Journal of Statistical Software

January 2015, Volume 63, Issue 5. http://www.jstatsoft.org/

plotKML: Scientific Visualization of
Spatio-Temporal Data

Tomislav Hengl Pierre Roudier Dylan Beaudette Edzer Pebesma
ISRIC — World Landcare Research USDA-NRCS, Soil University of
Soil Information Science Division Miinster

Abstract

plotKML is an R package that provides methods for writing the most common R spatial
classes into KML files. It builds up on the existing XML parsing functionality (XML
package), and provides similar plotting functionality as the lattice package. Its main
objective is to provide a simple interface to generate KML files with a small number of
arguments, and allows users to visually explore spatio-temporal data available in R: points,
polygons, gridded maps, trajectory-type data, vertical profiles, ground photographs, time
series vector objects or raster images, along with the results of spatial analysis such
as geostatistical mapping, spatial simulations of vector and gridded objects, optimized
sampling designs, species distribution models and similar. A generic plotKML() function
automatically determines the parsing order and visualizes data directly from R; lower
level functions can be combined to allow for new user-created visualization templates. In
comparison to other packages writing KML, plotKML seems to be more object oriented,
it links more closely to the existing R classes for spatio-temporal data (sp, spacetime and
raster packages) than the alternatives, and provides users with the possibility to create
their own templates.

Keywords: space-time objects, scientific visualization, R, KML, geostatistics.

1. Introduction

Keyhole markup language (KML) is an extensible markup language (XML) focused on geo-
graphic visualization, including annotation of maps and images (Wilson 2008; Wernecke 2009).
It is the standard adopted by Google and now used by Google Earth as its primary exchange
format. There is a growing interest in using Google Earth to visualize spatio-temporal data
produced in the R environment for statistical computing. We believe that the main reasons
responsible for this growth are:

http://www.jstatsoft.org/

2 plotKML: Scientific Visualization of Spatio-Temporal Data

1. Google Earth is one of the most wide-spread geographical data browsers available with
>1 billion downloads as of October 2011 (Google Inc. 2011). It is a largely intuitive
software, easily accessible to people without any professional GIS training, and most
importantly, a framework which can be used to increase a project reach to the general
public (Butler 2006; Patterson 2007; Goodchild 2008).

2. According to McGavra, Morris, and Janée (2009), KML is one of the leading Open
Geospatial Consortium (OGC) XML encoding standards.

3. Google Earth provides access to high-resolution remote sensing data (Ikonos, GeoEye
and Cnes/Spot images, administrative vector data, SRTM DEM and similar), which
allows users to qualitatively interpret the analysis results by matching the produced
outputs with background imagery (Craglia et al. 2008; Fritz et al. 2012).

4. As KML provides a diversity of visualization options, it is one of the more attractive
platforms for scientific visualization of geographical phenomena — it can enable scientists
to detect patterns in their data not visible in other software, but it can also help engaging
a wider public into scientific research and decision making (Butler 2006). Goodchild
(2008) refers to this as the ‘citizen science’.

Although R is primarily known as a statistical computing environment (R Core Team 2014),
it is of increasing interest to the field of geoinformatics and applied spatial data analysis due
to its extensibility and the growing diversity of spatial and spatio-temporal data structures
(Pebesma and Bivand 2005; Pebesma 2012; Bivand, Pebesma, and Gémez-Rubio 2013). Geo-
visualization functions in R, on the other hand, are limited because R was not originally
designed for interactive exploration of spatial data or as a GIS platform. Although there
are many packages in R already that allow interactive visualization, overlay and animated
display of geographical phenomena (via packages rggobi and iplots; Cook and Swayne 2007;
Theus and Urbanek 2009; Temple Lang, Swayne, Wickham, and Lawrence 2014; Urbanek and
Wichtrey 2013), R has its limitations for interactively exploring geographical data.

There is considerable potential for building connectivity between the sophisticated spatial
analysis possible in R and the geo-visualization capacities afforded by Google Earth. How-
ever, the export of spatial data from R to KML is not trivial. KML files can be produced
using the using GDAL (Geospatial Data Abstraction Library) KML driver, but so far only
limited functionality is supported. As the driver description page (see Open Source Geospa-
tial Foundation 2014a) indicates: “At this time, only vector layers are handled by the KML
driver. .. limited support is available for fills, line color and other styling attributes.”

Within the R community, other packages produced specifically to allow creation of KML files
include: rgdal (Bivand, Keitt, and Rowlingson 2014) and raster (Hijmans 2014), while truly
specialized KML writing packages include R2G2 (Arrigo, Albert, Mickelson, and Barker 2012)
and RKML (Temple Lang 2012). Our objective with the plotKML package was to provide
a simple interface to generate KML files with a small number of arguments, and allow users
to directly plot spatio-temporal data classes, available in R via the sp (Pebesma and Bivand
2005), spacetime (Pebesma 2012), agp (Beaudette and Roudier 2014) and raster (Hijmans
2014) packages, in a virtual globe type of browser.

This article describes the main functionality and the design of the plotKML package and
provides a number of examples of how to produce some common KML visualization tem-

Journal of Statistical Software 3

plates. Some limitations of the package in comparison with other alternative KML writ-
ing software and possibilities to improve the package are given in the discussion section.
More detailed tutorials including YouTube videos can be found via the package homepage at
http://plotKML.R-Forge.R-project.org/.

2. Basic concepts

2.1. Scientific visualization of geographic phenomena

The purpose of scientific visualization is to “graphically illustrate scientific data to enable
scientists to understand, illustrate, and glean insight from their data” (Wikipedia 2014). Ac-
cording to Friendly and Denis (2001), scientific visualization can be primarily connected with
visualization of 3D data “where the emphasis is on realistic renderings of volumes, surfaces,
illumination sources, and so forth, perhaps with a dynamic (time) component.” In that con-
text, the main purpose of plotKML package is to enable interactive scientific visualization of
geographic phenomena i.e., scientific geovisualization (Dykes, MacEachren, and Kraak 2005).

Interactive geovisualization, i.e., dynamic user-controlled visualization of geographical phe-
nomena, can be today closely connected with 3D computer environments referred to as the
‘irtual globe’, ‘virtual earth’ or ‘digital earth’ (Gore 1998; Bleisch 2011). At the beginning
of 21st century, the most known virtual globes are (Bleisch 2011):

e Google Earth (Google Inc. 2013),

Microsoft Bing Maps 3D (Microsoft Corporation 2010),

Autodesk LandXplorer (Autodesk Inc. 2008),

NASA World Wind (Ames Research Center 2014),

Esri ArcGlobe (Esri 2003),

e Leica Virtual Explorer (Leica Geosystems 2005).

Open-source alternatives to Google Earth and Microsoft Bing Maps 3D are: Marble (Rahn
and Nienhiiser 2013), ossimPlanet (Potts 2007), and Cesium (Analytical Graphics, Inc. 2014).

According to Elmqvist and Tudoreanu (2007), there are two main reasons for creating 3D
virtual globes:

1. replicate or simulate the real world,

2. use 3D as canvas for abstract information.

The plotKML package offers both. As we will show later, it allows Google Earth to be used
not only for visualization of maps, but also as a canvas for 3D or 3D+T visualization of any
such data created and analyzed in R (see further Figures 3 and 9).

Although one can argue whether virtual globes should be used more broadly for decision mak-
ing and land management, two significant developments can not be disputed: (1) ubiquitous
access to free high resolution satellite imagery through Google Earth, Yahoo and Bing has

http://plotKML.R-Forge.R-project.org/

4 plotKML: Scientific Visualization of Spatio-Temporal Data

(a) | (b)

time time

temporal
support

spatial support

Figure 1: Space-time cube visualized in R: (a) cloud plot showing location of meteorological
stations in Croatia (data set from Hengl et al. (2012)), (b) illustration of spatial and temporal
support in the space-time cube.

revolutionized applications of GIS for both commercial and non-commercial projects, and (2)
anyone is today invited to make, edit, mash-up and share geodata (Fritz et al. 2012).

2.2. Space-time continuum

Everything we measure on earth can be linked to some space-time ‘location’

[y

. geographic location (longitude and latitude)
height above the ground surface (altitude)

time of measurement (year, month, day, hour, minute, second)

-~ W

spatio-temporal support (size of the blocks of material associated with measurements;
time interval or duration of measurement).

By attaching spatio-temporal reference to measurements we can dynamically visualize them,
but also run spatio-temporal data analysis (Bivand, Pebesma, and Gémez-Rubio 2008; Pebesma
2012). Many analysts already find it useful to be able to visualize all input and derived maps
or results of spatial analysis in a virtual earth type of environment such as Google Earth (Pat-
terson 2007). In addition, creating a realistic visualization of observed dynamic phenomena
can improve the spatial analysis process, in part, because it can help us make more thoroughly
considered interpretations of analysis results (Craglia et al. 2008).

Figure 1 for example shows how spatio-temporal data can be visualized in a 2D+T space-time
cube. The same data-set is further shown in Figure 9 visualized in Google Earth.

2.3. Spatial and spatio-temporal objects

For Erwig, Giiting, Schneider, and Vazirgiannis (1999) spatio-temporal data sets and corre-

Journal of Statistical Software 5

Point / line Regular (block) Irregular (area)
. RasterlLayer
2D Latitude, o SpatialPoints SpatialGrid (P spatialPolygons
longitude h -
SpatialPixels
Latitude Q
, 1 d Voxels*
3D longitude, altitude Q SoilProfile ﬁ - @ Irregular voxels*
(thickness) 6 Monoliths
STFDF
Latitude — STEDF
2D+T : , o STIDF LT T _ STFDF
longitude, time STTDF RasterBrick G
Latitude S . f ; Time-series of
. ! H - 3 : Time-series of
3D+T Igngltudg, T'mperosfﬁg':f of ﬁ] voxels* @ x irregular voxels
altitude, time S (space-time prisms)*

Table 1: Types of spatio-temporal objects (points and regions) based on the number of
dimensions (2D, 3D, 2D+T and 3D+T) and support type and corresponding R classes. STFDF
stands for a class for spatio-temporal data with full space-time grid, STIDF stands for a class
for unstructured spatio-temporal or irregular data, and STTDF stands for a class for spatio-
temporal trajectory data (Pebesma 2012). x — classes not yet available in R.

sponding databases represent two major groups of features: (1) moving or dynamic objects
(discrete or vector geometries), and (2) regions or fields (continuous). Objects and fields can
be further based on regular or irreqular sampling systems and representation models. Many
features can be modeled and represented both using discrete (vector) and continuous (raster)
GIS models. For example, objects such as a population of animals can be modeled and repre-
sented as discrete objects (trajectories or points), but also as densities (regions) or polygons
representing home ranges. Likewise, earthquakes are in their essence regions (of sudden and
violent shaking of the ground), but are often represented as points. This is just to illustrate
the complexity of choosing the right model for representing such dynamic features. For an
introduction to the complexity of spatial and spatio-temporal objects and fields refer also to
Galton (2004).

Bivand et al. (2008, pp. 28-55) and Pebesma (2012) implemented classes for spatial and
spatio-temporal data in R via the sp and spacetime packages. These classes are also highly
extendable and are already widely used inside the R spatial data analysis community. The
sp package (Pebesma and Bivand 2005) is currently one of the top 10 packages with highest
number of dependencies on the Comprehensive R Archive Network (CRAN) according to
Eddelbuettel (2012), and has been used as the main starting point for building visualization
functionality in plotKML.

A schematic overview of 2D, 3D, 2D+T and 3D+T combinations of spatio-temporal object
types is given in Table 1. Note that not all space-time combinations of 2D/3D+T objects are
yet implemented in R, and some are implemented but are still rather experimental. For exam-
ple, voxels can be constructed by adding the third dimension to object of class SpatialPixels,
but methods for such type of data are still limited.

Although KML can probably accommodate all spatio-temporal objects listed in Table 1, vi-
sualization of densely sampled 3D+T objects, e.g., millions of voxels, is probably still not

6 plotKML: Scientific Visualization of Spatio-Temporal Data

recommended in KML. For example, by making COLLADA (COLLAborative Design Activ-
ity; an open standard XML schema) 3D objects one can potentially generate any type of
3D spatio-temporal object, but this is then highly complex and requires good knowledge of
COLLADA and KML.

2.4. Spatial data structures in R and KML

Consider for example the Google headquarters in Mountain View, CA. The point location
can be prepared in R as object of class SpatialPoints*, as implemented in the sp package,
which takes few steps:

R> library("sp")

R> lat <- 37.423156

R> lon <- -122.084917

R> name <- "Google headquarters"

R> pnt <- data.frame(name, lat, lon)

R> coordinates(pnt) <- ~ lon + lat
R> proj4string(pnt) <- CRS("+proj=longlat +datum=WGS84")
R> pnt

class : SpatialPointsDataFrame

features : 1

extent : -122.0849, -122.0849, 37.42316, 37.42316
coord. ref. : +proj=longlat +datum=WGS84
variables : 1

names : name

min values : Google headquarters

max values : Google headquarters

The same object in KML can be generated by using the XML package (Temple Lang 2013):

R> library("XML")

R> pnt.kml <- newXMLNode ("kml")

R> h2 <- newXMLNode ("Document", parent = pnt.kml)

R> h3 <- newXMLNode("name", "Google headquarters", parent = h2)

R> h4 <- newXMLNode ("Folder", parent=pnt.kml[["Document"]])

R> txtc <- sprintf('<Placemark><Point><coordinates>

+ %.5f,%.5f,7.0f</coordinates></Point></Placemark>"',

+ coordinates(pnt) [, 1], coordinates(pnt)[, 2], rep(0, length(pnt)))
R> parseXMLAndAdd(txtc, parent = h4)

R> pnt.kml

<kml>
<Document>
<name>Google headquarters</name>
<Folder>
<Placemark>

Journal of Statistical Software

<Point>
<coordinates>
-122.08492,37.42316,0</coordinates>
</Point>
</Placemark>
</Folder>
</Document>
</kml>

where newXMLNode creates nodes in an XML object, sprintf is the wrapper for the fast C
function that returns a character vector, and saveXML writes the object to a file (this function
is does most of the work in the plot KML package). An XML object is basically a hierarchically
structured object with nodes of different type. The rules to build and extend such objects are
defined via the specific XML scheme, in this case the OGC KML 2.2 scheme (Wilson 2008).

Note that, although both R objects and KML (XML) files are human readable and have
similar hierarchical structure, they have some systematic differences. First, KML accepts
only geographical coordinates in WGS84 system, which must include altitude i.e., only 3D
georeference is acceptable, while in R any proj4 supported projection can be used and the
georeference can be 2D or 3D. Secondly, KML is by default used to display objects (“place-
marks™) on earth’s surface, while the sp package does not restrict considering the bounding
box and relative position based on land surface. To understand all rules and validity checks
of the KML format refer to Wernecke (2009), and for an introduction to the sp class objects
refer to Bivand et al. (2013).

3. Implementation and code examples

3.1. Basic principles and main use

The purpose of plotKML is to write standard spatio-temporal objects — spatial and space-time
points, lines, polygons and grids, trajectories, georeferenced photographs and similar — from
R to KML/KMZ files in such a way that they correspond, as much as possible, to standard
cartographic plots or standard scientific visualizations. The main philosophy of plotKML is
thus:

1. Create a spatio-temporal object of some class.

2. Transform coordinates to a coordinate reference system compatible with a virtual globe
(geographical coordinates in WGS84; altitude in meters; time in the UTC system).

3. Visualize it using the plotKML function.

We refer to complete scientific visualization templates in plotKML as ‘views’. Views are
generated using a combination of low level KML writing functions, which basically coerce the
spatio-temporal objects in R to the KML schema.

Visualization-specific generic settings such as icons, color and size of icons (icon styles), la-
bels etc., are referred to as ‘aesthetics’ in plotKML. These can be set by changing function

8 plotKML: Scientific Visualization of Spatio-Temporal Data

arguments within each kml_layer function. Views and their components have been designed
to be cartographically ‘complete’, meaning that:

e All spatio-temporal objects are automatically converted to the WGS84 geographical
coordinates. Hence the projection system needs to be specified for each input spatial
layer.

o Legends for all aesthetics are provided using screen overlays or at least labels are at-
tached to individual plotting objects.

e Missing values (NA), extrapolation areas and/or masked pixels are automatically re-
moved or made transparent.

e Each spatial layer carries some minimum metadata that can be entered via the descrip-
tion tag. This way the distributed KML files can be used as official representations of
registered data sets.

The following example shows how to produce a bubble type plot using the plotKML package
(plot shown in Figure 2). We start by loading the Ebergotzen soil mapping data set (available
via the plotKML package):

R> library("plotKML")

R> data("eberg")

R> eberg <- eberglrunif (nrow(eberg)) < 0.2,]
R> coordinates(eberg) <- ~ X + Y

R> proj4string(eberg) <- CRS("+init=epsg:31467")

Next, we can reproject this object to the WGS84 coordinate system:
R> eberg.11l <- reproject (eberg)
so that it can be plotted in Google Earth by using:

R> plotKML(eberg.11["CLYMHT_A"])

Plotting the first variable on the list
KML file opened for writing...

Parsing to KML...

Closing eberg.11__CLYMHT_A__.kml

and which largely mimics the existing plotting functionality available for spatial data in R,
e.g., the spplot functionality from the sp package:

R> spplot(eberg.11["CLYMHT_A"], edge.col = "black", alpha = 0.8,
+ cex = seq(0.3, 3, length = 5))

Note that the generic reproject function available in the plotKML package will try to repro-
ject any sp class objects to the referent WGS84 system, also within the plotKML () function:

Journal of Statistical Software

&5 Google Earth : T ——— v . . —

v Saarch

[2.35,12.88]

(12.88,23.41
23413394
33.94 .44 47

(44.47,55]

Figure 2: Bubble-type plots in R and the same plot produced using the plotKML shown in
Google Earth.

R> plotKML (eberg["CLYMHT_A"])

Plotting the first variable on the list

KML file opened for writing...

Reprojecting to +proj=longlat +datum=WGS84 ...
Parsing to KML...

Closing eberg__CLYMHT_A__.kml

This means that both plotKML(eberg) and plotKML(eberg.11l) would work with the same
object. It is recommended, however, that the users pre-transform spatial objects into the
WGS84 geographic coordinate system as this step can be time consuming when working with
large data sets.

By combining multiple aesthetics, plotKML can be used also to visualize multivariate data
(Figure 3). For example, to visualize two variables at the same time we would run:

R> shape <- "http://maps.google.com/mapfiles/kml/pal2/icon18.png"
R> kml (eberg.ll, shape = shape, colour = CLYMHT_A, labels = SNDMHT_A,
+ altitude = SNDMHT_Ax*10, extrude = TRUE)

which would use colors to visualize the clay content, and labels and altitude to represent
the sand content. Possibility of multivariate visualization makes plotKML comparable to the
lattice package for R (see Grothendieck 2008).

10 plotKML: Scientific Visualization of Spatio-Temporal Data

Figure 3: Multivariate visualization using three aesthetics parameters (in the case above:
color, labels and elevation). The plot shows changes in sand content in the soil for the
Ebergotzen case study.

3.2. KML building utilities

Aside from the generic plotKML() method, the package also contains a number of dedicated
methods and functions, which can be referred to as the KML building utilities. The basic
KML building utilities are (Figure 4):

e kml_open() — opens a KML file in write mode, manages the KML specific URL, and
the name of the KML file. It also writes the header of the KML file.

e kml_close() — closes the KML file.
e kml_layer() — writes any sp object into a KML layer (<Folder> tag).

e kml_screenoverlay() — puts a PNG file on the Google Earth screen; usually a legend
attached to the map or a logo image.

e kml_compress() — compresses a KML file to a KMZ file.

e kml_legend() — generates a legend depending on the type of spatio-temporal object.

These utilities actually provide an advanced mode for KML creation, and allow the user to
create multi-layers KML with specific legends. This means that a single KML file can be

Journal of Statistical Software 11

KML building utilities

kml_open

Object aesthetics:

e kml_layer.Points /
; e colour
- kml_layer.Lines * shape
kml_layer e size
- kml_layer.SpatialPixels * labels
Generic space-time i ¢
object writing function i kml_layer.Polygons \

KML auxiliary functions:

e check_projection

e reproject
kml_legend e vect2rast

¢ whitening
kml_close .

kml_compress

Figure 4: Overview of the KML building utilities available in the plotKML package.

created that contains all layers of interest (e.g., grids and points), associated legends and
explanations of how were the maps derived.

The following example demonstrates how several layers can be put together in the same KML
file. We start by loading some gridded layers:

To write a gridded layer with a point layer on the top we can run:

R> kml_open("eberg.kml")

R> kml_layer(eberg_grid, colour = TWISRT6)
R> kml_layer(eberg.11[1,], colour = CLYMHT_A)
R> kml_close("eberg.kml")

The resulting plot is shown in Figure 5.

3.3. plotKML-specific classes

In addition to the existing classes already available in R, we have constructed several new
plotKML classes to provide even richer visualization possibilities:

e "SpatialMetadata" — a class to store and exchange spatial metadata.

e "SpatialPhoto" —a class to store spatial location, image (photograph) and its geometric
properties.

e "SpatialPredictions" — a class to store results of geostatistical mapping.

e "SpatialVectorsSimulations" — a class to store list of equiprobable simulations of
point, line and polygon features.

12 plotKML: Scientific Visualization of Spatio-Temporal Data

Figure 5: Example of a multi-layer KML file produced using plotKML: Topographic Wetness
Index derived in SAGA GIS (raster image with legend) and contour lines overlaid. This
visualization template has been largely inspired by the SAGA GIS software (Conrad 2007).

e "RasterBrickSimulations" — a class to store a list of equiprobable realizations of the
same feature.

e "RasterBrickTimeSeries" — a class to store a time series of grids representing the same
feature.

Most of the classes listed above extend the basic sp- and raster-based classes by attaching
the inputs and outputs of the spatial analysis. For example, the "SpatialPredictions"
class contains both the input sampled values, the results of model fitting (regression and the
variogram model), predictions and the results of cross validation. By plotting such object via
the plotKML-method, one can prepare complete scientific visualization for Google Earth (see
Figure 6).

The process of getting from input data (R) to a map in Google Earth is now straightforward
and requires only four steps:

1. load/format the data,

Journal of Statistical Software 13

Figure 6: Scientific visualization of the results of geostatistical mapping (percent organic
matter in top-soil) in Google Earth: a combination of visualization of gridded map with a
legend and map showing the sampling locations and fitted regression and variogram models.

2. fit the geostatistical model,
3. make predictions,

4. visualize maps,

Consider for example the Meuse data set commonly used for geostatistical exercises (Pebesma
2004):

R> library("sp")
R> demo("meuse", echo = FALSE)

Via the GSIF package we can automate the model fitting and prediction:

R> library("GSIF")

R> omm <- fit.gstatModel (meuse, om ~ dist + ffreq, meuse.grid,
+ family = gaussian(log))

R> om.rk <- predict(omm, meuse.grid)

[using ordinary kriging]

51% done
1007% done

14 plotKML: Scientific Visualization of Spatio-Temporal Data

Here the generic function fit.gstatModel from the GSIF package (Hengl 2014) tries to
fit a linear regression-kriging model following the input samples (meuse) and gridded maps
(meuse.grid). The output (object of class "SpatialPredictions") can be plotted in Google
Earth by running;:

R> plotKML (om.rk)

KML file opened for writing...

Reprojecting to +proj=longlat +datum=WGS84 ...
Writing to KML...

Reprojecting to +proj=longlat +datum=WGS84 ...
Parsing to KML...

Loading required package: gstat

Closing om.rk.kml

which shows most of elements of geostatistical mapping of interest: sampling locations, re-
sulting spatial predictions, but also success of regression model fitting, variogram fitting and
cross-validation. Note also that wrapping model fitting and export to KML allows full au-
tomation of the mapping process, so that the process can be run on a server (Pebesma et al.
2011).

3.4. Visualization of spatio-temporal classes

From 2012, there are several implementations of spatio-temporal classes in R. Pebesma (2012)
shows how purely spatial classes can be extended to space-time classes (via the spacetime
(Pebesma 2012) package): spatio-temporal full data frame (STFDF), sparse spatio-temporal
data frame (STSDF), spatio-temporal irregular data frames (STIDF). plotKML works with
most of the space-time classes implemented in R, especially the ones extending the sp classes,
but the package should also work with the raster package class objects.

Consider for example the foot-and-mouth epidemic data from North Cumbria (United King-
dom), available via the stpp package (Diggle, Rowlingson, and Su 2005). This is a spatio-
temporal point pattern represented with a matrix containing (z,y,t) coordinates of the 648
observations. To visualize this data in R (spacetime package) we would run:

R> library("stpp")

R> data("fmd")

R> fmd0 <- data.frame(fmd)

R> coordinates (fmd0) <- c("X", "Y")

R> proj4string(fmd0) <- CRS("+init=epsg:27700")

R> fmd_sp <- as(fmd0, "SpatialPoints")

R> dates <- as.Date("2001-02-18") + fmdO$ReportedDay
R> library("spacetime")

R> fmd_ST <- STIDF(fmd_sp, dates, data.frame(ReportedDay=fmdO$ReportedDay))
R> data("northcumbria")

R> 1n <- Line(northcumbria)

R> NC <- SpatialLines(list(Lines(1list(ln), ID = "NC")))
R> proj4string(NC) <- CRS("+init=epsg:27700")

Journal of Statistical Software

2001-05-13

2001-06-11 2001-07-09 2001-08-06

-

+ [28,61.8]

+ (61.8,95.6]
95.6,129.4]
129.4,163.2]

« (163.2.197]

Figure 7: Spatio-temporal plot of point pattern in time: foot-and-mouth epidemic data from
North Cumbria, available via the stpp package (Gabriel et al. 2014).

R> stplot(fmd_ST, sp.layout = list("sp.lines", NC),
+ col.regions = SAGA_pall[[1]])

which produces a plot shown in Figure 7.

To plot this data in Google Earth we can do (Figure 8):

R> plotKML(fmd_ST, colour_scale = SAGA_pall[[1]])

Plotting the first variable on the list

KML file opened for writing...

Reprojecting to +proj=longlat +datum=WGS84 ...
Parsing to KML...

Closing fmd_ST.kml

Some advantages of getting this data to Google Earth, as compared to using the stplot()
function (Figure 7), are:

1. We can animate spread of disease by moving the time slider.
2. We can observe the event with different temporal support size.
3. We can zoom in into the specific points and locate the actual farm.

4. We can try to analyze whether the spread of disease has anything to do with the prox-
imity to roads, type of land cover etc.

5. We do not necessarily need to prepare any administrative data for the study area as
these are already available in Google Earth.

15

16 plotKML: Scientific Visualization of Spatio-Temporal Data

rmere

Tour Guide: 2 b) N

e
el

Workington L

. Oo®
Keswick '*°

‘indermere

Tour Guide 4 94°57'49:81" N

Steagill

Tour Guide o 2004

Figure 8: Visualization of the food-and-mouth epidemic data from North Cumbria in Google
Earth (compare with Figure 7). Note that Google Earth allows users to slide through an
event, but also to set the temporal support (width in the slide bar).

http://www.elsevier.com/googlemaps/

http://worldwind.arc.nasa.gov/
http://cesium.agi.com/
http://LandXplorer.com/
http://LandXplorer.com/
http://www.autodesk.com/
http://CRAN.R-project.org/package=aqp
http://CRAN.R-project.org/package=rgdal

http://dirk.eddelbuettel.com/blog/2012/08/16#counting_cran_depends_followup
http://dirk.eddelbuettel.com/blog/2012/08/16#counting_cran_depends_followup
http://pypi.python.org/pypi/pykml/
http://pypi.python.org/pypi/pykml/
http://www.esri.com/news/arcnews/summer03articles/introducing-arcglobe.html
http://www.esri.com/news/arcnews/summer03articles/introducing-arcglobe.html
http://www.arcgis.com/
http://www.datavis.ca/milestones/
http://CRAN.R-project.org/package=stpp
http://CRAN.R-project.org/package=stpp

http://www.google.com/earth/connect/newsletter/oct11.html
http://www.google.com/earth/connect/newsletter/oct11.html
http://earth.google.com/
http://earth.google.com/
http://grass.osgeo.org/
http://grass.osgeo.org/
http://www.jstatsoft.org/v25/b02/
http://CRAN.R-project.org/package=GSIF
http://CRAN.R-project.org/package=GSIF
http://CRAN.R-project.org/package=raster
http://geospatial.intergraph.com/products/GeoMedia/Details.aspx
http://geospatial.intergraph.com/products/GeoMedia/Details.aspx
http://www.leica-geosystems.com/
http://www.bing.com/maps/
http://www.gdal.org/drv_kml.html
http://www.gdal.org/
http://www.jstatsoft.org/v51/i07/

http://www.ossim.org/
http://docs.kde.org/stable/en/kdeedu/marble/
http://docs.kde.org/stable/en/kdeedu/marble/
http://www.R-project.org/
http://www.omegahat.org/RKML/
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=rggobi
http://www.mathworks.com/products/mapping/
http://CRAN.R-project.org/package=iplots
http://en.wikipedia.org/wiki/Scientific_visualization

Journal of Statistical Software

Affiliation:

Tomislav Hengl

ISRIC — World Soil Information

P.O. Box 353

6700 AJ Wageningen, The Netherlands
Tel.: +31/317/484199

E-mail: tom.hengl@wur.nl

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 63, Issue 5 Submitted: 2013-01-23
January 2015 Accepted: 2014-09-30

25

mailto:tom.hengl@wur.nl
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Basic concepts
	Scientific visualization of geographic phenomena
	Space-time continuum
	Spatial and spatio-temporal objects
	Spatial data structures in R and KML

	Implementation and code examples
	Basic principles and main use
	KML building utilities
	plotKML-specific classes
	Visualization of spatio-temporal classes
	Visualization of time series of rasters
	plotKML in comparison to other KML writing software

	Discussion

