
JSS Journal of Statistical Software
May 2013, Volume 53, Issue 9. http://www.jstatsoft.org/

fastcluster: Fast Hierarchical, Agglomerative

Clustering Routines for R and Python

Daniel Müllner
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Abstract

The fastcluster package is a C++ library for hierarchical, agglomerative clustering. It
provides a fast implementation of the most efficient, current algorithms when the input
is a dissimilarity index. Moreover, it features memory-saving routines for hierarchical
clustering of vector data. It improves both asymptotic time complexity (in most cases)
and practical performance (in all cases) compared to the existing implementations in
standard software: several R packages, MATLAB, Mathematica, Python with SciPy.

The fastcluster package presently has interfaces to R and Python. Part of the func-
tionality is designed as a drop-in replacement for the methods hclust and flashClust

in R and scipy.cluster.hierarchy.linkage in Python, so that existing programs can
be effortlessly adapted for improved performance.

Keywords: clustering, algorithm, hierarchical, agglomerative, linkage, single, complete, aver-
age, UPGMA, weighted, WPGMA, McQuitty, Ward, centroid, UPGMC, median, WPGMC,
MATLAB, Mathematica, Python, SciPy, C++.

1. Introduction

Hierarchical clustering is an important, well-established technique in unsupervised machine
learning. The common hierarchical, agglomerative clustering methods share the same algo-
rithmic definition but differ in the way in which inter-cluster distances are updated after each
clustering step (Anderberg 1973, page 133). The seven common clustering schemes are called
single, complete, average (UPGMA), weighted (WPGMA, McQuitty), Ward, centroid (UP-
GMC) and median (WPGMC) linkage (Everitt, Landau, Leese, and Stahl 2011, Table 4.1)

A variety of algorithms has been developed in the past decades to improve performance com-
pared to the primitive algorithmic setup, in particular Anderberg (1973, page 135), Rohlf
(1973), Sibson (1973), Day and Edelsbrunner (1984, Table 5), Murtagh (1984), Eppstein
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(2000), Cardinal and Eppstein (2004). Also, hierarchical clustering methods have been im-
plemented in standard scientific software such as R (R Core Team 2011), MATLAB (The
MathWorks, Inc. 2011), Mathematica (Wolfram Research, Inc. 2010) and the SciPy library
for the programming language Python (Jones, Oliphant, Peterson et al. 2001; van Rossum
et al. 2011). Specifically, there are the following functions:

� hclust in R’s stats package (R Core Team 2011),

� flashClust in R’s flashClust package (Langfelder 2011),

� agnes in R’s cluster package (Mächler, Rousseeuw, Struyf, Hubert, and Hornik 2011),

� linkage in MATLAB’s statistics toolbox (The MathWorks, Inc. 2011),

� Agglomerate and DirectAgglomerate in Mathematica (Wolfram Research, Inc. 2010),

� linkage in the Python module scipy.cluster.hierarchy (Eads 2008).

We found that all these implementations do not give satisfactory performance because—
insofar as this can be checked only for open-source software—they use inferior algorithms. The
fastcluster package, which is available from the Comprehensive R Archive Network at http://
CRAN.R-project.org/package=fastcluster, builds upon the author’s work (Müllner 2011),
where we identified three algorithms, including a new one by the author, as the most efficient
current algorithms for the seven clustering schemes above, when the input is given by pairwise
dissimilarities between elements. The fastcluster package also has memory-saving algorithms
for some of the clustering schemes when the input is given as vector data. It provides a fast
C++ implementation of each algorithm and currently offers interfaces to R and Python. We
improve both the asymptotic worst-case time complexity (in those cases where this can be
determined due to open source) and the practical performance (in all cases) of the existing
implementations listed above.

The paper is structured as follows: In Section 2, we briefly introduce the clustering methods
which our package provides in order to establish the technical context. The presentation
is selective and focuses on the aspects which are important for this paper. For a general
introduction to the well-known hierarchical clustering methods, we refer to textbooks, e.g.,
Anderberg (1973) or Everitt et al. (2011). Section 3 contains information about the algorithms
and the implementation. Section 4 compares the performance of the package with existing
software, both in a theoretical, asymptotic complexity analysis in Section 4.1 and by use case
performance experiments in Sections 4.2 and 4.3. In Section 5, we explain how to use the
fastcluster package and point to differences between the interfaces. This part is independent
of the two preceding sections. A detailed user’s manual is available in the package distribution.
The paper finishes with a short conclusion in Section 6.

2. SAHN clustering methods

The clustering methods in this paper have been characterized by the acronym SAHN (se-
quential, agglomerative, hierarchic, nonoverlapping methods) by Sneath and Sokal (1973, Sec-
tions 5.4 and 5.5). The input to the methods is a dissimilarity index on a finite set (see Hansen
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and Jaumard 1997, Section 2.1). For a set S, this is by definition a map d : S × S → [0,∞)
which is reflexive and symmetric, i.e., we have d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ S.

A metric on S is certainly a dissimilarity index. The dissimilarity index can be given directly
to a clustering algorithm as the

(
N
2

)
pairwise dissimilarities. This is the stored matrix approach

(Anderberg 1973, Section 6.2). Alternatively, the input points can be specified in a different
manner, e.g., as points in a normed vector space, where the dissimilarity information is given
implicitly by the metric on the ambient space. This input format is called the stored data
approach (Anderberg 1973, Section 6.3).

The first option has input size Θ(N2) for N elements, and the second option Θ(ND) for N
points in a D-dimensional vector space. We call an algorithm memory-saving in this paper if
it accepts vector data and the required memory is of class O(ND).

The common procedural definition for all clustering methods in this paper is as follows (cf.
Anderberg 1973, Section 6.1):

1. Let S be the current set of nodes, with implicit or explicit dissimilarity information.
Determine a pair of mutually closest points (a, b).

2. Join a and b into a new node n. Delete a and b from the set of nodes and add n to it.

3. Output the node labels a and b and their dissimilarity d(a, b).

4. Update the dissimilarity information by specifying the distance from n to all other
nodes. This can be done explicitly by specifying the distances, or by defining a cluster
representative in the stored data approach.

5. Repeat steps 1–4 until there is a single node left, which contains all the initial nodes.

The clustering schemes differ in the update formula for cluster dissimilarities in step 4. Table 1
lists the formulas for the seven common clustering schemes.

The output of the clustering procedure is a list of N − 1 triples (ai, bi, δi), which encodes
a stepwise dendrogram (see Müllner 2011, Section 2.2, for the difference to non-stepwise
variants): The i-th triple contains the information which nodes are joined into a new node
in the i-th step, and what was the cluster dissimilarity between ai and bi. This is sufficient
information to draw the usual representation of the dendrogram as a rooted tree, where the
leaves are the initial nodes, and a branching point at a given height δi represents the joining
of nodes ai, bi with mutual distance δi := d(ai, bi).

Note that the output of the clustering procedure above is not unique: if more than one pair
of nodes realizes the current minimal distance in step 1, any of them might be chosen, and
this influences later steps. The algorithms in the fastcluster package are correct in the sense
that they always return one of the possible outputs of the procedure above, and hence resolve
ties in one of possibly several correct ways. For detailed information on why the handling of
ties is a non-trivial matter and how it influences the choice of algorithms in the fastcluster
package, see Müllner (2011, Sections 3 and 5).

The procedural definition of the clustering scheme above already constitutes a primitive al-
gorithm. This algorithm has a time complexity of Θ(N3) for N input points, since in the i-th
iteration a pair of closest nodes is searched among N − i+ 1 nodes in step 1, which requires
Θ((N − i)2) comparisons by an exhaustive search. The fastcluster package reduces the time
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Name Distance update formula
for d(I ∪ J,K)

Cluster dissimilarity
between clusters A and B

Single min(d(I,K), d(J,K)) min
a∈A,b∈B

d[a, b]

Complete max(d(I,K), d(J,K)) max
a∈A,b∈B

d[a, b]

Average
nId(I,K) + nJd(J,K)

nI + nJ

1

|A||B|
∑
a∈A

∑
b∈B

d[a, b]

Weighted/McQuitty
d(I,K) + d(J,K)

2

Ward

√
(nI + nK)d(I,K)2 + (nJ + nK)d(J,K)2 − nKd(I, J)2

nI + nJ + nK

√
2|A||B|
|A|+ |B|

· ‖~cA − ~cB‖2

Centroid

√
nId(I,K)2 + nJd(J,K)2

nI + nJ
− nInJd(I, J)2

(nI + nJ)2
‖~cA − ~cB‖2

Median

√
d(I,K)2

2
+
d(J,K)2

2
− d(I, J)2

4
‖~wA − ~wB‖2

Table 1: Agglomerative clustering schemes. Let I, J be two clusters joined into a new cluster,
and let K be any other cluster. Denote by nI , nJ and nK the sizes of (i.e., number of elements
in) clusters I, J,K, respectively.
The update formulas for the“Ward”, “Centroid”and“Median”methods assume that the input
points are given as vectors in Euclidean space with the Euclidean distance as dissimilarity
measure. The expression ~cX denotes the centroid of a cluster X. The point ~wX is defined
iteratively and depends on the order of clustering steps: If the cluster L is formed by joining
I and J , we define ~wL as the midpoint 1

2(~wI + ~wJ).
References: Lance and Williams (1967), Kaufman and Rousseeuw (1990, Section 5.5.1).

complexity from cubic to quadratic: as a theoretically guaranteed worst-case complexity for
five of the seven methods, and as a heuristic behavior in all observed cases for the “centroid”
and “median” distance update formulas.

The formulas in Table 1 show that inter-cluster distances can be conveniently defined and
computed in constant time from (weighted or unweighted) cluster centroids in Euclidean
space for the “Ward”, “centroid” and “median” methods. Hence, these clustering schemes are
predestined for a memory-saving clustering algorithm where not all distance values are stored
but distances are computed as they are needed. Moreover, there are algorithms for single
linkage clustering (including the one which is used in the fastcluster package) which read
in every pairwise dissimilarity value between initial nodes exactly once, and otherwise need
only O(N) temporary memory. Hence, also single linkage clustering can be implemented in
a memory-saving manner. The fastcluster package contains memory-saving algorithms for
these four methods. It assumes Euclidean distances between input vectors for the “Ward”,
“centroid” and “median” methods and provides a variety of metrics for the “single” method.
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3. Algorithms and implementation

The efficient algorithms which are used in the fastcluster package were described in detail by
the author in Müllner (2011). In that paper, the author introduced an algorithm which works
with any distance formula, proved the correctness of two existing algorithms by Rohlf and
Murtagh and identified the most efficient algorithms. The fastcluster package builds upon this
knowledge and implements the most efficient algorithms. There are three algorithms in total:
For single linkage clustering, an algorithm by Rohlf (1973) is used. It links Prim’s algorithm
for the minimum spanning tree of a graph (see Cormen, Leiserson, Rivest, and Stein 2009,
Section 23.2) with the observation that a single linkage dendrogram can be obtained from
the minimum spanning tree of a graph. More precisely, this graph is the weighted, complete
graph whose adjacency matrix is the dissimilarity index (Gower and Ross 1969).

The “complete”, “average”, “weighted” and “Ward” (for dissimilarity input) methods use the
nearest-neighbor chain algorithm by Murtagh (1984, page 86). This algorithm exploits the
fact that pairs of mutually closest points can be merged in any order, if the distance update
formula fulfills certain criteria (see also Müllner 2011, Theorem 3). The “centroid”, “median”
and “Ward” (vector input) methods use the author’s algorithm (Müllner 2011, Section 3.1),
which delays repeated searches for nearest neighbors as long as possible.

The algorithms are fairly optimized for speed. For example, there are two variants of the
author’s algorithm, which differ by the indexing of intermediate results and how the list of
nearest neighbors for all nodes is organized. These two variants perform different enough to
make the distinction worthwhile. The final choice which algorithm to use for which method
was then made according to performance on test datasets.

All algorithms in the fastcluster package are implemented in a C++ library. The core code
is the same for both interfaces. It is accompanied by language-specific wrappers, which
handle the input and output in the interface-specific array data structures and also handle the
different indexing conventions and extra output (like the order field in the R interface). The
interface code in the interpreted languages R and Python is very short so that the overhead is
low. The C++ code extensively uses template programming to avoid code duplication among
the seven methods. Also the data types are flexible through template programming. The
current setup always uses double precision for floating-point numbers since this is the default
in Python and R. The indices to the data points are represented by at least 32 bit wide signed
integers, and indices to the dissimilarity array of size

(
N
2

)
are represented by signed 64-bit

integers. This is in theory sufficient to handle 229 − 1 data points, hence does not pose an
actual obstruction.

4. Performance

In this section, we compare the performance of the fastcluster package with the other imple-
mentations in standard software. In Section 4.1, we analyze the asymptotic time complexity of
the algorithms whose source code is available, both in the worst and in the best case. We then
compare the performance of all implementations experimentally on a range of test datasets.
Section 4.2 deals with the case when the input is a dissimilarity index, and Section 4.3 covers
the memory-saving routines for vector input.
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4.1. Asymptotic run-time complexity

The asymptotic worst-case time complexity of the methods in open-source packages (agnes in
cluster, flashClust in flashClust, hclust in stats and linkage in SciPy) is Θ(N3) through-
out. These bounds were determined by careful inspection of the source code and construct-
ing series of worst-case examples. The fastcluster package improves performance to Θ(N2)
worst-case time complexity for the “single”, “complete”, “average”, “weighted” and “Ward”
(dissimilarity input case only) methods. For the “centroid”, “median” and “Ward” (vector
input) methods, we still use O(N3) algorithms due to their better performance in practice,
even though quadratic run-time algorithms are available (Eppstein 2000).

Regarding the best-case complexity, only the fastcluster and flashClust packages achieve the
theoretically optimal bound of Θ(N2). SciPy, agnes and hclust have a best-case complexity
of only Θ(N3).

4.2. Use case performance: Dissimilarity methods

As indicated by the asymptotic best-case complexity, the various algorithms indeed perform
differently (quadratic vs. cubic time) in test cases. The diagrams in Figure 1 show the
performance on a range of test datasets for all seven methods. The fastcluster package
consistently outperforms all other packages, and by rather significant factors in the majority
of cases. Also, the performance on very small datasets is very good, due to a low overhead. To
be fair, the measurements for small datasets depend on the software environment in addition to
the clustering algorithms, so, e.g., the R fastcluster package can only be directly compared to
the other three R packages: here it has the lowest overhead. The other graphs were generated
by different interpreters (Python, MATLAB, Mathematica). fastcluster’s Python interface has
even lower overhead than the R version and gives otherwise similar timings.

In summary, the fastcluster package not only improves the theoretical, asymptotic bounds of
the clustering algorithms, but it also significantly improves the run-time performance of the
existing implementations.

The test sets were synthetic datasets: i.i.d. samples from a mixture of multivariate Gaussian
distributions in Euclidean space with standard covariance. For each number of input points N ,
we generated 12 test sets by varying the following parameters:

� Dimension of the Euclidean space: 2, 3, 10, 200.

� Number of centers of Gaussian distributions: 1, 5, round(
√
N). The centers are also

distributed according to a Gaussian distribution.

Moreover, for the methods for which it makes sense (single, complete, average, weighted: the
“combinatorial” methods), we also generated 10 test sets per number of input points with a
uniform distribution of dissimilarities.

The timings were obtained on a PC with an Intel dual-core CPU T7500 with 2.2 GHz clock
speed and 4GB of RAM and no swap space. The operating system was Ubuntu 11.04 64-bit.
R version: 2.13.0, fastcluster version: 1.1.5, flashClust version: 1.01, cluster version: 1.13.3,
stats version: 2.13.0, Python version: 2.7.1, NumPy version: 1.5.1, SciPy version: 0.8.0.
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Method: Ward Method: Centroid
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Method: Median
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Figure 1: Performance comparison for dissimilarity matrix input. Lightly colored bands:
Min-max range. Solid curves: Mean values.
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Method: Centroid Method: Median
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Figure 2: Performance comparison for vector input. Legend:
Mathematica vs. fastcluster (Python interface),
MATLAB Release 2011b vs. fastcluster (Python interface),
fastcluster (R interface) vs. fastcluster (Python interface).
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Only one core of the two available CPU cores was used in all cases except the “Ward”,
“centroid” and “median” methods in MATLAB.1

The memory requirements of all these algorithms are similar: they all keep the input array
of
(
N
2

)
floating-point numbers in memory plus a working copy (hence 8N(N − 1) bytes in

total with double-precision floating point numbers). The only exception is fastcluster’s single
linkage algorithm, which uses less memory. Apart from the distance array, the fastcluster
algorithms only needs O(N) memory for intermediate storage and the output. Although no
extensive memory analysis was done, the fastcluster package can process as large datasets
and sometimes even larger datasets than its competitors at a given memory size.

4.3. Performance of the vector methods

Three packages offer memory-saving clustering when the input consists of vector data: fast-
cluster, Mathematica and MATLAB. MATLAB has routines for “Ward”, “centroid” and “me-
dian” linkage; fastcluster and Mathematica additionally offer single linkage.

The asymptotic time complexity of the fastcluster package is Θ(N2D) for N points in RD

in the best case. The worst-case complexity is also Θ(N2D) for the “single” method and
O(N3D) for the “Ward”, “centroid” and “median” methods. For the commercial software, the
complexity cannot be determined exactly since the source code is not available. From our use
case experiments it seems that MATLAB and Mathematica also have a best-case complexity
of Θ(N2D), and MATLAB has a worst-case complexity of Ω(N3D).

We tested the performance of the three packages on the same datasets as in the previous
Section 4.2. Since the run time depends heavily on the dimensionality of the dataset, it
makes no sense to put the absolute timings into a common diagram. Instead, Figure 2
shows the relative run time of the commercial software versus the fastcluster package with
the Python interface (blue and red graphs). Four average curves are plotted, one for each
dimensionality (2, 3, 10, 200). We only tested Euclidean distances although a variety of
distance measures is possible for the single linkage method. The curves clearly show that our
Python module consistently outperforms MATLAB and Mathematica in this task. MATLAB’s
run times show cubic asymptotic behavior for the high-dimensional datasets. Mathematica
aborted on two different machines with a segmentation fault at 20000 input points, so the
output of Mathematica’s vector clustering methods should be double-checked independently
for critical data. For this reason we did not continue the test after 20000 input points even
though the fastcluster package is able to handle larger data.

The orange graph in Figure 2 shows the timings of fastcluster’s R interface versus the Python
interface. The R interface is slower by high factors ranging from 2.6 to 21, but for a good
reason: The R distance function checks every coordinate whether it is marked as missing
data (a NA value in R syntax), so that 2D extra comparisons (and therefore conditional

1In fact, MATLAB seems to use only one core for the actual clustering step, like the other packages. How-
ever, for the three “geometric” methods “Ward”, “centroid”, and “median”, MATLAB carries out an additional
precheck, which tests whether the

(
N
2

)
pairwise distances can be generated from a configuration of N points

in Euclidean space. This involves checking whether a dense, symmetric N ×N matrix is positive semidefinite,
for which MATLAB apparently uses a parallelized eigenvalue algorithm. Moreover, for double-centering of a
matrix, MATLAB unnecessarily carries out matrix multiplication, which has time complexity Θ(N3) in its
straightforward implementation. Hence the precheck requires much more time than the actual clustering task.
This is reflected in Figure 1, where MATLAB is much slower for the “geometric” methods than for the other
four “combinatorial” methods.
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branch instructions on machine code level) are needed to compute the distance between any
two points. By doing so, the fastcluster R package follows exactly the internal formulas of
the dist method in the R core stats package to handle missing data. However, this makes
the process considerably slower than the straightforward calculation in the Python module.
MATLAB and Mathematica are compared to the Python module since neither handles missing
data automatically.

5. Usage of the fastcluster package

The fastcluster package features interfaces to R and Python. These interfaces can be used
as drop-in replacements for the linkage function in the Python module scipy.cluster.hierar-
chy, for the hclust function in R’s stats package, and for hclust alias flashClust in R’s
flashClust package. The replacements share the same syntax and output specifications but
are faster.

The fastcluster package can be downloaded from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=fastcluster. Installation instructions for both
R and Python are included in the package documentation. The Python part is additionally
available at PyPI (http://pypi.python.org/pypi/fastcluster) from where is can be easily
installed with Python’s setuptools.

Nothing in the source code is specific to a certain operating system, so it should be possible
to install the fastcluster package on a wide variety of hardware architectures and operating
systems.

5.1. The R interface

In R, the package is loaded as usual with the command:

R> library("fastcluster")

The fastcluster package overwrites the function hclust from the stats package, in the same
way as the flashClust package does. It is recommended to remove references to the flashClust
package when the fastcluster package is used to not accidentally overwrite the hclust function
with the flashClust version.

If needed, or in order to prevent confusion, all three functions can be specified unambiguously
by their namespace:

stats::hclust(...)

fastcluster::hclust(...)

flashClust::hclust(...)

All three hclust functions have exactly the same calling conventions and output format. A
user may simply load the package and immediately and effortlessly enjoy the performance
improvements to the hclust function. The function flashClust in the flashClust package is
an alias for flashClust::hclust, so the flashClust function may be replaced as well.

The agnes function from the cluster package has a slightly different input and output format,
but in many cases it should be possible with little effort to use the faster alternative in the
fastcluster package.

http://CRAN.R-project.org/package=fastcluster
http://pypi.python.org/pypi/fastcluster
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An exact and detailed specification of the methods is given in the user’s manual in the
fastcluster distribution.2 As a short description, the method

hclust(d, method = "complete", members = NULL)

performs agglomerative clustering on the compressed distance matrix d. The array d is a
one-dimensional array which contains the upper triangular part of the symmetric matrix of
dissimilarities, as it is produced e.g., by R’s dist function.

The parameter method is a string which specifies the dissimilarity update formula from Ta-
ble 1. It must be one of "single", "complete", "average", "mcquitty", "ward", "centroid",
"median" or an unambiguous abbreviation thereof.

The optional parameter members may contain a vector which specifies weights for the initial
nodes. This can be used, e.g., to start or re-start the hierarchical clustering process when
partial clusters have been formed beforehand, so that nodes have cardinalities different from 1.

The output of the hclust method is an object of class "hclust" which mainly encodes a
stepwise dendrogram. It can be processed by the existing methods in R, in particular there
is a specific plot method for the output which draws the dendrogram.

The new method

hclust.vector(X, method = "single", members = NULL, metric = "euclidean",

p = NULL)

is a memory-saving option if the input to the clustering algorithm is given as vector data.
Instead of keeping the entire matrix of dissimilarities in memory, the vector method com-
putes distances on-the-fly from vectors, with the metric which is specified by the "metric"

parameter. This is currently possible for the "single", "ward", "centroid" and "median"

methods.

In short, the call

R> hclust.vector(X, method = "single", metric = [...])

gives the same result as

R> hclust(dist(X, metric = [...]), method = "single")

but uses less memory and is equally fast, if not faster. The parameter p is used for the
"minkowski" metrics only and specifies the the exponent for this family of metrics. The
output is again a stepwise dendrogram.

If method is one of "centroid", "median", or "ward", clustering is performed with respect
to Euclidean distances. In this case, the parameter metric must be "euclidean". Notice
that hclust.vector operates on Euclidean distances for compatibility with the dist method,
while hclust assumes squared Euclidean distances for compatibility with the stats::hclust

method. Hence, the call

R> hc <- hclust.vector(X, method = "ward")

2This is stored as a vignette, i.e., the file inst/doc/fastcluster.pdf in the source distribution, and can
be accessed in R using vignette("fastcluster", package = "fastcluster").
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is, aside from the lesser memory requirements, equivalent to:

R> d <- dist(X)

(1)R> hc <- hclust(d^2, method = "ward")

R> hc$height <- sqrt(hc$height)

The same applies to the "centroid" and "median" methods. Differences may arise only from
rounding errors due to squaring and taking the square root (which may, however, in extreme
cases affect the entire clustering result due to the inherently unstable nature of the clustering
schemes).

The same issue, that the R interface for the fastcluster package sometimes interprets input
values as ordinary and sometimes as squared Euclidean distances, accounts also for the biggest
difference between the R and the Python interface. See the next Section 5.2 for details. Even
though this might seem to provoke complications unnecessarily, these differences were in fact
designed intentionally, in order for the fastcluster package to comply best with the varying
conventions in existing packages.

5.2. Caveat

R and MATLAB/SciPy use different conventions for the “Ward”, “centroid” and “median”
methods, if the input is a dissimilarity matrix. R assumes that the data consists of squared
Euclidean distances, while MATLAB and SciPy expect non-squared Euclidean distances. The
fastcluster package respects these conventions and uses different formulas in the two interfaces.

Let d be a compressed array of pairwise distances, as it is used by all three programs MATLAB,
SciPy and R. In order to obtain the same results in all programs, the R method must be given
the entry-wise square of the distance array, d^2, for the “Ward”, “centroid” and “median”
methods, compared to the other software. After the calculation, the square root of the height
field in the dendrogram may be taken. For the “average” and “weighted” alias “McQuitty”
methods, the same distance array d must be used in all programs for identical results. The
“single” and “complete” methods only depend on the relative order of the distances, hence it
does not make a difference whether one uses the distances or the squared distances.

Therefore, the R code example (1) above, where the dissimilarity matrix entries are squared,
gives the same result as the following Python code:

>>> d = scipy.spatial.distance.pdist(X)

>>> hc = fastcluster.hclust(d, method = "ward")

5.3. The Python interface

The fastcluster package is imported as usual by:

>>> import fastcluster

It provides the following functions:

linkage(X, method = "single", metric = "euclidean", preserve_input = True)

single(X)
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complete(X)

average(X)

weighted(X)

ward(X)

centroid(X)

median(X)

linkage_vector(X, method = "single", metric = "euclidean", extraarg = None)

The function linkage can process both dissimilarity and vector input as the first argument X.
The input is preferably a NumPy array (Oliphant et al. 2011) with double-precision floating
point entries. Any other data format will be converted before it is processed.

If X is a one-dimensional array, it is considered a condensed matrix of pairwise dissimilarities,
in the same format as is returned by the function scipy.spatial.distance.pdist in the
SciPy software for computing pairwise distances between row vectors of a matrix. If the input
array is two-dimensional, it is regarded as vector data and is converted to a dissimilarity index
with the method scipy.spatial.distance.pdist with the metric parameter first.

The method parameter specifies the distance update formula and must be one of "single",
"complete", " average", "weighted", "ward", " centroid" or "median". The parameter
preserve_input specifies whether a working copy of the input array is made or not. This
can save approximately half the memory if the dissimilarity array is created for the clustering
only and is not needed afterward.

The functions single, complete, average, weighted, ward, centroid and median are aliases
for the linkage function with the corresponding method parameter and are mainly there for
compatibility with the scipy.cluster.hierarchy package.

The function linkage_vector provides the memory-saving clustering routines for the meth-
ods "single", "ward", "centroid" and "median". The input array is interpreted as N data
points in RD, i.e., as an (N ×D) array, in the same way as the two-dimensional input for the
linkage function.

The “Ward”, “centroid” and “median” methods require the Euclidean metric, while single
linkage clustering accepts the same wide variety of metric parameters for floating-point and
Boolean matrices as the function scipy.spatial.distance.pdist. The exact formulas for
the pairwise distances and the documentation differ in some cases from SciPy’s pdist method
since the author modified/corrected a few details. Therefore, we refer to the user’s manual
in the fastcluster package for authoritative details and specifications of all metrics. The
extraarg parameter is used by some metrics for additional parameters.

5.4. A Python example

We present a short but complete example of a cluster analysis in Python which includes
plotting the results. An example for R, which was taken from the original stats package, can
be obtained from the R command line by:

R> example(hclust)

The source code of the following Python example is contained in the supplements to this
paper. From version 1.1.8 on, the fastcluster package will support both Python 2 and 3.

First, import the necessary packages:
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>>> import fastcluster

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> from scipy.cluster.hierarchy import dendrogram

>>> from scipy.spatial.distance import pdist

We analyze the well-known iris dataset (Fisher 1936). This is loaded from a publicly available
source. The first few lines of code make the example work with both Python 2 and Python 3.

>>> import sys

>>> if sys.hexversion < 0x03000000:

>>> from urllib2 import urlopen

>>> else:

>>> from urllib.request import urlopen

>>> f = urlopen('http://scipy-cluster.googlecode.com/svn/trunk/hcluster'

... '/tests/iris.txt')

>>> X = np.loadtxt(f)

>>> f.close()

>>> N = len(X)

The iris dataset consists of 150 observations in 4 variables. The features are measurements
of sepal length and width, and petal length and width from 150 iris flowers of three species.
There are 50 observations from each of I. setosa, I. versicolor and I. virginica in this order in
the dataset. We record the classification by color codes for later plotting.

>>> classes = ['g'] * 50 + ['r'] * 50 + ['c'] * 50

For demonstration purposes, we want to compare clustering results with the known clas-
sification. We define a dedicated function for this. To plot a simple dendrogram, calling
the function scipy.cluster.hierarchy.dendrogram as in the first two lines of the function
would be enough.

>>> def plot_with_labels(Z, num_clust):

... threshold = Z[-num_clust + 1, 2]

... dg = dendrogram(Z, no_labels = True, color_threshold = threshold)

...

... color = [classes[k] for k in dg['leaves']]

... b = .1 * Z[-1, 2]

... plt.bar(np.arange(N) * 10, np.ones(N) * b, bottom = -b, width = 10,

... color = color, edgecolor = 'none')

... plt.gca().set_ylim((-b, None))

... plt.show()

When the data is clustered with single linkage and the Euclidean metric, I. setosa is clearly
separated from the other two species but I. versicolor and I. virginica are not distinguished
(see Figure 3). The so-called chaining effect is clearly visible in the dendrogram, as many
single points and small clusters points join the main clusters in late stages of the clustering
process.
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Figure 3: Python example, single linkage dendrogram.

Figure 4: Python example, dendrogram for “weighted” linkage.

>>> Z = fastcluster.linkage(X, method = 'single')

>>> plot_with_labels(Z, 2)

However, when we try the “weighted” clustering scheme on the dataset with L1 distances,
clustering identifies three clusters which correspond up to a small error (7 misclassifications
out of 150) to the three species. For a change, we generate pairwise distances explicitly and
feed the distance array into the clustering routine. See Figure 4 for the dendrogram.

>>> D = pdist(X, metric = 'cityblock')

>>> Z = fastcluster.linkage(D, method = 'weighted')

>>> plot_with_labels(Z, 3)
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