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Abstract

The profdpm package facilitates inference at the posterior mode for a class of product
partition models. Dirichlet process mixtures are currently the only available class mem-
bers. Several methods are implemented to search for the maximum posterior estimate
of the data partition. This article discusses the relevant theory, the R and underlying C
implementation, and examples of high level functionality.
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1. Introduction

profdpm is an extension package for the R language and environment for statistical computing
(R Core Team 2013), available from the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=profdpm. This package facilitates inference at the posterior mode
in a class of conjugate product partition models (PPM) by approximating the maximum a
posteriori data partition. The class of PPMs is motivated by an augmented formulation of the
Dirichlet process mixture (DPM), which is currently the only available member of this class.
The profdpm package consists of two model-fitting functions, profBinary and profLinear,
their associated summary methods for the returned S3 objects, and a function (pci) that
computes several metrics of agreement between two data partitions. However, the profdpm
package was designed to be extensible to other types of product partition models.

The remainder of this article proceeds as follows: the relevant theory of product partition
models is discussed in Section 2, examples and discussion are presented in Sections 3 and 4,
and Section 5 discusses some future directions for the profdpm package. The underlying C
methods are detailed in an appendix.

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=profdpm
http://CRAN.R-project.org/package=profdpm
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2. Product partition models

Consider the following hierarchical Bayesian model for a collection of possibly multivariate
observations y = {y1, . . . , yn}:

yi|zi = k, φk ∼ f(yi|φk)
φk ∼ πφ(φk)

z ∼ πz(z) ∝
r∏

k=1

ck(z),

where z = {z1, . . . , zn} is a collection of cluster membership variables such that zi = k
indicates that observation i is a member of cluster k. The collection z represents a partition of
y into r clusters, identified by the r unique values among z. The values of z are not important,
as long as they are distinct. For simplicity, the positive integers are used to enumerate the
distinct values. The tilde symbol ‘∼’ is read ‘independently distributed as’. The function
f is a probability density indexed by parameter φk. For k = 1, . . . , r, φk are independently
distributed according to prior density πφ. The prior mass function πz is proportional to a
product of cohesion functions ck, which specify the prior distribution of the data partition.
The DPM has a PPM representation when ck(z) = αΓ(nk), where α is the scalar Dirichlet
process (DP) ‘precision’ parameter, Γ is the gamma function, and nk represents the number of

observations assigned to the kth cluster. Alternative cohesions yield other well-known process
mixtures (for a partial listing, see Lau and Green 2007). The posterior distribution over the
data partition is proportional to the product

p(z|y) ∝
r∏

k=1

ck(z)

∫
L(φk|y, z)πφ(φk)dφk, (1)

where L(φk|y, z) =
∏n
i=1 f(yi|φk)I(zi=k) is the cluster-specific likelihood. Hence, the product

partition model is conjugate in the sense that both prior and posterior may be written as a
product of cluster-specific terms. Further details regarding the PPM are given in Hartigan
(1990) and Barry and Hartigan (1992).

A maximum a posteriori (MAP) estimate of the data partition variable z partitions the data
into clusters. The principal difficulty with MAP estimation is the size of the partition space
(see the ‘Bell number’, Bell 1934; Rota 1964). Hence, computing the MAP estimate using
enumerative methods is not practical.

Profile inference about the parameter φk is conditional on an estimate of the data parti-
tion. Conditional on the estimate, {φ1, . . . , φr} are independent a posteriori, and distributed
according to

p(φk|y, ẑ) ∝ L(φk|y, ẑ)πφ(φk).

For PPMs implemented in the profdpm framework, the likelihood and prior over φk are
selected to be conjugate in φk. Hence, the integral in Equation 1 has simplified form.

The profdpm package computes a MAP estimate for two types of PPMs, corresponding to
the R functions profLinear and profBinary. Both functions accept model formulae, and
return an instance of the class ‘profLinear’ or ‘profBinary’ respectively. Instances of these
classes consist of a data partition estimate and other information related to profile inference.
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2.1. Product partition of linear models

The profLinear function fits a product partition of conjugate normal linear models:

yi|xi, zi = k,µk, τk ∼ N(x′iµk, τk)

µk, τk ∼ NqG(m0, s0Iq, a0/2, 2/b0)

z ∼ πz(z) ∝
r∏

k=1

αΓ(nk), (2)

where yi is a continuous scalar observation, xi is a covariate vector of dimension q, N rep-
resents the normal distribution with mean x′µk and precision τk, and NqG represents the
(q+1)-variate normal-gamma distribution with meanm0, precision matrix τks0Iq, shape a0/2,
and scale 2/b0. The observation vector and design matrix are specified using the R formula
mechanism. The prior parameters m0, s0, a0, b0, and α may also be specified as arguments
to profLinear. Conditional on an estimated partition, the pairs {(µ1, τ1), . . . , (µr, τr)} are
independent a posteriori and distributed according to the (q + 1)-variate normal gamma dis-
tribution with mean mk, precision matrix τkSk, shape ak/2, and scale 2/bk. The posterior
statistics mk, Sk, ak, and bk are returned by profLinear for each cluster.

2.2. Product partition of binary models

The profBinary function fits a product partition of conjugate binary models:

yij |zi = k, φkj ∼ B(φkj)

φkj ∼ β(a0, b0)

z ∼ πz(z) ∝
r∏

k=1

αΓ(nk), (3)

where yij for j = 1, . . . , q is the jth binary observation for a subject i, B represents the
Bernoulli distribution with probability φkj , and β represents the beta distribution with shape
parameters a0 and b0. Conditional on an estimated partition, φkj are independently beta
distributed a posteriori with shape parameters akj and bkj . This PPM models multivariate
binary outcomes only (i.e., without covariates). Hence, the set of outcomes is specified by
supplying a one-sided R formula. The profBinary function returns the posterior statistics
akj and bkj for k = 1, . . . , r and j = 1, . . . , q.

2.3. Partition estimation

The profdpm package utilizes four methods to approximate the MAP estimate in an iterative
fashion. The first method is the agglomerative method of Ward (1963), later used by Heard,
Holmes, and Stephens (2006) in the context of DPMs. Initially, all observations are parti-
tioned into separate clusters. Two clusters are merged at each subsequent step such that the
change in marginal posterior mass is largest. This process repeats until all observations are
partitioned into a single cluster. This method produces a deterministic and finite sequence
of data partition estimates. The estimate with largest marginal posterior mass is selected to
approximate the MAP estimate. Although the agglomerative method evaluates the marginal
posterior mass function O(n2) times, this method is usually the second fastest among the
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implemented methods. This method does not yield arbitrarily precise approximations to the
MAP estimate, but often performs well in practice.

The second method is the Polya urn Gibbs sampler of MacEachern (1994), Bush and MacEach-
ern (1996), and MacEachern and Müller (1998). The Gibbs sampler sequentially samples from
the full conditional distributions having mass functions of the form p(zi|z−i,y), where z−i is
the collection of cluster membership variables with the exception of zi. The Gibbs method
produces a sample from the posterior distribution. The MAP estimate is approximated by the
sampled partition that achieves the highest posterior mass. Larger samples from the posterior
distribution yield increasingly precise approximations. The Gibbs method is guaranteed to
find the MAP estimate in finite time, but is prone to slow mixing in the partition space, and
is computationally intensive.

For the Gibbs method, the profdpm package stores only the most recently sampled partition
and the approximate MAP estimate. Hence, there is no simple mechanism to retrieve the
entire sequence of sampled partitions. However, setting the sampler argument to TRUE (for
profLinear or profBinary) causes the most recently sampled partition to be returned, rather
than the approximate MAP partition. Additional partitions may be sampled from the Markov
chain using the sampler, clust, and maxiter arguments in combination. In this way, a sample
from the posterior distribution may be constructed and used to characterize, for example, the
posterior distribution for the number of clusters.

The third strategy is a variant of the sequential update and greedy search (SUGS) method
proposed by Wang and Dunson (2010). The SUGS algorithm assigns observations to clusters
sequentially. Initially, the first observation forms a singleton cluster. Subsequent observations
are assigned to an existing cluster, or form a new singleton cluster by optimizing the associ-
ated posterior probability, conditional on previous cluster assignments. The entire process is
repeated in random order. That is, after repeated application, the result is independent of
the original data ordering. SUGS is the fastest optimization method, but may perform poorly
in MAP estimation of data partitions. Indeed, SUGS was designed for nonparametric appli-
cations where the data partition is a nuisance parameter. Hence, SUGS is usually reserved
for initial partitioning.

The last method is an iterative stochastic search utilizing ‘explode’ and ‘merge’ operations
on the clusters of a partition (Shotwell and Slate 2011). At the explode step, a randomly
selected subset of observations are redistributed uniformly at random to an existing or new
cluster. Each of the exploded observations is then merged with one of the existing clusters in
a sequentially optimal fashion. The explode-merge method is motivated by the split-merge
Metropolis Hastings algorithms of Green and Richardson (2001), and Jain and Neal (2004,
2007). This method utilizes a Markov chain to approximate the MAP estimate, but does
not sample from the posterior distribution over the data partition. Hence, the explode-merge
method avoids the complexity and computational expense of ensuring the chain to be ergodic.

The following pseudocode routine describes the stochastic method from iteration t to t + 1.
The return value is the MAP estimate at time t+ 1.

1: set z′ = z(t)

2: draw nJ from {1, . . . , n}
3: draw vector J of length nJ from {1, . . . , n} w/o replacement
4: for j in J do
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5: draw z′j from {1, . . . , n} (explode step)
6: end for
7: if p(z′|y) > p(z(t)|y) then
8: return z′

9: end if
10: for j in J do
11: set z′j to maximize p(z′j |z′−j ,y) (merge step)
12: end for
13: if p(z′|y) > p(z(t)|y) then
14: return z′

15: else
16: return z(t)

17: end if

The explode-merge optimization terminates when the change in p(z′|y) from one iteration
to the next is less than a threshold value (i.e., the crit argument to profBinary and
profLinear). Because the partition state is discrete, improvements in the marginal pos-
terior mass may be irregular. The profdpm package implements a moving-average procedure
for calculating improvement.

3. Illustration: profLinear

The profdpm package adheres to the principle of ‘convention over configuration’. That is,
reasonable default values are selected for model and optimization parameters, but these may
also be configured. This strategy contrasts with the BUGS language (Lunn, Spiegelhalter,
Thomas, and Best 2009), where most modeling and sampling aspects must be configured
explicitly.

3.1. Default parameters

By default, the profLinear and profBinary functions utilize the agglomerative optimization
method. This method is deterministic, relatively fast, and yields MAP estimates that are often
comparable with other optimization strategies. However, the best MAP approximations are
usually obtained using the Gibbs and stochastic search methods, at the expense of additional
computation and other consequences of stochastic optimization (e.g., estimates may not be
identical over repeated optimizations). The SUGS method is recommended only for fast initial
partition estimation, or in nonparametric applications of the kind considered by Wang and
Dunson (2010).

All PPMs implemented in the profdpm framework must specify the DP precision parameter
α, which affects the prior distribution over the data partition parameter. Smaller values
result in more concentrated prior mass on partitions with fewer clusters. Conversely, larger
values for α concentrate prior mass on partitions with additional clusters. This effect may be
summarized by computing the prior expected number of clusters. Antoniak (1974) gives two
expressions, one approximate and one exact, for the expected number of clusters in a DPM.
The exact expression is given by

n∑
i=1

α

α+ i− 1
.
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The approximate expression is

α log

(
n+ α

α

)
.

When α� 1, the approximate expression performs well, otherwise the exact expression should
be used.

PPMs may be used to detect outlying heterogeneity in otherwise homogeneous observations
(Shotwell and Slate 2011). The corresponding prior belief dictates that prior mass on the
space of data partitions should be concentrated on the partition consisting of just one cluster.
For the DPM, this is enforced by selecting α to be small. The profLinear and profBinary

functions both set alpha = 1/1000 by default. Hence, for n < 1000 and α = 1/1000, the
expected number of clusters a priori is less than 1.01. Considering that 1.00 is the minimum
expected number of clusters for all α and n, taking α = 1/1000 clearly concentrates prior
mass on partitions with few clusters.

The PPM of linear models has four additional prior parameters; a0, b0, s0, and m0. Because
the model is selected to be conjugate, the posterior parameters may be written in simple
terms:

Sk = s0Iq +X(k)>X(k)

mk = S−1k (s0m0 +X(k)>y(k))

ak = a0 + nk

bk = b0 + y(k)>y(k) + s0m
>
0m0 −m>k Skmk, (4)

for k = 1, . . . , r, where y(k) is the vector formed by concatenating all of the yi in the kth

cluster, X(k) is the matrix formed by row-wise joining the xi of the kth cluster, and nk is the

number of groups comprising the kth cluster.

Equation 4 isolates the influence of prior parameters on posterior quantities. In particular,
prior influence may be reduced by setting each parameter close to zero. Note that the prior
(normal-gamma) distribution is improper for a0 less than one. However, the posterior is always
proper for n ≥ 1. The profLinear function specifies a0 = 0.001, b0 = 0.001, s0 = 0.001,
and m0 = [0.000, . . . , 0.000] by default. These default values encode a heavy-tailed prior
distribution over the linear coefficients, and weights the posterior distribution more heavily
by the observed data.

3.2. profLinear example

The following example simulates a dataset consisting of 99 longitudinal measurements on
33 units of observation, or subjects. Each subject is measured at three times, drawn uniformly
and independently from the unit interval. Each of the three measurements per subject is
drawn independently from the normal distribution with one of three linear mean functions
of time, and with unit variance. The linear mean functions vary by intercept and slope.
The longitudinal structure imposes a grouping among measurements on a single subject.
Observations grouped in this way should always cluster together. A grouping structure is
specified using the group parameter; a factor that behaves similarly to the groups parameter
of lattice graphics functions (Sarkar 2008). For the PPM of conjugate binary models, the
grouping structure is imposed by the model formula. More specifically, grouped observations
correspond to rows of the model matrix, resulting from a call to model.matrix on the formula
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Figure 1: Scatterplot of three simulated linear subgroups. Mean estimates (dashed) and 95%
credible intervals (solid) are presented, conditional on the data partition estimated using the
profLinear function.

passed to profBinary. Hence, the profBinary function does not have a group parameter in
its prototype.

The goal of the following example is to recover the simulated partition and to create simul-
taneous 95% credible bands for the mean within each cluster. The following R code block
creates and fits the simulated dataset. To ensure reproducibility of the figures and statistics
presented in this document, the pseudo random number generator seed is fixed.

R> set.seed(42)

R> sim <- function(multiplier = 1) {

+ x <- as.matrix(runif(99))

+ a <- multiplier * c(5, 0, -5)

+ s <- multiplier * c(-10, 0, 10)

+ y <- c(a[1] + s[1] * x[1:33],

+ a[2] + s[2] * x[34:66],

+ a[3] + s[3] * x[67:99]) + rnorm(99)

+ group <- rep(1:33, rep(3, 33))

+ return(data.frame(x = x, y = y, gr = group))

+ }

R> dat <- sim()

R> library("profdpm")

R> fitL <- profLinear(y ~ x, group = gr, data = dat)
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The profLinear function returns an object of class profLinear. The summary method prints
and returns (invisibly) summary information regarding the estimated product partition model,
including 95% credible intervals for the linear coefficients under a Laplace approximation to
the profile posterior distribution.

Figure 1 presents the simulated data in a scatterplot. For each cluster identified in the
estimated partition, the profile posterior mean is represented by a dashed line. Simultaneous
95% credible bands (using “Method 3” of Hanson and McMillan 2012) are represented by
flanking solid lines.

R> sfitL <- summary(fitL)

R> plot(fitL$x[, 2], fitL$y, col = grey(0.9), xlab = "x", ylab = "y")

R> for(grp in unique(fitL$group)) {

+ ind <- which(fitL$group == grp)

+ ord <- order(fitL$x[ind, 2])

+ lines(fitL$x[ind, 2][ord], fitL$y[ind][ord], col = grey(0.9))

+ }

The following implements the (3rd) method of Hanson and McMillan (2012) for simultaneous
credible bands by (1) generating coefficients from the profile posterior, (2) computing the
Mahalanobis distances, (3) finding the smalles 95% in terms of the Mahalanobis distance, i.e.,
the 95% credible region for µ and (4) compute the 95% credible bands.

R> n <- 1e4

R> for(cls in 1:length(sfitL)) {

+ tau <- rgamma(n, shape = fitL$a[[cls]]/2, scale = 2/fitL$b[[cls]])

+ muz <- matrix(rnorm(n * 2, 0, 1), n, 2)

+ mus <- (muz / sqrt(tau)) %*% chol(solve(fitL$s[[cls]]))

+ mu <- outer(rep(1, n), fitL$m[[cls]]) + mus

+

+ mhd <- rowSums(muz^2)

+ ord <- order(mhd, decreasing = TRUE)[-(1:floor(n*0.05))]

+ mu <- mu[ord,]

+

+ plotx <- seq(min(dat$x), max(dat$x), length.out = 200)

+ ral <- apply(mu, 1, function(m) m[1] + m[2] * plotx)

+ rlo <- apply(ral, 1, min)

+ rhi <- apply(ral, 1, max)

+ rmd <- fitL$m[[cls]][1] + fitL$m[[cls]][2] * plotx

+

+ lines(plotx, rmd, col = cls, lty = 2)

+ lines(plotx, rhi, col = cls)

+ lines(plotx, rlo, col = cls)

+ }

3.3. Partition comparisons

Partition estimate comparisons are made using one of many statistics designed for this pur-
pose, including the Rand, Fowlkes and Mallows, Jaccard, and Wallace indices (Rand 1971;
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Fowlkes and Mallows 1983; Wallace 1983). Each of these indices assumes that a partition is
represented by a length n vector of one or more distinct values z = {z1, z2, . . . , zn}, where zi
represents the cluster assignment of observation i. Hence, zi = zj indicates that observations
i and j are assigned to the same cluster. The number of clusters is determined by the number
of unique values in the vector z.

Consider two partitions represented by the cluster assignments za and zb. Let n11 be the
number of unique i, j pairs such that zai = zaj and zbi = zbj . In words, n11 is the count of
observation pairs where the pairs are clustered together in both partitions. Let n00 be the
count of observation pairs where the pairs are assigned to different clusters in both partitions.
Hence, n11 and n00 are the counts of observation pairs where partitions za and zb are in
agreement with regard to cluster assignment. Further define n10 as the count of observation
pairs where the pairs are assigned to the same cluster in partition za but to different clusters
in partition zb, and let n01 be the converse. Hence, n01 and n10 are the counts of observation
pairs where partitions za and zb are discordant. Also observe the equivalence n(n − 1)/2 =
n11 + n00 + n10 + n01, where n(n − 1)/2 is the number of distinct pairs of n items. Each of
the indices mentioned above is a function of these counts.

The Rand index is the most intuitive. It is the proportion of concordant observation pairs

n11 + n00
n11 + n00 + n01 + n10

.

The Fowlkes and Mallows index is given by

n11√
(n11 + n01)(n11 + n10)

.

The Wallace indices are respectively given by

n11
n11 + n10

and
n11

n11 + n01
.

The Jaccard index is given by
n11

n11 + n01 + n10
.

Each of these indices takes values in the closed interval [0, 1], where larger values indicate
greater agreement. The cited works, and the associated discussions consider the relative
merits of each index.

The pci function computes each of the partition comparison indices. The returned value
is a named vector, where the name indicates the index computed. The Rand, Fowlkes and
Mallows, Wallace, and Jaccard indices are abbreviated by R, FM, W10, W01, and J respectively.
The following demonstrates the pci function using the estimated and simulated partitions of
the previous example.

R> simulatedPartL <- rep(1:3, rep(33, 3))

R> estimatedPartL <- fitL$clust

R> pci(simulatedPartL, estimatedPartL)

R FM W10 W01 J

0.9257885 0.8863636 0.8863636 0.8863636 0.7959184
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Figure 2: Scatterplot of Rand indices (between estimated and simulated partitions) versus
slope multiplier. Smaller coefficient multipliers reduce the heterogeneity among the simulated
clusters more. Light gray points represent simulated datasets. Jitter was added to aid in
visual discrimination. The black line is a LOWESS estimate of the trend in Rand index
versus coefficient multiplier. For α less than 0.3, the partition estimates mostly consisted of
a single cluster.

The estimated partition has good agreement with the simulated partition in the example
above, partly due to the large differences in slopes of the simulated linear mean functions
relative to the error variance. The grouping structure among longitudinal observations reduces
the partition space complexity, further promoting recovery of the simulated partition.

3.4. Sensitivity to cluster homogeneity

The next example assesses the sensitivity of simulated partition recovery to reduced hetero-
geneity in the simulated mean functions. The three sets of coefficients in the last example were
(5,−10), (0, 0), and (−5, 10). Hence, heterogeneity is reduced by multiplying each coefficient
by a proportion. The following R code evaluates the Rand index between the estimated and
simulated partitions in a series of simulated datasets with reduced coefficient heterogeneity.

R> mult <- rep(seq(1, 0.01, length.out = 33), 10)

R> Rand <- sapply(mult, function(mult) {

+ dat <- sim(mult)

+ fit <- profLinear(y ~ x, group = gr, data = dat)

+ pci(rep(1:3, rep(33, 3)), fit$clust)["R"]

+ })

R> lws <- lowess(x = mult, y = Rand)

R> plot(lws$x, lws$y, type = "n",

+ xlab = "coefficient multiplier", ylab = "Rand index")
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R> points(mult + rnorm(length(mult), 0, 1/200),

+ Rand + rnorm(length(Rand), 0, 1/200), col = grey(0.9))

R> lines(lws$x, lws$y)

Figure 2 illustrates the effect of reduced coefficient heterogeneity on the Rand index between
estimated and simulated partitions. Clearly, it is increasingly difficult to recover the simulated
partition when the mean functions are more alike. Limited or absent grouping information
may also hinder recovery of the simulated partition.

4. Illustration: profBinary

4.1. Default parameters

The PPM of multivariate binary models specifies two prior shape parameters, a0 and b0. For
each cluster k = 1, . . . , r and binary outcome j = 1, . . . , q, the associated posterior probability
φjk has a beta distribution with shape parameters akj and bkj , given by

akj = a0 + nkj

bkj = b0 + nk − nkj , (5)

where nk is the number of observations assigned to the kth cluster, and nkj is the number of
observations for which zi = k and yij = 1. That is, nkj is the count of observations in the

kth cluster that exhibit outcome j. Relative to the data likelihood, the prior influence on
the posterior distribution may be reduced by setting a0 and b0 near to zero. Indeed, when a0
and b0 equal zero, the posterior expected probability of outcome j in cluster k is equal to the
corresponding sample proportion. By default, the profBinary function takes a0 and b0 to be
1.00, which encodes a uniform prior distribution over φjk.

4.2. profBinary example

The following R code block simulates a multiple binary outcome dataset with two latent
clusters. Each row in the dataset corresponds to a single multivariate binary observation.
The profBinary function automatically clusters observations in a single row. Hence, a group

argument is unnecessary, and not implemented. The outcomes used for partitioning are
specified using a one-sided formula.

R> p <- seq(0.9, 0.1, length.out = 9)

R> y1 <- matrix(rbinom(999, 1, p), 111, 9, TRUE)

R> y2 <- matrix(rbinom(999, 1, rev(p)), 111, 9, TRUE)

R> dat <- as.data.frame(rbind(y1, y2))

R> fitb <- profBinary(~ 0 + ., data = dat)

Conditional on the estimated partition, the outcome probabilities for each cluster are inde-
pendently beta distributed a posteriori. The parameters of the profile posterior distribution
for each cluster may be accessed in the return value of profBinary. In a fashion similar to the
summary for ‘profLinear’ objects the summary method for ‘profBinary’ objects computes
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Figure 3: Scatterplot of Rand indices (estimated versus simulated partition) against DPM
precision parameter α. Smaller α imposes a stronger penalty against partitions with many
clusters. Light gray points represent estimated partitions. Jitter was added to aid in visual
discrimination. The black line is a LOWESS estimate of the trend in Rand index versus α.

and prints the profile posterior means and 95% credible limits of the outcome probabilities
for each cluster.

4.3. Sensitivity to DPM precision α

The value of the DPM precision parameter α has a significant effect on simulated partition
recovery in the last example. For illustration, consider repeating the analysis under a sequence
of values for α. Figure 3 presents the Rand index as a function of α.

R> alpha <- 10^(-seq(0, 40, length.out = 33))

R> Rand <- sapply(alpha, function(alpha) {

+ fit <- profBinary(~ 0 + ., data = dat, param = list(alpha = alpha))

+ pci(rep(1:2, rep(111, 2)), fit$clust)["R"]

+ })

R> lws <- lowess(x = log(alpha), y = Rand)

R> plot(lws$x, lws$y, type = "l", ylim = c(0.45, 1),

+ xlab = expression(paste("log", alpha)), ylab = "Rand index")

R> points(log(alpha), Rand + rnorm(length(Rand), 0, 1/200),

+ col = grey(0.9))

In these data, a very small value of α is required to most closely recover the simulated
partition. However, in practice, this optimal precision parameter is unknown. To overcome
this, we recommend that α be fixed in some principled manner (e.g., the strategy of Shotwell
and Slate 2011). The default value for α (1/1000) concentrates prior mass on partitions with
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few clusters. Even so, the corresponding partition estimate consisted of fourteen clusters in
these data, twelve more than the simulated partition.

Escobar and West (1995) warn that ‘sensitivity to α is marked’, that the DP precision is ‘a
critical smoothing parameter’, and that the observed data might be used to draw inferences
about α. The authors treat the precision as an unknown parameter with heavily right skewed
gamma prior density. Through inspection of the posterior density, they conclude that the
data are informative about α. Posterior inference about α has been similarly adopted in
much of the subsequent DP literature (Blei and Jordan 2006; Dunson, Xue, and Carin 2008;
Rodŕıguez, Dunson, and Gelfand 2009; Wang and Dunson 2010).

Since the DP precision is an important smoothing parameter, an alternative rationale is that
allowing the data to inform our belief about α may result in too little smoothing. Hence,
a fixed α is recommended. Arguments and experiments regarding fixed precision are also
prevalent in the DP literature (Bush and MacEachern 1996; Daumé III 2007; Dunson and
Park 2008).

5. Extensions

The profdpm package is currently limited to product partitions of linear and binary models,
and the optimization strategies described above. Additional models may be implemented as
need arises. Also, in the current framework, each cluster of the partitioned data is required
to have an identical parametric model, albeit with different parameters. This contrasts, for
example, with the finite mixture clustering methods implemented in the flexmix package
(Grün and Leisch 2008), which allow multiple parametric forms. This type of functionality is
possible in the profdpm framework by specifying a sufficiently complex model structure, and
corresponding move and logp methods (see appendix).

Estimating a partition is computationally intensive, and an open field of computational re-
search. Other aspects of partition estimation are also under scrutiny. For example, work
by Wang and Dunson (2010) suggests that marginal likelihood optimization may overfit the
observed data, yielding more clusters than necessary. The authors recommend a pseudo
marginal likelihood (PML) approach, which imposes a leave-one-out cross-validation strategy
to penalize extraneous clusters in partition estimates. The profdpm framework has potential
to accommodate alternative likelihoods by implementing alternative logp methods.

Finally, there are plans to extend the profdpm framework to accommodate novel PPMs by
modifying the cohesion function in the prior distribution over data partitions (see Section 2).
Note that such modifications result in PPMs other than the augmented Dirichlet process
mixture. Lau and Green (2007) discuss two such alternatives, including the partition model
arising from the Poisson-Dirichlet process; a two-parameter generalization of the DP.
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A. Programming strategy

The profdpm package is primarily implemented in C (following the C99 standard) to facilitate
efficient and flexible usage of memory, enable direct interface with the BLAS and LAPACK
matrix libraries, and to ease translation to environments other than R.

Product partition models are implemented as a state machine. The model state is represented
using the C struct pdpm_t, declared in src/profdpm.h as follows (edited for this document):

typedef struct pdpm_t {

unsigned char flags;

double alp; //DP precision parameter

unsigned int ngr; //number of groups

unsigned int ncl; //number of clusters

unsigned int * vcl; //cluster membership array

unsigned int * gcl; //number of groups per cluster array

double logpval; //unnormalized log posterior value

void (*move)( struct pdpm_t * obj,\

unsigned int grp, unsigned int cls );

double (*logp)( struct pdpm_t * obj );

double (*logponly)( struct pdpm_t * obj,\

unsigned int * only, unsigned int size );

void * model; //model specific/private data

} pdpm_t;

The flags member of struct pdpm_t is a bitmask for flags, for example, to indicate that
convergence criteria for an optimization strategy are met. The alp member is the Dirichlet
process precision parameter α. In the profdpm framework, multivariate observations, or
univariate observations that should always be clustered together are called ‘groups’. When
no complex grouping structure is present, each observation forms a singleton group. Clusters
consist of one or more groups. The ngr and ncl members of struct pdpm_t store the number
of groups and clusters that comprise the PPM state, respectively. Each group is assigned
exactly one cluster, identified by an integer stored in the vcl array. Hence, vcl[4] indexes
the cluster number for group four. For groups that are not yet assigned to a cluster (i.e., during
initialization), the corresponding vcl entry may take the value defined by the C preprocessor
macro BAD_CLS. The gcl array stores the number of groups assigned to each cluster. For
example, gcl[3] indexes the number of groups assigned to cluster number three. Because
each group might form a singleton cluster, vcl and gcl are both allocated to have length ngr.
The logpval member stores the unnormalized log posterior mass value at the current state.

The profdpm package implements four methods for partition estimation (see Section 2). Each
utilizes a Markov-like process. That is, a model state is initialized and updated sequentially,
where the updated state depends on the previous state. Each of the four methods decom-
poses into a series of just two simple operations on the model state: (1) reassigning a single
observation from one cluster to another, and (2) computing the marginal posterior mass at
the current partition estimate.
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For example, consider the SUGS optimization strategy. At iteration t, group t + 1 is either
assigned to an existing cluster, or assigned to a new cluster. In order to evaluate the alterna-
tives, group t+ 1 is reassigned to each potential cluster in sequence. The marginal posterior
mass is evaluated after each reassignment. Finally, group t + 1 is reassigned to the cluster
corresponding to the largest posterior mass. Hence, each iteration of the SUGS algorithm de-
composes into a series of reassignments and posterior mass calculations. No other operations
on the model state are necessary.

Manipulating the model state with simple operations is strategic. By implementing the simple
operations efficiently, estimation algorithms may be written generically, and with emphasis
on simplicity. Generic application of the estimation routines requires implementing the two
simple operations for each specific PPM type (e.g., two for product partitions of linear models,
and two for multivariate binary models).

The move and logp members of struct pdpm_t are pointers to C functions that implement
the reassignment and posterior mass calculation routines. The move member should point to
a function that takes three arguments; a pointer to the PPM state structure (obj), a group
number (grp), and a cluster number (cls). That is, in model state obj, the group with
number grp is reassigned to the cluster with number cls. The function pointed-to by move

should not return a value, but should update the ncl, vcl, and gcl members to reflect the
reassignment operation. The logp member should point to a function that takes the PPM
state structure as an argument, and returns the unnormalized log posterior mass, evaluated
at the current model state. The logp method may or may not update the logpval member
automatically.

The marginal posterior mass function in conjugate PPMs is a product of cluster specific terms.
Hence, moving a single group from one cluster to another affects two terms at most. The
posterior mass calculation may be optimized by computing only the terms associated with
clusters modified since the previous calculation. This optimization is implemented using an
optional third C function pointer; logponly. The function pointed-to by logponly should
accept three arguments; a pointer to the PPM state structure (obj), an array of cluster
numbers (only), the array’s length (size), and return the partial log posterior mass associated
with the clusters referenced in the only array. In particular, the returned value need only
satisfy that the algebraic difference in the return values of two identical calls to obj->logponly

represents the change in log posterior mass associated with model state changes in the period
between calls. For example, the following C code updates the log posterior mass associated
with a reassignment operation, where obj is a pointer to an initialized structure of type
struct pdpm_t:

...

cls_from_to[0] = obj->vcl[grp];

cls_from_to[1] = cls_to;

obj->logpval -= obj->logponly(obj, cls_from_to, 2);

obj->move(obj, grp, cls_to);

obj->logpval += obj->logponly(obj, cls_from_to, 2);

...

For model states with many clusters, updating the log posterior mass in this way is often
more efficient than recomputing all cluster-specific terms of the log posterior mass function.
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Initializing the logponly pointer is optional. When logponly is left uninitialized (NULL),
estimation routines utilize the logp pointer instead.

Finally, the model pointer may be used to store data related to a specific type of PPM. For
example, in a PPM of linear models, model points to a structure that holds the response vector,
design matrix, and additional parameter values. The functions pointed-to by move and logp

may access the structure pointed-to by model. As a rule, routines that operate generically on
the model state, including the four optimization methods should not dereference the model

pointer.

The structure pointed-to by model may be simple or complex, depending on the resources of
the target platform and the available programming effort. A simple model state might store
only the original data arrays and other required parameters. When additional memory is
available, intermediate values might be cached for more efficient computations. For example,
linear models with covariate vector xi often involve the outer product xix

>
i . A computa-

tionally efficient method would compute and store this quantity once, rather than recompute
the quantity on demand. Furthermore, since xix

>
i is symmetric, only the upper or lower

triangular portion requires storage. The PPM of linear models implemented in the profdpm
package utilizes both optimizations.

The profdpm package leaves the programmer to balance the antagonistic relationship between
memory usage and computational efficiency by offering a uniform API to partition estima-
tion methods. The C function with prototype pdpm_t * pdpm_init(unsigned int ngr) is
a convenience function that allocates memory (using R_alloc), partially initializes, and re-
turns a pointer to an instance of struct pdpm_t. The argument ngr specifies the number
of groups that comprise the data. However, the structure returned by pdpm_init is not
fully initialized. The flags, alp, model and function pointer members (except logponly) of
struct pdpm_t must be initialized explicitly. Once fully initialized, a pointer to the model
state structure is passed to an optimization routine. For example, the function with prototype
void method_fast(pdpm_t *) implements the modified SUGS optimization method. When
method_fast returns, the structure pointed-to by its argument will have been modified (op-
timized) according to the SUGS algorithm. Finally, an interface between R and new PPMs
implemented using the profdpm C API must also be written.
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