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Abstract

Data frames are integral to R. They provide a standard format for passing data to
model-fitting and plotting functions, and this standard makes it easier for experienced
users to learn new functions that accept data as a single data frame. Still, many data
sets do not easily fit into a single data frame; data sets in ecology with a so-called fourth-
corner problem provide important examples. Manipulating such inherently multiple-table
data using several data frames can result in long and difficult-to-read workflows. We
introduce the R multitable package to provide new data storage objects called data.list

objects, which extend the data.frame concept to explicitly multiple-table settings. Like
data frames, data lists are lists of variables stored as vectors; what is new is that these
vectors have dimension attributes that make accessing and manipulating them easier.
As data.list objects can be coerced to data.frame objects, they can be used with all
R functions that accept an object that is coercible to a data.frame.

Keywords: data organization, ecology, fourth-corner problem, R.

1. Introduction

The standard data management paradigm in R is based on data.frame objects, which are
two-dimensional data tables with rows and columns representing replicates (sometimes also
called objects) and variables (R Development Core Team 2012). Standard R workflows require
that the data to be analyzed are organized into a data frame (Chambers and Hastie 1992).
Hypotheses about the relationships between variables in the data frame are expressed using
formula objects. Data frames and formulas are combined by passing them to functions that

http://www.jstatsoft.org/
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Figure 1: Schematic diagram of a data structure with a fourth-corner problem.

produce analyzes (e.g., plots; fitted models; summary statistics). This framework allows
scientists to concentrate on their primary interests – the relationships between variables –
without explicit reference to mathematical and algorithmic details. It also provides access
to those details, which are required for effective analyzes and to develop new methods of
analysis within the framework. As new methods are developed, researchers simply pass their
data frames to new functions in much the same way they would pass them to older functions.

Research in community ecology – the study of the distribution and abundance of multiple
interacting species – sometimes involves data sets that do not easily fit within a single data
frame. A common example is the fourth-corner problem (Legendre, Galzin, and Harmelin-
Vivien 1997), in which three data tables are to be analyzed: a sites-by-species table of abun-
dances or occurrences; a table of environmental variables at each site; and a table of traits for
each species (Figure 1). Such data are characterized by a conspicuous (lower-right) ‘fourth-
corner’, where there are no data. The missing data in the fourth corner are not caused by
the usual problems (e.g., broken field equipment; budget restrictions; bad weather; dead sub-
jects), but are part of the study design itself. The fourth-corner problem is a special case
of a general ‘multiple-table problem’, which can be much more complex (e.g., could involve
three-dimensional ‘cubes’ of data, Figure 2). The challenge of analysing such multiple-table
data sets in R is that it is not obvious how to organize them into a single data.frame, which is
required in standard R workflows. Our goal with the R multitable package – available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=multitable –
is to provide tools that make analysing multiple-table data sets easier.

One possible solution is to develop new R analysis functions – or new software packages
altogether – that are specifically designed to accept several tables as input. There have been

http://CRAN.R-project.org/package=multitable
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Figure 2: The structure of the Lac Croche zooplankton community data. The abundances of
zooplankton species and several environmental variables were measured every two weeks in
the summer at various basins (i.e., sites) in the lake over two years – yielding two temporal
scales at which sampling took place: week within year and year. In addition, the species were
characterized by a suite of traits.

several such methods developed in ecology, focusing on data with a fourth-corner problem
(Dolédec, Chessel, ter Braak, and Champely 1996; Legendre et al. 1997; Dray and Legendre
2008; Pillar and Duarte 2010; Leibold, Economo, and Peres-Neto 2010; Ives and Helmus 2011).
However, these methods do not apply to data sets that have other more complex multiple-
table data structures (e.g., the zooplankton communities in Lac Croche, which are described
in Figure 2; Cantin, Beisner, Gunn, Prairie, and Winter 2011). One approach to such issues
would be to develop suites of data analysis functions for each new data structure. But such
an approach is less than ideal as it would require that new methods be developed for each new
structure, which does not take advantage of the large number of tools developed for standard
R workflows (Chambers and Hastie 1992). The multitable package provides an alternative
approach, by introducing a multiple-table generalization of data frames – called data lists –
which can be analyzed with virtually any function that can be used to analyze a data frame.
Thus, instead of providing new methods of analysis, multitable provides new methods of data
management and organization.

How can data lists make data organization easier? Although practically any data set can be
forced into a single data.frame by either repeating some of the data or adding missing values,
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Figure 3: The multitable framework for using multiple-table data (in red) in R workflows (in
blue). Hyper-linked section numbers indicate portions of the workflow covered by sections in
this article. Data lists are used to organize and manipulate multiple-table data as a single
R object, even though such data will typically be originally stored in several other sources
(e.g., R objects; spreadsheets; text-based data files; database queries). When such data are
ready for analysis, they can be coerced into a data frame. With the data in data frame form,
they can be analyzed and visualized by combining them with any R function that accepts
data.frame objects.

other structures exist that would make a particular data set easier to understand, manipulate,
and analyze. Accordingly, we have designed data.list objects to provide a richer structure
than data.frame objects for representing our data ‘as we understand them’. This structure
furnishes intuitive tools for operating on several data tables simultaneously, thereby saving
time and effort that could be better spent thinking about relationships between variables. As
we have discussed, there are important advantages to organizing data in data.frame objects
– perhaps the most important advantage being the powerful catalogue of R functions that
accept data in such a form. The multitable package provides methods for coercing data.list

objects into data.frame objects, thus making standard R tools available to multiple-table data
organized as a data.list object. In summary, the multitable model of data organization is
to manipulate, transform, and extract subsets of our data in data.list-form, and then to
coerce them into data.frame-form when we are ready to pass them to analysis functions
(Figure 3).

There are several existing R packages that are designed to make data organization easier (e.g.,
reshape2; Wickham, 2007). The mefa and mefa4 packages have been developed to organize
data with a slight generalization of the fourth-corner problem (Sólymos 2009); this general-
ization permits several community matrices – called segments – with identical dimensions.
The multitable package has much in common with mefa, but there are noticeable differences.
For example, multitable is designed to handle more general data structures than mefa or
mefa4; in particular, mefa is not able to represent the relational structure of the Lac Croche
data depicted in Figure 2. On the other hand, mefa provides more extensive tools for data
summarization than multitable and mefa4 integrates tools for sparse-matrix computations.
We therefore expect mefa and multitable to often be complementary in practice.

Our purpose is to introduce the multitable package, and demonstrate its utility. There are
three main organizational sections, each corresponding to a part of Figure 3. Section 2
describes the structure of a simple data.list object (2.1); how to create other data lists
(2.2); a simple theoretical framework for understanding data lists (2.3); and techniques for
manipulating them (2.4, 2.5, 2.6, 2.7, 2.8). Section 3 illustrates the coercion of data lists to
data frames. Section 4 illustrates how to use multitable in R workflows by summarizing (4.2);
visualizing (4.3); and modeling (4.4, 4.5, 4.6) a real stream fish data set (4.1).



Journal of Statistical Software 5

2. Understanding, creating, and manipulating data lists

data sources data list

2.1. The structure of data lists

The multitable package comes with a fictitious data.list, to illustrate how these objects
work.

R> library("multitable")

R> data("fake.community")

R> fake.community

abundance:

---------

, , capybara

2009 2008 1537

midlatitude 4 0 0

subtropical 0 10 0

tropical 8 0 0

equatorial 0 7 0

arctic 0 0 0

subarctic 0 0 0

, , moss

2009 2008 1537

midlatitude 0 6 0

subtropical 0 0 0

tropical 9 0 0

equatorial 0 3 0

arctic 5 0 0

subarctic 0 0 0

, , vampire

2009 2008 1537

midlatitude 0 0 0

subtropical 0 0 1

tropical 0 0 0

equatorial 0 0 0

arctic 0 0 0

subarctic 0 0 0

Replicated along: || sites || years || species ||
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temperature:

-----------

2009 2008 1537

midlatitude NA 10 NA

subtropical 25 20 NA

tropical 48 50 NA

equatorial 50 30 NA

arctic -37 -30 NA

subarctic 3 0 NA

Replicated along: || sites || years ||

precipitation:

-------------

2009 2008 1537

midlatitude NA 20 NA

subtropical 99 100 NA

tropical 149 150 NA

equatorial 199 200 NA

arctic 21 20 NA

subarctic 41 40 NA

Replicated along: || sites || years ||

body.size:

---------

capybara moss vampire

140 NA 190

Replicated along: || species ||

metabolic.rate:

--------------

capybara moss vampire

20 5 0

Replicated along: || species ||

homeotherm:

----------

capybara moss vampire

Y N N

Levels: N Y

Replicated along: || species ||

REPLICATION DIMENSIONS:

sites years species

6 3 3

At first sight, this data.list object looks very different from standard data.frame objects,
but on second look we can see that they are really quite similar. Just like data frames, data
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lists are composed of a number of variables – in this case, we have six variables (abundance;
temperature; precipitation; body.size; metabolic.rate; and homeotherm) each identi-
fied in the printed object above by underlined names. The variables in data lists must be
printed in this sequential manner, rather than as columns neatly lined up in a data frame,
precisely because the variables in multiple-table data sets do not line up neatly; this is the
problem multitable seeks to address.

Also as with data frames, the replication of variables in data lists are represented as vectors
of values. The main difference between the two objects in this regard is that the vectors that
represent variables in data lists have dim (i.e., dimension) attributes. These dim attributes
give data.list objects further structure. In R, vectors with dim attributes are best thought
of as matrices and arrays of numbers. For example, the abundance variable is replicated along
three dimensions (sites; years; and species), and therefore is a three dimensional array of data.
This information is displayed after the data whenever a data.list object is printed. Some
variables are only replicated along two dimensions (e.g., temperature and precipitation)
and others only have one dimension (e.g., body.size; metabolic.rate; and homeotherm).

Importantly however, although the variables are not replicated along all of the same dimen-
sions, they do share dimensions; and it is this dimension sharing that allows us to relate
variables to each other. To appreciate the dimension sharing of this example, we can use the
summary method for data.list objects:

R> summary(fake.community)

abundance temperature precipitation body.size

sites TRUE TRUE TRUE FALSE

years TRUE TRUE TRUE FALSE

species TRUE FALSE FALSE TRUE

metabolic.rate homeotherm

sites FALSE FALSE

years FALSE FALSE

species TRUE TRUE

This method returns a logical matrix with dimensions of replication as rows and variables
as columns. A value of TRUE appears in cells corresponding to variables that are replicated
along a particular dimension, and a value of FALSE appears otherwise. We can see that the
sites and years dimensions relate abundance, temperature, and precipitation; whereas,
the species dimension relates abundance, body.size, metabolic.rate, and homeotherm.

Note that some FALSE entries are biophysical necessities, whereas others are properties of the
study design. For example, suppose that later in the study, the researchers decided that it
was necessary to get some idea of the spatial variation in metabolic rates. It would then
be possible to measure metabolic rates of the species at different sites, thereby changing the
FALSE associated with the metabolic rate-sites cell to a TRUE. To the contrary, it is both
physically and logically impossible to measure the precipitation of a species, so this FALSE is
mandatory.

2.2. How data lists are made

Although there are several ways to create data lists, one way in particular provides a simple
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framework for understanding the difference between variables and dimensions of replication
– an important distinction to understand in order to use multitable effectively.

Consider the following data frame of species abundances counted at various sites.

R> abundance

sites species abundance

1 midlatitude capybara 4

2 subtropical capybara 10

3 tropical capybara 8

4 equatorial capybara 7

5 arctic moss 5

6 midlatitude moss 6

7 tropical moss 9

8 equatorial moss 3

9 subtropical vampire 1

We have six sites and three species, but each species is not present at each site and so there
are missing site-species combinations.

Related to this abundance data frame we have a data frame of environmental variables at
each site and a data frame of traits for each species.

R> environment

sites temperature precipitation

1 subarctic 0 40

2 midlatitude 10 20

3 subtropical 20 100

4 tropical 50 150

5 equatorial 30 200

R> trait

species body.size metabolic.rate

1 capybara 140 20

2 moss 5 5

3 vampire 190 0

To make things interesting to scientists with real data, we assume that our environmental
data are missing from the arctic site (perhaps because data loggers did not endure harsh
conditions).

The three data frames are related because they share two columns: sites and species. The spe-
cific pattern of sharing for these data can be illustrated with a bipartite graph (i.e., matching
diagram; Figure 4). Columns that are shared between data frames are called dimensions of
replication and those that are not are called variables. The reason for this terminology is that
in standard single-table statistical settings, we are able to relate variables because they are
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Figure 4: Bipartite graph of the multiple-table structure of data with a standard fourth-corner
structure (Figure 1). Dimensions of replication are in blue (on the left) and tables are in red
(on the right).

replicated along some common dimension. For example, one can relate pH and temperature
if they are both replicated along the same set of lakes. Similarly, we can relate the variables
in several tables together if they share columns (i.e., dimensions of replication).

To create a data list out of these data frames we use the data list cast, dlcast, function from
multitable, inspired by the acast function in the reshape2 package (Wickham 2007).

R> l <- list(abundance, environment, trait)

R> dl <- dlcast(l, fill = c(0, NA, NA))

R> summary(dl)

abundance temperature precipitation body.size metabolic.rate

sites TRUE TRUE TRUE FALSE FALSE

species TRUE FALSE FALSE TRUE TRUE

R> dl

abundance:

---------

capybara moss vampire

arctic 0 5 0

equatorial 7 3 0

midlatitude 4 6 0

subtropical 10 0 1

tropical 8 9 0

subarctic 0 0 0

Replicated along: || sites || species ||

temperature:

-----------

arctic equatorial midlatitude subtropical tropical subarctic

NA 30 10 20 50 0

Replicated along: || sites ||
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precipitation:

-------------

arctic equatorial midlatitude subtropical tropical subarctic

NA 200 20 100 150 40

Replicated along: || sites ||

body.size:

---------

capybara moss vampire

140 5 190

Replicated along: || species ||

metabolic.rate:

--------------

capybara moss vampire

20 5 0

Replicated along: || species ||

REPLICATION DIMENSIONS:

sites species

6 3

This dlcast function takes one mandatory argument: a list of data frames to be combined
into a data list. The optional fill argument accepts a vector with one element for each data
frame, giving the value with which to fill in any structural missing values. This argument is
useful because we can both (1) fill missing abundances with zeros because those site-species
combinations were not observed and (2) fill missing traits and environmental variables with
NA values.

Making data lists out of ‘wide format’ data

Researchers will often have text files or spreadsheets of data that are not stored in the same
format as the three data frames in the previous example. These three data frames have two
types of columns – some columns represent dimensions of replication and others represent
variables. This data storage format is sometimes called ‘long format’ (see ?reshape), because
more sampling results in a lengthening of the data (i.e., the addition of rows) without any
widening (i.e., the addition of columns). In contrast, it is common in community ecology for
example to store abundance data as spreadsheets with sites as rows and species as columns
(e.g., as in Figure 1). Such a data storage format is often called ‘wide format’, because more
sampling may result in a widening of the data (e.g., more columns are required as further sam-
pling reveals a greater diversity of species). Fortunately, the multitable package provides tools
for reading data stored in a variety of different formats into a data list. The as.data.list,
data.list, variable, variableGroup, read.multitable, and read.fourthcorner func-
tions are all alternatives to dlcast for creating data lists.

The variable function provides a convenient way to add data stored in wide format to an
existing data list. Consider for example, a matrix allele containing the frequencies of a
particular allele (i.e., alternate form of a gene) for each species at each site,
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R> allele

capybara moss vampire

arctic NA 0.0 NA

equatorial 0.4 0.0 NA

midlatitude 0.0 0.0 NA

subtropical 0.1 NA 0

tropical 0.0 0.2 NA

subarctic NA NA NA

Note that this allele variable is in wide format, because additional sampling could lead to
a widening of the matrix. One can add such wide data to an existing data list using the +

operator and the variable function,

R> dl.with.allele <- dl + variable(allele, c("sites", "species"))

The variable function creates a data list with a single variable (i.e., allele) and the +

operator ‘adds’ it to dl. Notice that the + operator here does not have its usual arithmetic
meaning, but instead means ‘merge two data lists together’. The two arguments of variable
give the data to be converted into a variable (the vector allele in this case) and identifies
the dimensions along which the variable is replicated (which are "sites" and "species" in
this case). The result of this addition of two data lists contains one more variable than dl,

R> summary(dl.with.allele)

abundance temperature precipitation body.size metabolic.rate allele

sites TRUE TRUE TRUE FALSE FALSE TRUE

species TRUE FALSE FALSE TRUE TRUE TRUE

2.3. Multiple-table concepts

The multitable package is based on a distinction between dimensions of replication and vari-
ables. One benefit of this distinction is that it provides a common framework for under-
standing both simple and more complex multiple-table data structures. In particular, the
framework allows one to visualize the structure of complex data using bipartite graphs; for
example the Lac Croche zooplankton community data (Figure 2) from Cantin et al. (2011)
has a structure given by Figure 5. To store these data in a format amenable to dlcast (i.e.,
‘long format’), we would create one data frame for each of the groups of variables (red boxes
on the right) and add a column for each dimension of replication (blue boxes on the left)
associated with those variables.

Visualizing the structure of data in this way will help to clarify how it should be both organized
and analyzed. One of the central themes of multitable is that thinking about data organization
goes a long way towards clarifying how analysis should proceed. The names of what we store as
variables will appear in formula objects, so that we can study the relationships between these
variables. On the other hand, the information that we have for inferring these relationships
will come from what we store as dimensions of replication. In single-table settings we keep
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Figure 5: Bipartite graph of the Lac Croche data in Figure 2. Dimensions of replication are
in blue (on the left) and tables are in red (on the right).

these two elements of data analysis separate by storing variables as columns and replicates
as rows in a data.frame. The data.list concept is very similar except that replication now
has a dimensionality, which allows for the storage of more complex data structures. The basic
distinction between variables and replicates guides analysis in multiple-table settings just as
it does in single-table settings.

To store data as a data.frame object, all variables must have the same length. This require-
ment ensures that the variables can be related to each other along the single dimension of
replication defined by the rows of the data frame. The analogous requirement for storing
data in a data.list object is that at least one variable must be replicated along all of the
dimensions present in the data set. This requirement ensures two important properties: (1)
every variable can be related to at least one other variable along at least one dimension of
replication and (2) at least one variable will be relatable to all other variables, a property that
is necessary for a response variable. For example, the Lac Croche data (Figure 5) meets this
requirement because the abundance variable is replicated along all three dimensions of repli-
cation. Therefore, all other variables must at least share one dimension with the abundance
variable (e.g., the traits and abundance share the species dimension).

2.4. Subscripting data lists

When analyzing data, it is often of interest to extract a part of the data. For example,
examining the data suggests that 1537 might have been an outlying year relative to 2008 and
2009. We can exclude data from 1537 just as we would with a single R array:

R> fake.community[, c("2008", "2009"), ]

abundance:

---------

, , capybara
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2008 2009

midlatitude 0 4

subtropical 10 0

tropical 0 8

equatorial 7 0

arctic 0 0

subarctic 0 0

, , moss

2008 2009

midlatitude 6 0

subtropical 0 0

tropical 0 9

equatorial 3 0

arctic 0 5

subarctic 0 0

, , vampire

2008 2009

midlatitude 0 0

subtropical 0 0

tropical 0 0

equatorial 0 0

arctic 0 0

subarctic 0 0

Replicated along: || sites || years || species ||

temperature:

-----------

2008 2009

midlatitude 10 NA

subtropical 20 25

tropical 50 48

equatorial 30 50

arctic -30 -37

subarctic 0 3

Replicated along: || sites || years ||

precipitation:

-------------

2008 2009

midlatitude 20 NA

subtropical 100 99
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tropical 150 149

equatorial 200 199

arctic 20 21

subarctic 40 41

Replicated along: || sites || years ||

body.size:

---------

capybara moss vampire

140 NA 190

Replicated along: || species ||

metabolic.rate:

--------------

capybara moss vampire

20 5 0

Replicated along: || species ||

homeotherm:

----------

capybara moss vampire

Y N N

Levels: N Y

Replicated along: || species ||

REPLICATION DIMENSIONS:

sites years species

6 2 3

This command returns the same data list of variables but without the data from 1537. Note
that every variable replicated along the years dimension is subscripted appropriately, while
variables that are not replicated along this dimension are unchanged. As another example,
perhaps we want all of the data from the first three sites, in 1537, for the first species (i.e.,
capybara). The following line would produce such a data list:

R> fake.community[1:3, "1537", c(TRUE, FALSE, FALSE)]

This example illustrates that data list subscripting can be done with integers (e.g., 1:3),
character strings (e.g., "1537"), and logical vectors (e.g., c(TRUE, FALSE, FALSE)).

The previous subscripting examples operated on all variables in the data list simultaneously.
However, it is often useful to be able to extract subsets of the variables themselves. Such
variable extraction can be done by passing a single subscripting vector that refers to variables
instead of dimensions of replication,

R> fake.community[c("temperature", "precipitation")]

temperature:

-----------
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2009 2008 1537

midlatitude NA 10 NA

subtropical 25 20 NA

tropical 48 50 NA

equatorial 50 30 NA

arctic -37 -30 NA

subarctic 3 0 NA

Replicated along: || sites || years ||

precipitation:

-------------

2009 2008 1537

midlatitude NA 20 NA

subtropical 99 100 NA

tropical 149 150 NA

equatorial 199 200 NA

arctic 21 20 NA

subarctic 41 40 NA

Replicated along: || sites || years ||

REPLICATION DIMENSIONS:

sites years

6 3

If subscripting results in a data list with only a single dimension of replication, then the
default behaviour is to coerce to a data frame; for example,

R> fake.community[5:6]

metabolic.rate homeotherm

capybara 20 Y

moss 5 N

vampire 0 N

To suppress this behaviour, use,

R> fake.community[5:6, drop = FALSE]

metabolic.rate:

--------------

capybara moss vampire

20 5 0

Replicated along: || species ||

homeotherm:

----------
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capybara moss vampire

Y N N

Levels: N Y

Replicated along: || species ||

REPLICATION DIMENSIONS:

species

3

The drop argument refers to whether or not the the dimensional structure of the data list
should be dropped, because a data frame is sufficient to organize the results of a data list
with only a single dimension of replication.

It is important to distinguish between the two ways in which data lists can be subscripted:
extraction of subsets of (1) dimensions of replication and (2) variables. We refer to these
two subscripting techniques as array-like and list-like – array-like because when R arrays
are subscripted, subsets of dimensions are extracted; and list-like because when R lists are
subscripted, subsets of variables are extracted. Both the array-like and list-like subscripting
functions are designed to behave as similarly as possible to standard base R array and list
subscripting. See the Extract.data.list help file for more details.

2.5. Assigning new values to variables in data lists

Often we need to alter the values of variables before passing data frames to functions. This
is easily done with variables in data lists as well. For example, we note that fake.community
has a lot of missing values. Suppose that these missing measurements were observed in a
subsequent sampling campaign. We can replace these missing values with the new observations
using the standard logic of R replacement.

R> fake.community$precipitation[is.na(fake.community$precipitation)] <-

+ c(30, 5, 50, 75, 50, 2, 7)

2.6. Creating transformed variables in data lists

Another common task in data analysis is to create new variables that are transformed versions
of older variables in the data set. For example, suppose we want to make a log transformation
of the abundance data. If fake.community was a data frame, one could create a new logged
version of abundance with the following command,

R> fake.community$log.precipitation <- log(fake.community$precipitation)

However, because fake.community is a data list rather than a data frame, this command re-
sults in the following error: can’t add variables this way...try using [[ instead of

$...and don’t forget to specify match.dimids or shape. The reason why this com-
mand works for data frames but not data lists, is that the dimensional structure of data lists
must also be specified for this new variable. A simple approach to such a specification is
to use the shape argument, which identifies an existing variable with the same shape (i.e.,
dimensions of replication) as the new variable,
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R> fake.community[["log.precipitation", shape = "precipitation"]] <-

+ log(fake.community$precipitation)

R> fake.community["log.precipitation"]

log.precipitation:

-----------------

2009 2008 1537

midlatitude 3.401197 2.995732 1.6094379

subtropical 4.595120 4.605170 3.9120230

tropical 5.003946 5.010635 4.3174881

equatorial 5.293305 5.298317 3.9120230

arctic 3.044522 2.995732 0.6931472

subarctic 3.713572 3.688879 1.9459101

Replicated along: || sites || years ||

REPLICATION DIMENSIONS:

sites years

6 3

2.7. Creating variables to identify replicates

It is often useful to construct variables that identify replicates. For example, if one of the
dimensions of replication of a data list varies across spatial locations (e.g., sites), it is often
of interest to examine potential site effects. A site ID variable will be required to construct
models with such a site effect. Therefore, site must be considered both a dimension of repli-
cation and a variable. The dims_to_vars function in the multitable package is a convenience
function for creating variables out of dimensions of replication,

R> fake.community <- dims_to_vars(fake.community)

R> summary(fake.community)

abundance temperature precipitation body.size metabolic.rate

sites TRUE TRUE TRUE FALSE FALSE

years TRUE TRUE TRUE FALSE FALSE

species TRUE FALSE FALSE TRUE TRUE

homeotherm log.precipitation sites years species

sites FALSE TRUE TRUE FALSE FALSE

years FALSE TRUE FALSE TRUE FALSE

species TRUE FALSE FALSE FALSE TRUE

Note that this manipulated data list now contains variables associated with the three di-
mensions of replication (i.e., sites; years; and species). For example, here is the variable
associated with the species dimension,

R> fake.community["species", drop = FALSE]
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species:

-------

capybara moss vampire

capybara moss vampire

Levels: capybara moss vampire

Replicated along: || species ||

REPLICATION DIMENSIONS:

species

3

2.8. Melting and recasting data lists

We now describe a fairly advanced technique. Occasionally it is difficult to manipulate a data
list into the desired form. For example, note that an identical set of variables are replicated
along both sites and years in the following subset of the fake.community data,

R> data("fake.community")

R> fake.community <- fake.community[1:3, 1:2, 1:2][1:4]

R> summary(fake.community)

abundance temperature precipitation body.size

sites TRUE TRUE TRUE FALSE

years TRUE TRUE TRUE FALSE

species TRUE FALSE FALSE TRUE

When two dimensions share the same variables it is always possible to collapse them into a
single dimension, without loss of information. In other words, instead of three dimensions
(e.g., sites; years; and species) one could have two dimensions (e.g., sites.years and
species). Below in Section 4.6 we will give an example of where it would be useful to
collapse dimensions in this way. Here we show how to actually do the collapsing.

In future versions of multitable there may be a collapse function. In the meantime, we can
use a multitable implementation of the melt-cast approach to complex data manipulations
that has become popular via the reshape2 package (Wickham 2007). The basic principle of
reshape2 is that it is often difficult to go from one type of structure to another – rather it
can be easier to ‘melt’ away the structure and then ‘cast’ the molten data into a new form.

The dlmelt function in multitable allows one to remove structure from data lists. This
function is similar to the melt function in the reshape2 package, which converts many different
kinds of data into ‘long’ (i.e., database-like) format (see Section 2.2). However, it is not
possible to melt a data list into a single long-format data frame without repeating many of
its entries – a result of the multiple-table structure of data lists. Therefore, dlmelt first
separates variables into groups such that all variables in a group can be stored together in a
single data frame. The common feature that variables in such a group share is that they are
all replicated along the same dimensions. For example,

R> dlm <- dlmelt(fake.community)
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This dlm object is a list of three data frames,

R> summary(dlm)

Length Class Mode

sites.years.species 4 data.frame list

sites.years 4 data.frame list

species 2 data.frame list

each containing the variables replicated along the dimensions indicated by the names of the
data frames. The first two lines of the three data frames are,

R> lapply(dlm, head, n = 2)

$sites.years.species

abundance sites years species

midlatitude.2009.capybara 4 midlatitude 2009 capybara

subtropical.2009.capybara 0 subtropical 2009 capybara

$sites.years

temperature precipitation sites years

midlatitude.2009 NA NA midlatitude 2009

subtropical.2009 25 99 subtropical 2009

$species

body.size species

capybara 140 capybara

moss NA moss

The columns of each of these data frames give both variables and dimensions of replication.

We could recast this melted multiple-table data set and get the original data list back, with
the following command,

R> dlcast(dlm)

But what we want is to collapse the sites and years dimensions together before recasting.
To do this, we need to make new columns representing the collapsed dimension of replication,
and delete the columns associated with original un-collapsed dimensions. These new columns
can be created with the interaction and within functions in base R,

R> dlm$sites.years.species <- within(dlm$sites.years.species, {

+ sites.years <- interaction(sites, years, drop = TRUE)

+ sites <- years <- NULL

+ })

R> dlm$sites.years <- within(dlm$sites.years, {

+ sites.years <- interaction(sites, years, drop = TRUE)

+ sites <- years <- NULL

+ })
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Recasting can then be applied to produce the reshaped data list,

R> dl <- dlcast(dlm)

R> summary(dl)

abundance temperature precipitation body.size

species TRUE FALSE FALSE TRUE

sites.years TRUE TRUE TRUE FALSE

3. Coercing data lists to data frames

data list data frame

A pivotal point in any workflow using multitable is the coercion of a data list to a data frame
– this is the point at which the variety of R tools for single-table data, become available to
multiple-table data. Because this coercion is so pivotal, the syntax required to execute it is
as simple as possible. See Table 1.

R> data("fake.community")

R> fake.community.df <- as.data.frame(fake.community)

R> fake.community.df

abundance temperature precipitation body.size metabolic.rate ...

midlatitude.2009.capybara 4 NA NA 140 20

subtropical.2009.capybara 0 25 99 140 20

tropical.2009.capybara 8 48 149 140 20

equatorial.2009.capybara 0 50 199 140 20

arctic.2009.capybara 0 -37 21 140 20

subarctic.2009.capybara 0 3 41 140 20

midlatitude.2008.capybara 0 10 20 140 20

subtropical.2008.capybara 10 20 100 140 20

tropical.2008.capybara 0 50 150 140 20

equatorial.2008.capybara 7 30 200 140 20

arctic.2008.capybara 0 -30 20 140 20

subarctic.2008.capybara 0 0 40 140 20

midlatitude.1537.capybara 0 NA NA 140 20

subtropical.1537.capybara 0 NA NA 140 20

tropical.1537.capybara 0 NA NA 140 20

equatorial.1537.capybara 0 NA NA 140 20

arctic.1537.capybara 0 NA NA 140 20

subarctic.1537.capybara 0 NA NA 140 20

midlatitude.2009.moss 0 NA NA NA 5

subtropical.2009.moss 0 25 99 NA 5

...

Table 1: The fake.community data.list object that has been coerced into a data.frame.
Some rows and columns are omitted for brevity.
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The resulting data frame contains one column for each variable and one row for each combi-
nation of replicates across the three dimensions of replication; Table 1 shows this data frame,
without the last column so that it can fit on one page. This as.data.frame method for data
lists is essentially a database join operation. Notice that the row names are automatically
generated to be informative about the dimensions of replication that have been collapsed into
a single dimension. Unlike the corresponding data list object, the data frame has redundancy.
For example, because body.size is only replicated along species there are only three unique
body.size values, one for each of the three species. These three values are repeated so that
all of the variables can be stored side-by-side in a single data frame.

3.1. Faster iterative coercion of data lists to data frames

On occasion, one may wish to iteratively coerce a sequence of data lists to data frames. For
example, in a randomization test one might loop over a number of random subscripts of a
data list (Section 4.5). One may find that such an iterative procedure takes too long to run.
Fortunately, we can exploit the fact that each replicated data list has the same relational
structure (i.e., the same replication dimensions and variables) to reduce computation times.
In particular, much of the computational effort involved in coercing data lists to data frames
can be done once for all data lists with the same structure; we refer to this initial computation
as ‘molding’.

Molding begins by taking a ‘mold’ of the original data list,

R> data("fake.community")

R> fc.mold <- data.list.mold(fake.community)

With such a mold, the as.data.frame operation can be computed much faster than without
one. In particular, this command,

R> as.data.frame(fake.community, mold = fc.mold)

is faster than this one,

R> as.data.frame(fake.community)

To demonstrate the computational savings of molding, consider the following two simple
functions that each coerce the fake.community data list to a data frame one hundred times.

R> with_molding <- function(){

+ fake.community.mold <- data.list.mold(fake.community)

+ for(i in 1:100) as.data.frame(fake.community,

+ mold = fake.community.mold)

+ }

R> without_molding <- function(){

+ for(i in 1:100) as.data.frame(fake.community)

+ }

The only difference between these functions is that a mold is created outside of the loop, and
therefore should be faster. This first function is indeed faster as the following timing shows,
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R> library("rbenchmark")

R> benchmark(with_molding(), without_molding(),

+ replications = 10,

+ columns = c("test", "replications", "relative"))

test replications relative

1 with_molding() 10 1.000000

2 without_molding() 10 1.566097

This output indicates that the function without molding took ≈ 1.5 times as long. For more
on this technique see the help file for data.list.mold in the multitable package, and the
randomization test in Section 4.5.

4. Analyzing data lists

data list data frame + functions = analysis

4.1. Stream fish data

Now that we have described how data lists are created and manipulated using a simple
example, we move on to analyzing a small yet real data set on stream fish communities in
Texas (Higgins 2009) that comes pre-loaded with multitable.

R> data("higgins")

The relational structure of this data set is given in Figure 6, and can be accessed in more
detail using the summary and dim functions,

R> summary(higgins)

abundance width temp depth velocity substrate habitat

species TRUE FALSE FALSE FALSE FALSE FALSE FALSE

seasons TRUE TRUE TRUE TRUE TRUE TRUE TRUE

rivers TRUE TRUE TRUE TRUE TRUE TRUE TRUE

trophic life.history

species TRUE TRUE

seasons FALSE FALSE

rivers FALSE FALSE

R> dim(higgins)

species seasons rivers

24 4 3
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species (n = 24)

seasons (n = 4)

rivers (n = 3)

traits (m = 2)

abundance (m = 1)

environment (m = 6)

Figure 6: Bipartite graph of the higgins stream fish data. Dimensions of replication are in
blue (on the left) and tables are in red (on the right). Sample sizes along each dimension of
replication are given as n; and numbers of variables in each variable group are given as m.

One 100-m stretch of each of three rivers (tributaries of the Colorado River) were sampled
once in each of the four seasons. Abundances of 24 fish species were measured as numbers of
individuals captured by electro-fishing; we abbreviate species names following Higgins (2009).
Two categorical traits (trophic status and life history) were obtained from the stream fish
literature to characterize each of the 24 species. Trophic status characterizes species’ diet and
is described by four levels in this data set (herbivore; omnivore; insectivore; and piscivore).
Life history describes the strategy by which a species’ individuals allocate limited resources
amongst themselves, and is based on a three-way classification of strategies (equilibrium,
or large investment in relatively few individual offspring; opportunistic, or small size and
rapid maturation; and periodic, or pulsed production of large numbers of small offspring);
some species are also described as intermediate between two categories. Six environmental
variables (stream width (m), temperature (◦C), depth (cm), and velocity (m s−1), and two
dimensionless measures of river bed substrate and fish habitat) were measured at each river
in each season.

4.2. Marginal summaries

A common task in data exploration is to compute marginal summaries (e.g., means and
quantiles). In R this is commonly done using the apply family of functions or more recently
with packages such as plyr (Wickham 2011). In general these functions ‘apply’ another
function to various parts of an R object. Here we demonstrate how to use existing apply
functions to summarize data lists and introduce a new function: data list apply, dlapply.

The dlapply function is designed to be intuitive for anyone familiar with the standard apply

function in base R – the arguments for the two functions are identical,

� apply(X, MARGIN, FUN, ...)

� dlapply(X, MARGIN, FUN, ...)

The dlapply function attempts to use apply on each variable in a data list, in order to return
another data list replicated along the marginal dimensions of replication (i.e., the dimensions
specified in MARGIN). However, the rich structure of data lists often makes it impossible to
completely marginalize in this way. Still, dlapply is extremely useful because it not only
marginalizes as many of the variables in a data list as possible, but also provides informative
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messages about why some variables are unable to be marginalized, allowing our thoughts to
be centred on data analysis rather than the details of marginalization. For example, to obtain
the median values of the variables in higgins for each species, we set MARGIN = 1 because
species is the first dimension and set FUN = median,

R> dlapply(higgins, 1, median)

omitting width because it is not replicated along MARGIN

omitting temp because it is not replicated along MARGIN

omitting depth because it is not replicated along MARGIN

omitting velocity because it is not replicated along MARGIN

omitting substrate because it is not replicated along MARGIN

omitting habitat because it is not replicated along MARGIN

omitting trophic because of the following error:

Error in median.default(newX[, i], ...) : need numeric data

omitting life.history because of the following error:

Error in median.default(newX[, i], ...) : need numeric data

abundance:

---------

amna caan caca cicy cyve dini etle etsp gaaf icpu leau lecy legu lema

0.0 3.5 0.0 0.0 34.5 10.0 11.5 6.0 41.0 1.5 12.5 9.5 0.0 10.5

leme mido mipu misa moco noam nost peca pivi pyol

14.0 0.0 1.0 0.0 0.5 1.0 7.0 6.0 0.0 0.0

Replicated along: || species ||

REPLICATION DIMENSIONS:

species

24

The species median abundances are given as a single-variable data list and the messages
explain why the other variables did not marginalize. All of the environmental variables are
not replicated along species and so it is impossible to find species medians for them. While
the trophic and life.history traits are replicated along species, their medians cannot be
computed because they are factors. Note that these messages are not errors, even though
the word ‘error’ frequently appears in them; reporting on which variables were unable to be
marginalized because of an error in the function, FUN, being applied is part of the normal
behaviour of dlapply.

Sometimes results are more visually pleasing when dlapply is wrapped in a call to
as.data.frame, particularly when the resulting data list is large,

R> as.data.frame(dlapply(higgins, c(2, 3), median))

omitting trophic because it is not replicated along MARGIN

omitting life.history because it is not replicated along MARGIN
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abundance width temp depth velocity substrate habitat

spring.pedernales 1.0 20.43 23.32 47.62 3.00 3.68 2.70

summer.pedernales 0.0 19.19 28.42 34.28 2.88 3.72 2.49

fall.pedernales 8.0 21.88 15.00 36.68 4.14 3.83 2.57

winter.pedernales 0.5 22.37 15.28 35.32 3.13 3.68 2.49

spring.san.saba 0.5 30.56 20.32 32.38 1.20 4.78 2.71

summer.san.saba 1.0 23.04 26.25 20.86 0.00 4.63 2.64

fall.san.saba 4.0 35.12 11.73 29.43 0.00 4.63 2.49

winter.san.saba 5.5 37.66 11.44 34.21 1.37 4.64 2.37

spring.south.llano 2.5 14.45 21.54 46.64 0.25 3.34 2.72

summer.south.llano 1.0 11.91 25.49 34.42 0.00 2.93 2.83

fall.south.llano 10.0 13.05 11.42 37.90 0.00 3.31 2.58

winter.south.llano 6.0 14.28 12.18 45.90 0.05 2.94 2.58

The result here gives the median values of several variables for each season-river combination.
One clear pattern in the median abundances is that the three rivers have more fish in fall and
winter than in spring and summer.

While median returns a single value, we often want to apply a function that returns several
values in a vector (e.g., the quantile function). This is easily done with dlapply (omitting
several variables to save space),

R> dlapply(higgins[1:2], 3, quantile)

abundance:

---------

pedernales san.saba south.llano

0% 0 0 0.0

25% 0 0 0.0

50% 1 2 2.5

75% 9 13 13.5

100% 187 529 212.0

Replicated along: || quantile || rivers ||

width:

-----

pedernales san.saba south.llano

0% 19.1900 23.040 11.9100

25% 20.1200 28.680 12.7650

50% 21.1550 32.840 13.6650

75% 22.0025 35.755 14.3225

100% 22.3700 37.660 14.4500

Replicated along: || quantile || rivers ||

REPLICATION DIMENSIONS:

quantile rivers

5 3
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We see that when the length of the return value of FUN is greater than one, a new dimension
of replication is created with the name of FUN to store this additional information. However,
if this new dimension of replication is not the same length for each variable, then a data list
cannot be created that contains all of the results. For example, the following command results
in an error,

R> dlapply(higgins[1:2], 3, summary)

Error in dlapply(higgins[c(1, 2, 8)], 3, summary) :

results could not be combined into a data list

The reason for this error is that the summary function does not summarize each type of object
in the same way. In this example, summary is applied along a margin of a numerical array,
a numerical matrix, and a factor; the output in each of these cases is too different to be
combined back into a single data list. However, data lists are also standard R lists,

R> is.list(higgins) && is.data.list(higgins)

[1] TRUE

Therefore, functions such as summary can be applied to complex data lists using the standard
list apply function, lapply, in base R,

R> lapply(higgins[c("abundance", "width", "trophic")], summary)

$abundance

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 1.00 17.18 12.25 529.00

$width

pedernales san.saba south.llano

Min. :19.19 Min. :23.04 Min. :11.91

1st Qu.:20.12 1st Qu.:28.68 1st Qu.:12.77

Median :21.16 Median :32.84 Median :13.66

Mean :20.97 Mean :31.59 Mean :13.42

3rd Qu.:22.00 3rd Qu.:35.76 3rd Qu.:14.32

Max. :22.37 Max. :37.66 Max. :14.45

$trophic

hrbvr omnvr insct pscvr

1 4 13 6

The summary function gives different types of results depending on the class of the object being
summarized. For matrices such as higgins$width, summary returns various quantiles and
means of the matrix columns, representing the three tributaries in this case. For other arrays
such as higgins$abundance, summary gives these statistics over the entire array. For factors
such as higgins$trophic, summary counts the number of observations in each category.
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In short, dlapply attempts to repeatedly summarize data list margins by passing each variable
to the standard apply function and then combining the successfully marginalized variables
back into a data list. If this combination fails, dlapply will throw an error; in such a case,
consider using the base R apply functions for lists (i.e., lapply; sapply; rapply) or the plyr
package (i.e., laply; ldply; llply; l_ply).

4.3. Data list visualization

Many standard plotting functions in the base R graphics package combine formula and
data.frame objects to produce plots. Because data.list objects are readily coerced into
data frames, these functions can also be used to visualize data lists. For example, the boxplot
command can be used to visualize the variation in the abundances of each of the species across
seasons and rivers (Figure 7),

R> data("higgins")

R> boxplot(sqrt(abundance) ~ species,

+ data = as.data.frame(dims_to_vars(higgins)), horizontal = TRUE, las = 1,

+ xaxt = "n", xlab = "abundance (square-root scale)", ylab = "species")

R> tickmarks <- with(higgins, pretty(sqrt(abundance)))

R> axis(1, at = tickmarks, labels = tickmarks^2)

Note the use of the dims_to_vars function, which is required because a dimension of replica-
tion (i.e., species) is referred to in the formula (see Section 2.7). Figure 7 shows that while
many species are rare across all rivers and seasons (e.g., pyol; amna), some vary widely in
abundance (e.g., dini; cyve).

One of the most challenging aspects of data with more than one dimension of replication is
visualizing this higher dimensional structure. For example, a single dimension of replication
is naturally represented on a scatterplot as variation in the x-y position of the points. But
other aesthetics beyond x-y position – such as color or shape – are required to visualize
multidimensional replication on a single scatterplot. We have found that the faceting (i.e.,
trellising) technique is an effective tool for visualizing multiple dimensions of replication, when
at least one of the dimensions is short (i.e., less than 30 replicates). Faceting is used to display
subsets of the data in different panels, so that differences between the subsets can be more
easily perceived (Wickham 2009). In the multiple-table context, dimensions of replication
may be used to define these subsets.

To illustrate faceting in a multiple-table context, we ask whether environmental variables
interact with species traits to affect abundance in the higgins data set. Visualizing all of
the possible trait-by-environment interactions is virtually impossible, and so we begin by con-
sidering a trait and environmental variable that have been hypothesized to interact in many
stream fish communities: stream width and fish species life history (Goldstein and Meador
2004). Figure 8 provides a visualization of the dependence of abundance (y-position) on both
width (x-position) and life.history (point shape). Each panel is associated with a par-
ticular species – therefore, faceting represents the species dimension of replication. Within
panels, each point represents a particular river in a particular season – therefore, the position
of the points within each scatterplot represents both the seasons and rivers dimensions
of replication. Fitted model curves are also plotted for each species to help visualize any
systematic trends in the scatterplots.
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Figure 7: Boxplots showing spatio-temporal variation of the abundances of species in the
higgins data.

Figure 8 illustrates that the width-abundance relationship is variable along the species

dimension of replication. However, this variation is not clearly related to the life.history

trait that characterizes species, although perhaps equilibrium-periodic species appear more
likely than other species to have a flat width-abundance relationship. This possibility is
investigated further in Sections 4.4-4.5 on statistical analysis.

The code for producing Figure 8 follows the same pattern as most applications of multitable:
a data list is manipulated, it is converted to a data frame, and another R function is used to
operate on the resulting data frame. Figure 8 requires two manipulations. Because we intend
to use dimensions of replication to define the pattern of faceting, the dimnames of the data
list must be accessible as variables; therefore, the higgins data must first be passed through
the dims_to_vars function (Section 2.7),

R> data("higgins")

R> higgins <- dims_to_vars(higgins)

The order of the panels in Figure 8 is not arbitrary; the species dimension is ordered by
life.history. This ordering helps to clarify whether certain types of species have similar
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Figure 8: Visual exploration of the interaction between width and life.history on
abundance in the higgins data. Faceting is used to represent the species dimension of
replication.

width-abundance relationships, because the panels for similar species are adjacent in the
faceted plot. To do this, the species variable must be converted into an ordered factor, with
ordering determined by life.history; the with and reorder functions are useful for this
purpose,

R> higgins$species <- with(higgins, reorder(species, life.history))

The higgins data are now ready to be coerced into a data frame. Before doing so, we load
the ggplot2 package,

R> library("ggplot2")
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which we used to produce Figure 8. Because our focus is on describing multitable, we will
not explain each ggplot2 command in detail. However, the syntax of ggplot2 functions should
be readable to anyone familiar with R in general. One of the benefits of ggplot2 is that the
code for producing a plot can be broken into manageable pieces, which are added together
to create the full plot (Wickham 2009). We begin by producing a ggplot object, p, for the
higgins data,

R> p <- ggplot(as.data.frame(higgins))

In the next step we specify the pattern of faceting, which will represent replication along the
species dimension,

R> p <- p + facet_wrap(~ species, ncol = 4)

Here the + operator does not have its usual arithmetic meaning, but rather indicates that
the property of faceting by species should be added to the plot object, p. Setting ncol = 4

reflects a purely aesthetic choice to organize the plots into 4 columns of 6 species each. Having
specified that replication along the species dimension will be represented by faceting, we now
specify that the remaining dimensions (seasons and rivers) will be represented by points,

R> p <- p + geom_point(aes(x = width, y = abundance, shape = life.history))

This command also indicates that the x-y position of the points will describe the width and
abundance variables, whereas the shape of the points will describe life.history. To help
guide the eye we plot a fitted quadratic predictive model of the width-abundance relationship
in each panel using the bayesglm function from the arm package (Gelman et al. 2012); the
standard glm function in the stats package yielded unrealistically large coefficients, whereas
bayesglm automatically shrinks coefficients towards zero resulting in a much better smoothing
of the data.

R> library("arm")

R> p <- p + stat_smooth(aes(x = width, y = abundance), se = FALSE,

+ method = "bayesglm", family = poisson, form = y ~ x + I(x^2),

+ colour = "black", alpha = 0.4, geom = "line")

Finally, the abundance data are put on a square-root scale, to help visually homogenize
residual variance.

R> p <- p + scale_y_continuous(trans = "sqrt",

+ breaks = trans_breaks("sqrt", function(x) x^2))

And then the plot is produced (Figure 8),

R> print(p)

4.4. Generalized linear model example

Figure 8 suggested that abundance might have been affected by an interaction between width
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and life.history, because the abundances of species with an equilibrium-periodic life his-
tory had weaker relationships with width than other species. To explore this possibility we
conducted a variety of formal statistical analyzes, which also help to demonstrate how models
can be fitted to data lists in much the same way that they are fitted to data frames.

For most model fitting functions in R, the hypothesized relationships between variables is
specified via a formula object. For example, a simple formula including the effect of the
interaction between width and life.history on abundance is given by,

R> form <- abundance ~ -1 + life.history + (scale(width):life.history)

The overall intercept has been removed (with -1) so that each life.history class has its
own intercept. The scale command was used to standardize width to have mean zero and
standard deviation one, which simplifies the interpretation of the estimated coefficients. We
fitted this formula to the higgins data using the glm function with a poisson error distri-
bution, which is a good first choice for count data. Because glm takes data in the form of a
data frame, data lists can also be fitted by first passing them through as.data.frame,

R> higgins.glm <- glm(form, family = poisson, data = as.data.frame(higgins))

R> printCoefmat(summary(higgins.glm)$coefficients, signif.stars = FALSE)

Estimate Std. Error z value Pr(>|z|)

life.historyeqlbr 2.564697 0.033109 77.4613 < 2.2e-16

life.historyeqlbr.perdc 1.111861 0.067897 16.3756 < 2.2e-16

life.historyopprt.eqlbr 3.510256 0.029166 120.3560 < 2.2e-16

life.historyopprt.perdc 3.311290 0.030468 108.6820 < 2.2e-16

life.historyperdc 2.125420 0.052921 40.1625 < 2.2e-16

life.historyeqlbr:scale(width) 0.234802 0.030539 7.6886 1.488e-14

life.historyeqlbr.perdc:scale(width) 0.137218 0.064942 2.1129 0.03461

life.historyopprt.eqlbr:scale(width) -0.218340 0.030926 -7.0600 1.665e-12

life.historyopprt.perdc:scale(width) 0.771661 0.022881 33.7250 < 2.2e-16

life.historyperdc:scale(width) -0.935271 0.057963 -16.1357 < 2.2e-16

A striking aspect of this fitted model is that all of the coefficients are significant, and most
are highly significant. However, these strong results are caused by inflated type I error rates
related to the fact that repeated measurements have been taken on each species. Repeated
measurements are always an important consideration when analyzing data with multiple
dimensions of replication; in a three-dimensional data list, such as ours for example, replication
along two of the dimensions (e.g., seasons and rivers) induces repeated measurements of the
replicates along the other (i.e., species). However, these inevitable repeated measurements
will only inflate type I error if the deviations from model expectations tend to be more similar
for observations associated with the same replicate along a particular dimension of replication
– a form of autocorrelation. To visually explore this possibility, a good option is to plot the
expected versus observed values of the response variable, faceted by a dimension of replication.
For example, we plot abundance against its fitted values and facet by species (with 1:1 lines
to guide the eye) (Figure 9),

R> higgins[["fitted", shape = "abundance"]] <-

+ array(fitted.values(higgins.glm), dim(higgins))
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Figure 9: Observed abundances in the higgins data versus the abundances expected from
a fitted generalized linear model with Poisson error structure and formula, abundance ∼ -1

+ life.history + (scale(width):life.history). Each panel is for a single species, with
1:1 lines to aide visual interpretation.

R> ggplot(as.data.frame(higgins)) +

+ facet_wrap( ~ species, ncol = 4) +

+ geom_point(aes(x = fitted, y = abundance)) +

+ geom_abline(intercept = 0, slope = 1) +

+ scale_y_continuous(trans = "sqrt",

+ breaks = trans_breaks("sqrt", function(x) x^2)) +

+ scale_x_continuous(trans = "sqrt",

+ breaks = trans_breaks("sqrt", function(x) x^2))
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Autocorrelation is clearly visible in the panels for species within which all observed abundances
lie below the 1:1 line (i.e., amna; legu; mido; misa; pyol; caca). The biological interpretation
of this autocorrelation is that life.history does not completely determine each species’
relationship with width, and therefore that width must interact with other traits to affect
abundance.

Despite this autocorrelation issue, the parameter estimates themselves suggest that there
may in fact be an interaction between life.history and width. In particular, the width

coefficient for equilibrium-periodic species is smaller in magnitude than for the others. Fur-
thermore, some life.history strategies were associated with positive width coefficients (i.e.,
equilibrium; equilibrium-periodic; and opportunistic-periodic) whereas the other two were as-
sociated with negative width coefficients (i.e., opportunistic-equilibrium and periodic). But,
will this interaction be significant after properly accounting for autocorrelation? There are two
general approaches to addressing this question: mixed modeling and randomization testing,
which is considered next.

4.5. Randomization tests

As in all randomization tests, the first step is to compute the statistics of the observed data,
which in this case are the five coefficients defining the interaction between life.history and
width.

R> coef.obs <- coefficients(higgins.glm)[6:10]

These observed coefficients will be compared with a distribution of coefficients for randomized
data. Next we decide on the number of randomizations,

R> B <- 500

and allocate an array to store the randomized coefficients,

R> coef.B <- array(0, c(B, length(coef.obs), 2))

R> dimnames(coef.B) <- list(1:B, names(coef.obs),

+ c("species", "seasons.rivers"))

This array, coef.B, has one dimension for the B randomizations of the data, one for the
number of coefficients in the model, and a third dimension for the number of null models
to be considered; with more than a single dimension of replication, several null models are
often required (e.g., Dray and Legendre 2008; Cormont, Vos, van Turnhout, Foppen, and ter
Braak 2011). When sample sizes are sufficiently large, it is ideal to compute one null model
for each dimension of replication. The null model for each dimension permutes the indices of
the response variable (i.e., abundance in this case) for that dimension. This is the approach
suggested by Dray and Legendre (2008). However, the seasons and rivers dimensions are
very short (i.e., 4 and 3), which translates into only 24 and 6 possible permutations for these
dimensions. Therefore, we consider only two null models: permute the (1) species dimension
and (2) seasons and rivers dimensions.

Because randomization tests involving data lists require the repeated coercion of data lists
to data frames, we use the molding technique to speed up computation (Section 3.1). In this
example, the savings in speed are modest, but they can be much greater in larger problems.
Molding begins by taking a mold of the initial data list,

R> mold.higgins <- data.list.mold(higgins)
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Both null models require a three-line loop over the B permutations,

R> higgins.tmp <- higgins

R> for(i in 1:B) {

+ higgins.tmp$abundance <- higgins$abundance[sample(24), , ]

+ df.tmp <- as.data.frame(higgins.tmp, mold = mold.higgins)

+ coef.B[i, , 1] <- glm(form, family = poisson, df.tmp)$coefficients[6:10]

+ }

The first line permutes the species dimension of the response variable; the second coerces
the permuted data list to a data frame; and the third computes and stores the coefficients
estimated from the permuted data. The second null model is computed similarly,

R> higgins.tmp <- higgins

R> for(i in 1:B) {

+ higgins.tmp$abundance <- higgins$abundance[, sample(4), sample(3)]

+ df.tmp <- as.data.frame(higgins.tmp, mold = mold.higgins)

+ coef.B[i, , 2] <- glm(form, family = poisson, df.tmp)$coefficients[6:10]

+ }

To avoid issues with two-sided tests, we assess the magnitudes of the coefficients irrespective
of their signs,

R> coef.B.abs <- abs(coef.B)

R> coef.obs.abs <- abs(coef.obs)

Simple estimates of p values can now be computed by processing coef.B.abs using standard
R commands,

R> pvalues <- apply(sweep(coef.B.abs, 2, coef.obs.abs, ">="), c(2,3), mean)

R> round(cbind(coef.obs, pvalues), 3)

coef.obs species seasons.rivers

life.historyeqlbr:scale(width) 0.235 0.626 0.336

life.historyeqlbr.perdc:scale(width) 0.137 0.780 0.532

life.historyopprt.eqlbr:scale(width) -0.218 0.708 0.274

life.historyopprt.perdc:scale(width) 0.772 0.122 0.474

life.historyperdc:scale(width) -0.935 0.072 0.192

With these more accurate p values, we can see that there is very little evidence for an interac-
tion between width and life.history. A mixed-model approach that more directly accounts
for repeated measurements on species might be beneficial here. Although such an approach
is beyond our scope here, the consistent logic of multitable applies: manipulate the data list,
coerce it to a data frame, and pass the data frame to a mixed-model fitting function.

4.6. Analyzing data lists with multivariate methods

So far we have used data lists by manipulating them, converting to a data frame, and passing
to a function to produce an analysis or visualization. In the context of multivariate analysis,
it is often useful to cut out the middle step and pass a data list directly to a function. In most
univariate methods, both the response and explanatory variables are vectors; in contrast, the
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response variables of many multivariate methods are matrices while the explanatory variables
are vectors. Because data lists are – unlike data frames – able to store both matrix- and
vector-valued variables, they are well suited for use in multivariate analyzes.

As an example of using a data list in a multivariate analysis, we use the adonis (analysis of
dissimilarities) function (Anderson 2001; McArdle and Anderson 2001) in the vegan package
(Oksanen et al. 2012) to analyze the relationships between abundance and the environmental
variables in the higgins data. However, abundance is a three dimensional array, and adonis

– like many other multivariate methods requires a matrix-valued response variable. Therefore,
higgins must be manipulated before it is ready to be analyzed. In particular, we collapse
the seasons and rivers dimensions of replication into a single dimension, seasons.rivers.
In Section 2.8 we described how to collapse dimensions using the melt-recast concept, and so
we use this technique here,

R> data("higgins")

R> higgins.melt <- dlmelt(higgins)

R> higgins.melt$species.seasons.rivers <-

+ within(higgins.melt$species.seasons.rivers, {

+ seasons.rivers <- interaction(seasons, rivers, drop = TRUE)

+ seasons <- rivers <- NULL

+ })

R> higgins.melt$seasons.rivers <-

+ within(higgins.melt$seasons.rivers,

+ seasons.rivers <- interaction(seasons, rivers, drop = TRUE)

+ )

R> higgins <- dlcast(higgins.melt)

This new version of higgins has only two dimensions of replication, with abundance as a
matrix and the environmental variables as one-dimensional vectors,

R> summary(higgins)

abundance width temp depth velocity substrate habitat seasons

species TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

seasons.rivers TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

rivers trophic life.history

species FALSE TRUE TRUE

seasons.rivers TRUE FALSE FALSE

We can now call adonis within an environment defined by higgins,

R> library("vegan")

R> dl.adonis <- with(higgins, adonis(

+ t(abundance) ~ width + temp + depth + velocity + substrate + habitat,

+ strata = higgins$species

+ ))

R> print(dl.adonis$aov.tab, signif.stars = FALSE)
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Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

width 1 0.80370 0.80370 6.3398 0.28374 0.001

temp 1 0.28776 0.28776 2.2699 0.10159 0.046

depth 1 0.19041 0.19041 1.5020 0.06722 0.193

velocity 1 0.43200 0.43200 3.4078 0.15252 0.011

substrate 1 0.23012 0.23012 1.8152 0.08124 0.104

habitat 1 0.25466 0.25466 2.0088 0.08991 0.082

Residuals 5 0.63385 0.12677 0.22378

Total 11 2.83250 1.00000

The fact that width and velocity have significant effects indicate that these factors might
be important in structuring these stream fish communities. However, taken together with the
previous results using Poisson generalized linear models, these results also indicate that these
effects are not well understood in terms of the life.history trait.

5. Conclusion

The structure of data.list objects is sufficiently rich to give rise to a wider variety of uses
than can be described in detail here. Our intention was to illustrate the basic features and
concepts of the multitable package, and to demonstrate its utility. Our long-term goal with
the multitable project in general is to make standard analyzes in R simpler to conduct on
complex multiple-table data.
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