgetsWWWrun/ex-poll.R.

We illustrate with a simple application to take a poll on the favorite state of the users. Figure 4
shows the web application after a few users have voiced their opinion.

By design, gWidgetsWWW keeps a separate environment for each web page it creates. This
allows concurrent requests to the same page. It also means we need a means to store persistent
data used by a script besides the global environment of the R process. In the following we
simply keep a text file with the results, one line per user. In order to keep multiple users from
simultaneously writing to this file, we use a lock file. We begin by defining two script-global
variables:

resultsFile <- "/tmp/results.txt"

lockFile <- "/tmp/results.txt.locked"

Next, we create two functions to interact with the lock file:

getLock <- function(lockfile, ctr = 10) {

while(ctr > 0) {

if(file.exists(lockfile)) {

ctr <- ctr - 1

} else {

message("locked", file=lockfile)

return(TRUE)

http://domain.name/gWidgetsWWWrun/ex-poll.R

8 gWidgetsWWW: Creating Interactive Web Pages within R

}

}

return(FALSE)

}

clearLock <- function(lockfile)

if(file.exists(lockfile))

file.remove(lockfile)

For this GUI, we use a radio button group for a selector and a table to display our data. The
following code defines a data frame to hold our survey data and then creates the layout:

Survey.data <- data.frame(State = state.name[1:4], vals = rep(0,4),

stringsAsFactors = FALSE)

w <- gwindow("Survey results")

gstatusbar("Powered by gWidgetsWWW", container = w)

g <- ggroup(container = w, horizontal = TRUE)

g1 <- gframe("Select your favorite state:", container = g,

horizontal = FALSE)

rb <- gradio(Survey.data[,1], container = g1) # main control

gbutton("vote", container = g1, handler = function(h,...) {

updateResults(svalue(rb))

})

g2 <- gframe("Results:", container = g, width = 300)

results <- gtable(Survey.data, cont = g2)

size(results) <- c(300, 150)

The button handler stores the newly selected value and then updates the table display,
results. It must check first to see if it can actually write to the file, and if denied, a
message is produced.

updateResults <- function(newValue) {

if(!file.exists(resultsFile))

file.create(resultsFile)

if(getLock(lockFile)) {

if(!missing(newValue))

cat(newValue, "\n", file = resultsFile, append = TRUE)

x <- scan(resultsFile, what = "character", quiet = TRUE)

clearLock(lockFile)

if(length(x))

Survey.data$vals <- sapply(Survey.data[,1], function(i) sum(x == i))

results[] <- Survey.data

} else {

galert("Try again, resource is busy.", parent = w)

}

}

The script is finished by updating the current results then calling visible<- to write out the
JavaScript.

Journal of Statistical Software 9

Figure 4: The poll application after a few users have voted. The basic layout includes two
framed containers, a radio button group, and a table widget.

updateResults()

visible(w) <- TRUE

Poll results, such as the above, are usually embedded within a larger web page. The gWid-
getsWWW scripts create single web pages, though. However, one can use an iframe tag to
display a script within a frame on a page.

3. Implementation

The gWidgets API is not described here, but we do note that this package introduces some
slight changes to that API. The basic idea of gWidgetsWWW is the script defining a primary
gwindow object which will map to a web page. When this main window is “displayed” the
package writes JavaScript commands to draw the GUI. The JavaScript uses the open-source
version of the Ext JS libraries for convenience. The setup puts some restriction on the scripts,
as the JavaScript is created by calling the visible<- method of the main window. As well,
for interactivity, when a widget has a “handler” some JavaScript is inserted that calls back to
the R session to run the handler. The handler call returns JavaScript to manipulate the page.
The design of this process requires the lone top-level window to be a global variable in the
script.4

It is worth noting that while the browser initiates calls to the R process which then returns a
response, as of now, there is no means to initiate a call to the browser from the R process. (For
example, in the workspace browser example there is an “Update...” button needed to refresh
the web application with the current workspace variables.) This causes a problem. When a
callback is processed with R it needs to be aware of the values the widgets are storing at the
browser and it has no means to request these. As such, changes to a control are propagated
back to the R process through an AJAX call each time the control is updated. Not only does

4This is not necessary in gWidgetsWWW2, where one only needs to provide a single parentless gwindow

instance.

10 gWidgetsWWW: Creating Interactive Web Pages within R

this synchronization depend on a reliable internet connection, there is an assumption that
these asynchronous calls have happened prior to the callback being processed.

The underlying code is based on the proto package. In writing gWidgetsWWW scripts there
are a few places where proto methods can be used to extend the features provided by the
base gWidgets API. The help page ?"gWidgetsWWW-package" provides some details.

Web GUIs, while ubiquitous now, have tradeoffs when compared to desktop GUIs. For gWid-
gets a major tradeoff is the difficulty of debugging errors during script writing. Developing
under the local server and a good JavaScript debugger, such as firebug for Firefox (Resig
2012) or the built-in one for Chrome, proves very helpful.

Additionally, having R provide the dynamic aspects comes with a tradeoff. The benefit is the
R programmer need not know any HTML, CSS or JavaScript to write dynamic web pages.
The cost is paid in speed (as all actions must go from the browser to R and back) and
scalability. The latter is a problem as each page creates a session which is stored as the entire
R environment. The size of which can potentially be quite large if one is not careful.

Finally, server applications must defend against maliciously entered user input. The gWidgets
controls, for the most part, are secure as all user-passed values are coerced to certain types
of values (integer indices if possible, or logical values say). However, text-based entries can
not be so sanitized. One should be very careful when evaluating or displaying any commands
that may have come from a user

4. Conclusion

The gWidgetsWWW package provides an alternative means to write interactive web GUIs
that, at the expense of scalability and flexibility, greatly simplifies the necessary web pro-
gramming skills for the R user.

Acknowledgments

The author would like to thank the very helpful comments of the editor and referees in the
preparation of this manuscript.

References

Bengtsson H (2012). R.rsp: Dynamic Generation of Scientific Reports. R package version 0.7-
5, URL http://CRAN.R-project.org/package=R.rsp.

Django Software Foundation (2010). django: The Web Framework for Perfectionists. URL
http://www.djangoproject.com/.

Gautier L (2011). “rpy2: A Simple and Efficient Access to R from Python.” URL http:

//rpy.sourceforge.net/rpy2.html.

Gesmann M, de Castillo D (2011). “googleVis: Interface between R and the Google Visuali-
sation API.” The R Journal, 3(2), 40–44. URL http://journal.R-project.org/.

http://CRAN.R-project.org/package=R.rsp
http://www.djangoproject.com/
http://rpy.sourceforge.net/rpy2.html
http://rpy.sourceforge.net/rpy2.html
http://journal.R-project.org/

Journal of Statistical Software 11

Horner J (2010). rApache: Web Application Development with R and Apache. R package
version 1.1.20, URL http://www.rapache.net/.

Horner J (2011). brew: Templating Framework for Report Generation. R package version 1.0-
6, URL http://CRAN.R-project.org/package=brew.

Horner J (2012). Rook: A Web Server Interface for R. R package version 2.0-4, URL
http://cran.r-project.org/package=Rook.

Hornik K (2010). “The R FAQ.” ISBN 3-900051-08-9, URL http://CRAN.R-project.org/

doc/FAQ/R-FAQ.html.

Kates L, Petzoldt T (2011). proto: Prototype object-based programming. R package ver-
sion 0.3-9.2, URL http://CRAN.R-project.org/package=proto.

Newton R, Wernisch L (2007). “Rwui: A Web Application to Create User Friendly Web
Interfaces for R Scripts.” R News, 7(2), 32–35. URL http://CRAN.R-project.org/doc/

Rnews/.

Oems J (2010). “Interactive Web Applications.” URL http://www.stat.ucla.edu/

~jeroen/.

Pau G (2010). hwriter: HTML Writer – Outputs R Objects in HTML Format. R package
version 1.3, URL http://CRAN.R-project.org/package=hwriter.

RStudio (2012). “RStudio.” URL http://RStudio.org/.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Resig J (2012). “firebug: Web Development Evolved.” URL http://getfirebug.com/.

Revolution Analytics (2012). “RevoDeployR.” URL http://www.revolutionanalytics.com/

products/enterprise-deployment.php.

Sencha Inc (2012). “Ext JS 4.1 JavaScript Framework for Rich Apps in Every Browser.” URL
http://www.sencha.com/products/extjs/.

Snow G (2012). TeachingDemos: Demonstrations for Teaching and Learning. R package
version 2.8, URL http://CRAN.R-project.org/package=TeachingDemos.

TIBCO Software Inc (2012). “Spotfire.” Version 4.5, URL http://spotfire.tibco.com/.

Urbanek S (2003). “Rserve – A Fast Way to Provide R Functionality to Applications.” In
K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003). Vienna, Austria. ISSN 1609-395X. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

Verzani J (2007). “An Introduction to gWidgets.” R News, 7(3), 26–33. URL http://CRAN.

R-project.org/doc/Rnews/.

http://www.rapache.net/
http://CRAN.R-project.org/package=brew
http://cran.r-project.org/package=Rook
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://CRAN.R-project.org/package=proto
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.stat.ucla.edu/~jeroen/
http://www.stat.ucla.edu/~jeroen/
http://CRAN.R-project.org/package=hwriter
http://RStudio.org/
http://www.R-project.org/
http://www.R-project.org/
http://getfirebug.com/
http://www.revolutionanalytics.com/products/enterprise-deployment.php
http://www.revolutionanalytics.com/products/enterprise-deployment.php
http://www.sencha.com/products/extjs/
http://CRAN.R-project.org/package=TeachingDemos
http://spotfire.tibco.com/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

12 gWidgetsWWW: Creating Interactive Web Pages within R

Wickham H, Schloerke B (2010). helpr: Help for R. R package version 0.1.2.2, URL http:

//CRAN.R-project.org/package=helpr.

Affiliation:

John Verzani
Department of Mathematics
College of Staten Island
2800 Victory Boulevard
Staten Island, NY 10314, United States of America
E-mail: verzani@math.csi.cuny.edu
URL: http://www.math.csi.cuny.edu/verzani/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 10 Submitted: 2010-12-17
June 2012 Accepted: 2011-05-11

http://CRAN.R-project.org/package=helpr
http://CRAN.R-project.org/package=helpr
mailto:verzani@math.csi.cuny.edu
http://www.math.csi.cuny.edu/verzani/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Usages
	An object browser
	Using images in a GUI
	Remotely serving files

	Implementation
	Conclusion

