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Abstract

This article describes the BMS (Bayesian model sampling) package for R that im-
plements Bayesian model averaging for linear regression models. The package excels in
allowing for a variety of prior structures, among them the “binomial-beta” prior on the
model space and the so-called “hyper-g” specifications for Zellner’s g prior. Furthermore,
the BMS package allows the user to specify her own model priors and offers a possibility of
subjective inference by setting “prior inclusion probabilities” according to the researcher’s
beliefs. Furthermore, graphical analysis of results is provided by numerous built-in plot
functions of posterior densities, predictive densities and graphical illustrations to compare
results under different prior settings. Finally, the package provides full enumeration of
the model space for small scale problems as well as two efficient MCMC (Markov chain
Monte Carlo) samplers that sort through the model space when the number of potential
covariates is large.

Keywords: hyper-g prior, binomial-beta prior, empirical Bayes, customized prior inclusion
probabilities, BMS, R.

1. A brief introduction to Bayesian model averaging

Model uncertainty is a problem that arises frequently in applied econometrics: Which set
of the covariates is appropriate to explain variation of the response variable? Are my re-
sults robust to in-/exclusion of additional explanatory variables? In addressing these issues
Bayesian model averaging (BMA) has become a popular alternative to model selection. The
remainder of this article is structured as follows: This section re-iterates some basic concepts,
and introduces notation for readers with limited knowledge of BMA. In Section 2 estimation
using package BMS (Bayesian model sampling) is explained using employing a default prior
setting. Section 3 introduces different priors on the model space, while Section 4 introduces

http://dx.doi.org/10.18637/jss.v068.i04
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the MCMC sampler implemented in package BMS. Section 5 provides an overview about the
g prior settings, and Section 6 describes prediction in BMA. Section 7 concludes.

1.1. Bayesian model averaging

Bayesian model averaging1 addresses model uncertainty in a canonical regression problem.
Suppose a linear model structure, with y being the dependent variable, αγ a constant, βγ the
coefficients, and ε a normal IID error term with variance σ2:

y = αγ +Xγβγ + ε, ε ∼ N(0, σ2I). (1)

A problem arises when there are many potential explanatory variables in a matrix X: Which
variables Xγ ∈ {X} should be then included in the model? And how important are they?
The direct approach to do inference on a single linear model that includes all variables is
inefficient or even infeasible with a limited number of observations.

BMA tackles the problem by estimating models for all possible combinations of {X} and
constructing a weighted average over all of them. If X contains K potential variables, this
means estimating 2K variable combinations and thus 2K models. The model weights for this
averaging stem from posterior model probabilities that arise from Bayes’ theorem:

p(Mγ |y,X) =
p(y|Mγ , X)p(Mγ)

p(y|X)
=

p(y|Mγ , X)p(Mγ)∑2K
s=1 p(y|Ms, X)p(Ms)

. (2)

Here, p(y|X) denotes the integrated likelihood which is constant over all models and is thus
simply a multiplicative term.2 Therefore, the posterior model probability (PMP) is propor-
tional (embodied by the sign ∝) to the integrated likelihood p(y|Mγ , X), which reflects the
probability of the data given model Mγ . The marginal likelihood of model Mγ is multiplied
by its prior model probability p(Mγ) indiating how probable the researcher thinks model Mγ

is before looking at the data. The difference between p(y|X) and p(y|Mγ , X) is that integra-
tion is once over the model space (p(y|X)) and once for a given model over the parameter
space p(y|Mγ , X). By re-normalization of the product from above one can infer the PMPs
and thus the model weighted posterior distribution for any statistic θ (e.g., the estimator of
the coefficient βγ):

p(θ|y,X) =
2K∑
γ=1

p(θ|Mγ , y,X)
p(Mγ |X, y)p(Mγ)∑2K
s=1 p(Ms|y,X)p(Ms)

.

The model prior p(Mγ) has to be elicited by the researcher and should reflect prior beliefs.
A popular choice is to set a uniform prior probability for each model p(Mγ) ∝ 1 to represent
the lack of prior knowledge. Further model prior options will be explored in Section 3.

1.2. Bayesian linear models and Zellner’s g prior

The specific expressions for the marginal likelihoods p(Mγ |y,X) and the posterior distribu-
tions p(θ|Mγ , y,X) depend on the chosen estimation framework. The literature standard is

1For an excellent introduction see Hoeting, Madigan, Raftery, and Volinsky (1999).
2According to the literature in what follows we will use the terms integrated and marginal likelihood

interchangeably.
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to use a “Bayesian regression” linear model with a specific prior structure called “Zellner’s g
prior” as will be outlined in this section.3

For each individual model Mγ suppose a normal error structure as in (1). The need to obtain
posterior distributions requires to specify the priors on the model parameters. Here, we place
“improper” priors on the constant and error variance, which means they are evenly distributed
over their domain: p(αγ) ∝ 1, i.e., complete prior uncertainty where the constant is located.
Similarly, set p(σ) ∝ σ−1.

The crucial prior is the one on the regression coefficients βγ : Before looking at the data (y,X),
the researcher formulates her prior beliefs on coefficients into a normal distribution with a
specified mean and variance. It is common to assume a conservative prior mean of zero for
the coefficients to reflect that not much is known about them. Their variance structure is
defined according to Zellner’s g: gσ2(Xγ

>Xγ)−1:

βγ |g ∼ N
(

0, gσ2
(
Xγ
>Xγ

)−1
)
.

This means that the researcher thinks coefficients are zero, and that their variance-covariance
structure is broadly in line with that of the data Xγ . The hyperparameter g embodies
how certain the researcher is that coefficients are indeed zero: A small g means small prior
coefficient variance and therefore implies the researcher is quite certain (or conservative) that
the coefficients are indeed zero. In contrast, a large g means that the researcher is very
uncertain that coefficients are zero.

The posterior distribution of coefficients reflects prior uncertainty: Given g, it follows a t-
distribution with expected value E(βγ |y,X, g,Mγ) = g

1+g β̂γ , where β̂γ is the standard OLS
estimator for model γ. The expected value of coefficients is thus a convex combination of OLS
estimator and prior mean (zero). The more conservative (smaller) g, the more important is
the prior, and the more the expected value of coefficients is shrunk toward the prior mean
zero. As g → ∞, the coefficient estimator approaches the OLS estimator. Similarly, the
posterior variance of βγ is affected by the choice of g:4

COV(βγ |y,X, g,Mγ) =
(y − ȳ)>(y − ȳ)

N − 3

g

1 + g

(
1− g

1 + g
R2
γ

)
(Xγ

>Xγ)−1.

I.e., the posterior covariance is similar to that of the OLS estimator times a factor that
includes g. The Appendix A.3 shows how to apply the function zlm in order to estimate such
models outside of the BMA context.

For BMA, this prior framework results in a very simple marginal likelihood p(y|Mγ , X, g),
that is related to the R-squared and includes a size penalty factor adjusting for model size
kγ :

p(y|Mγ , X, g) ∝ (y − ȳ)>(y − ȳ)−
N−1

2 (1 + g)−
kγ
2

(
1− g

1 + g

)−N−1
2

.

The crucial choice here concerns the form of the hyperparameter g. A popular “default”
approach is the “unit information prior” (UIP), which sets g = N commonly for all models

3Note that the presented framework is very similar to the natural normal-gamma-conjugate model – which
employs proper priors for α and σ. Nonetheless, the resulting posterior statistics are virtually identical under
uninformative priors on the model and parameter space.

4Here, N denotes sample size, and ȳ the sample mean of the response variable.
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and thus attributes about the same information to the prior as is contained in one observation.
Please refer to Section 5 for a discussion of other g priors.5

2. A BMA example: Attitude data

This section shows how to run BMA using the R (R Core Team 2015) package BMS (Feld-
kircher and Zeugner 2015). Package BMS is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=BMS. We will use a small data
set for illustration and show how to obtain posterior coefficient and model statistics.

2.1. Model sampling

Equipped with this basic framework, let us explore one of the data sets built into R: The
attitude dataset describes the overall satisfaction rating of a large organization’s employees,
as well as several specific factors such as complaints, the way of handling complaints within
the organization (for more information type help("attitude")). The data includes 6 vari-
ables, which means 26 = 64 model combinations. Let us stick with the UIP g prior (in this
case g = N = 30). Moreover, assume uniform model priors (which means that our expected
prior model parameter size is K/2 = 3).

First load the data set by typing

R> data("attitude", package = "datasets")

In order to perform BMA you have to load the BMS package first, via the command:

R> library("BMS")

Now perform Bayesian model sampling via the function bms, and write results into the variable
att.

R> att <- bms(attitude, mprior = "uniform", g = "UIP", user.int = FALSE)

mprior = "uniform" means to assign a uniform model prior, g = "UIP", the unit information
prior on Zellner’s g. The option user.int = FALSE is used to suppress user-interactive output
for the moment.6 The first argument is the data frame attitude, and bms assumes that its
first column is the response variable.7

2.2. Coefficient results

The coefficient results can be obtained via

R> coef(att)

5Note that package BMS is, in principle not restricted to Zellner’s g priors, as quite different coefficient
priors might be defined by R-savvy users.

6Note that the argument g = "UIP" is actually redundant, as this is the default option for bms. The default
model prior is somewhat different but does not matter very much with this data. Therefore, the command att

= bms(attitude) gives broadly similar results.
7The specification of data can be supplied in different manners, e.g., using a ‘formula’. Type help("lm")

for a comparable function.

http://CRAN.R-project.org/package=BMS


Journal of Statistical Software 5

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.9996351 0.684449094 0.13038429 1.00000000 1

learning 0.4056392 0.096481513 0.15135419 1.00000000 3

advance 0.2129325 -0.026686161 0.09133894 0.00000107 6

privileges 0.1737658 -0.011854183 0.06143387 0.00046267 2

raises 0.1665853 0.010567022 0.08355244 0.73338938 4

critical 0.1535886 0.001034563 0.05465097 0.89769774 5

The above matrix shows the variable names and corresponding statistics: The second column
Post Mean displays the coefficients averaged over all models, including the models wherein the
variable was not contained (implying that the coefficient is zero in this case). The covariate
complaints has a comparatively large coefficient and seems to be most important. The
importance of the variables in explaining the data is given in the first column PIP which
represents posterior inclusion probabilities – i.e., the sum of PMPs for all models wherein a
covariate was included. We see that with 99.96%, virtually all of posterior model mass rests
on models that include complaints. In contrast, learning has an intermediate PIP of 40.6%,
while the other covariates do not seem to matter much. Consequently their (unconditional)
coefficients8 are quite low, since the results quite often include models where these coefficients
are zero.

The coefficients’ posterior standard deviations (Post SD) provide further evidence: for ex-
ample, complaints is certainly positive, while advance is most likely negative. In fact, the
coefficient sign can also be inferred from the fourth column Cond.Pos.Sign, the “posterior
probability of a positive coefficient expected value conditional on inclusion”, respectively “sign
certainty”. Here, we see that in all encountered models containing these variables, the (ex-
pected values of) coefficients for complaints and learning were positive. In contrast, the
corresponding number for privileges is near to zero, i.e., in virtually all models that include
privileges, its coefficient sign is negative. Finally, the last column idx denotes the index of
the variables’ appearance in the original data set, as our results are obviously sorted by PIP.

In addition to inferring about the importance of our variables, it might be really more inter-
esting to look at their standardized coefficients.9 Type:

R> coef(att, std.coefs = TRUE, order.by.pip = FALSE,

+ include.constant = TRUE)

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.9996351 0.7486734114 0.14261872 1.00000000 1

privileges 0.1737658 -0.0119154065 0.06175116 0.00046267 2

learning 0.4056392 0.0930292869 0.14593855 1.00000000 3

raises 0.1665853 0.0090258498 0.07136653 0.73338938 4

critical 0.1535886 0.0008409819 0.04442502 0.89769774 5

8Unconditional coefficients are defined as E(β|y,X) =
∑2K

γ=1
p(βγ |, y,X,Mγ)p(Mγ |y,X) i.e., a weighted

average over all models, including those where this particular coefficient was restricted to zero. A conditional
coefficient in contrast, is “conditional on inclusion”, i.e., a weighted average only over those models where its
regressor was included. Conditional coefficients may be obtained with the command coef(att, condi.coef

= TRUE).
9Standardized coefficients arise if both the response y and the regressors X are normalized to mean zero

and variance one – thus effectively bringing the data down to the same order of magnitude.
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advance 0.2129325 -0.0225561446 0.07720309 0.00000107 6

(Intercept) 1.0000000 1.2015488514 NA NA 0

The standardized coefficients reveal similar importance as discussed above, but one sees that
learning actually does not matter much in terms of magnitude. Note that using argument
order.by.pip = FALSE leads to the covariates being represented in their original order. The
argument include.constant = TRUE also prints out a (standardized) constant.

2.3. Other results

Other basic information about the sampling procedure can be obtained via.10

R> summary(att)

Mean no. regressors Draws Burnins

"2.1121" "64" "0"

Time No. models visited Modelspace 2^K

"0.02240419 secs" "64" "64"

% visited % Topmodels Corr PMP

"100" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "uniform / 3" "UIP"

Shrinkage-Stats

"Av=0.9677"

It reiterates some of the facts we already know, but adds some additional information such
as Mean no. regressors, posterior expected model size (cf., Section 3).

Finally we can examine the distribution of posterior model probabilities by invoking the
function topmodels. This yields a binary matrix with the variables arranged row-wise and
the models column-wise. For a particular model (i.e., column) a 0 indicates exclusion and 1
inclusion of a variable associated with a given row. For the sake of illustration we will focus
on the three models with highest posterior model probabilities:

R> topmodels(att)[, 1:3]

20 28 29

complaints 1.0000000 1.0000000 1.00000000

privileges 0.0000000 0.0000000 0.00000000

learning 0.0000000 1.0000000 1.00000000

raises 0.0000000 0.0000000 0.00000000

critical 0.0000000 0.0000000 0.00000000

advance 0.0000000 0.0000000 1.00000000

PMP (Exact) 0.2947721 0.1661679 0.06678871

PMP (MCMC) 0.2947721 0.1661679 0.06678871

10Note that the command print(att) is equivalent to coef(att); summary(att).
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critical
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Figure 1: Image plot. Blue color corresponds to a positive coefficient, red to a negative
coefficient, and white to non-inclusion of the respective variable. The horizontal axis is scaled
by the models’ posterior model probabilities.

The posterior model probability for each model is given at the bottom of the matrix. The
distinction between PMP (Exact) and PMP (MCMC) is of importance if an MCMC sampler
was used and will be discussed in Section 4.3. Note that we can access the PMP for any
model directly using the function pmpmodel – cf., help("pmpmodel"). The best model, with
29% posterior model probability, is the one that only includes complaints. However the
second best model includes learning in addition and has a PMP of 17%. Use the command
beta.draws(att) to obtain the actual (expected values of) posterior coefficient estimates for
each of these models.

In order to get a more comprehensive overview over the models, use the command

R> image(att)

that produces Figure 1.

Here, blue color corresponds to a positive coefficient, red to a negative coefficient, and white
to non-inclusion (a zero coefficient). On the horizontal axis the best models are shown,
scaled by their PMPs. We see again that the best model with most mass only includes
complaints. Moreover we see that complaints is included in virtually all model mass, and
unanimously with a positive coefficient. In contrast, raises is included very infrequently, and
its coefficient sign changes according to the model. Use image(att, yprop2pip = TRUE) for
another illustrating variant of this plot.
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Figure 2: Distribution of posterior model size. Left panel: Uniform prior on the model space,
prior expected model size equals m̄ = 3. Right panel: Informative prior on model space used,
prior expected model size equals m̄ = 2.

3. Model size and model priors

Invoking the command summary(att) yielded the important posterior statistic Mean no.

regressors, the posterior expected model size (i.e., the average number of included regres-
sors), which in our case was 2.11. Note that the posterior expected model size is equal to the
sum of PIPs – verify via:

R> sum(coef(att)[, 1])

[1] 2.112147

This value contrasts with the prior expected model size implicitly used in our model sam-
pling: With 2K possible variable combinations, a uniform model prior means a common prior
model probability of p(Mγ) = 2−K . However, this implies a prior expected model size of∑K
k=0

(K
k

)
k2−K = K/2. Moreover, since there are more possible models of size 3 than e.g.,

of size 1 or 5, the uniform model prior puts more mass on intermediate model sizes – e.g.,
expecting a model size of kγ = 3 with

(6
3

)
2−K = 31% probability. In order to examine how

far the posterior model size distribution matches up to this prior, type:

R> plotModelsize(att)

The results are illustrated in Figure 2, left panel.

We see that while the model prior implies a symmetric distribution around K/2 = 3, updating
it with the data yields a posterior that puts more importance on parsimonious models. In
order to illustrate the impact of the uniform model prior assumption, we might consider other
popular model priors that allow more freedom in choosing prior expected model size and other
factors.
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3.1. Binomial model prior

The binomial model prior constitutes a simple and popular alternative to the uniform prior we
just employed. It starts from the covariates’ viewpoint, placing a common and fixed inclusion
probability θ on each regressor. The prior probability of a model of size kγ is therefore the
product of inclusion and exclusion probabilities:

p(Mγ) = θkγ (1− θ)K−kγ .

Since expected model size is m̄ = Kθ, the researcher’s prior choice reduces to eliciting a
prior expected model size m̄ (which defines θ via the relation θ = m̄/K). Choosing a prior
model size of K/2 yields θ = 1

2 and thus exactly the uniform model prior p(Mγ) = 2−K

illustrated in the previous section. Therefore, putting prior model size at a value < 1
2 tilts

the prior distribution toward smaller model sizes and vice versa. For instance, let us impose
a fixed inclusion probability prior such that prior model size equals m̄ = 2: Here, the option
user.int = TRUE directly prints out the results as from coef and summary:11

R> att_fixed <- bms(attitude, mprior = "fixed", mprior.size = 2,

+ user.int = TRUE)

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.99971415 0.7034253730 0.12131094 1.00000000 1

learning 0.23916017 0.0536357004 0.11957391 1.00000000 3

advance 0.10625062 -0.0103177406 0.05991418 0.00000250 6

privileges 0.09267430 -0.0057118663 0.04446276 0.00040634 2

raises 0.09089754 0.0061503218 0.06011618 0.81769332 4

critical 0.08273046 0.0002573042 0.03992658 0.92899714 5

Mean no. regressors Draws Burnins

"1.6114" "64" "0"

Time No. models visited Modelspace 2^K

"0.029845 secs" "64" "64"

% visited % Topmodels Corr PMP

"100" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "fixed / 2" "UIP"

Shrinkage-Stats

"Av=0.9677"

Time difference of 0.029845 secs

As seen in Mean no. regressors and illustrated in the right panel of Figure 2, the posterior
model size is now 1.61 which is somewhat smaller than with uniform model priors. Since
posterior model size equals the sum of PIPs, many of them have also become smaller than in
att. But interestingly, the PIP of complaints has remained at near 100%.

11Note that it is not necessary to specify g = "UIP" explicitly since it corresponds to the default setting of
bms.
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3.2. Custom prior inclusion probabilities

In view of the pervasive impact of complaints, one might wonder whether its importance
would also remain robust to a greatly unfair prior. For instance, one could define a prior
inclusion probability of only θ = 0.01 for complaints while setting a“standard”prior inclusion
probability of θ = 0.5 for all other variables. Such a prior might be submitted to bms by
assigning a vector of prior inclusion probabilities via its mprior.size argument:

R> att_pip <- bms(attitude, mprior = "pip",

+ mprior.size = c(0.01, 0.5, 0.5, 0.5, 0.5, 0.5), user.int = FALSE)

This implies a prior model size of m̄ = 0.01 + 5× 0.5 = 2.51.

The results can be obtained with summary(att_pip):

R> summary(att_pip)

Mean no. regressors Draws Burnins

"2.1262" "64" "0"

Time No. models visited Modelspace 2^K

"0.02080202 secs" "64" "64"

% visited % Topmodels Corr PMP

"100" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "pip / 2.51" "UIP"

Shrinkage-Stats

"Av=0.9677"

Accordingly, complaints still retains its PIP of near 100%. Posterior model size, however,
decreases and all other variables obtain a far smaller PIP.

3.3. Binomial-beta model priors

Like the uniform prior, the fixed common θ in the binomial prior centers the mass of its
distribution near the prior model size. A look on the prior model distribution with the
following command shows that the prior model size distribution is quite concentrated around
its mode, which is illustrated in Figure 3, left panel.

R> plotModelsize(att_pip)

This feature is sometimes criticized, in particular by Ley and Steel (2009): They note that
to reflect prior uncertainty about model size, one should rather impose a prior that is less
tight around prior expected model size. Therefore, Ley and Steel (2009) propose to put a
hyperprior on the inclusion probability θ, effectively drawing it from a Beta distribution. In
terms of researcher input, this prior again only requires to choose the prior expected model
size. However, the resulting prior distribution is considerably less tight and should thus reduce
the risk of unintended consequences from imposing a particular prior model size.12

12Therefore, the binomial-beta model prior with random θ is implemented as the default choice in bms.
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Figure 3: Distribution of posterior model size. Left panel: Custom prior on the model space
employed. Right panel: Binomial-beta prior on the model space employed. Expected model
size equals K/2 regressors.

In the vein of Ley and Steel (2009) a prior on the model space that is completely flat can be
invoked by anchoring the binomial-beta prior on an expected model size of K/2 = 6/2 = 3
regressors:

R> att_random <- bms(attitude, mprior = "random", mprior.size = 3,

+ user.int = FALSE)

R> plotModelsize(att_random)

As Figure 3, right panel, illustrates, the prior on the model space is flat, while the posterior
model size turns out to be 1.73. In terms of coefficient and posterior model size distribution,
the results are very similar to those of att_fixed, even though the latter approach involved
a tighter model prior. Concluding, a decrease of prior importance by the use of the binomial-
beta framework supports the results found in att_fixed.

We can compare the PIPs from the four approaches presented so far with the following
command:13

R> plotComp(Uniform = att, Fixed = att_fixed, PIP = att_pip,

+ Random = att_random)

Figure 4 illustrates that att_fixed (Fixed) and att_random (Random) lead to very similar
results and are plainly smaller compared to the PIPs under att (Uniform).

Note that the Appendix A.1 contains an overview of the built-in model priors available in
package BMS. Moreover, package BMS allows the user to define any custom model prior
herself and straightforwardly use it in bms – for examples of these extensions, check the web
page http://bms.zeugner.eu/custompriors.php. Another concept relating to model priors
is to keep regressors fixed, i.e., to be included in every sampled model: Appendix A.4 provides
some examples.

13This is equivalent to the command plotComp(att, att_fixed, att_pip, att_random).
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Figure 4: Posterior inclusion probabilities under different prior settings on the model space.

4. MCMC samplers and more variables

4.1. MCMC samplers

With a small number of variables, it is straightforward to enumerate all potential variable
combinations to obtain posterior results. For a larger number of covariates, this becomes more
time intensive: enumerating all models for 25 covariates takes about 3 hours on a modern
PC, and doing a bit more already becomes infeasible: With 50 covariates for instance, there
are more than a quadrillion (≈ 1015) potential models to consider. In such a case, MCMC
samplers gather results on the most important part of the posterior model distribution and
thus approximate it as closely as possible. BMA mostly relies on the Metropolis-Hastings
algorithm, which “walks” through the model space as follows:

At step i, the sampler stands at a certain “current” model Mi with PMP p(Mi|y,X). In step
i + 1 a candidate model Mj is proposed. The sampler switches from the current model to
model Mj with probability pi,j :

pi,j = min(1, p(Mj |y,X)/p(Mi|y, x)).

In case model Mj is rejected, the sampler moves to the next step and proposes a new model
Mk against Mi. In case model Mj is accepted, it becomes the current model and has to
survive against further candidate models in the next step. In this manner, the number of
times each model is kept will converge to the distribution of posterior model probabilities
p(Mi|y,X).
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In addition to enumerating all models, package BMS implements two MCMC samplers that
differ in the way they propose candidate models:

� Birth-death sampler ("bd"): This is the standard model sampler used in most BMA
routines. One of the K potential covariates is randomly chosen; if the chosen covariate
forms already part of the current model Mi, then the candidate model Mj will have the
same set of covariates as Mi but for the chosen variable (“dropping” a variable). If the
chosen covariate is not contained in Mi, then the candidate model will contain all the
variables from Mi plus the chosen covariate (“adding” a variable).

� Reversible-jump sampler ("rev.jump"): Adapted to BMA by Madigan and York (1995)
this sampler either draws a candidate by the birth-death method with 50% probability.
In the other case (chosen with 50% probability) a “swap” is proposed, i.e., the candidate
model Mj randomly drops one covariate with respect to Mi and randomly adds one
chosen at random from the potential covariates that were not included in model Mi.

� Enumeration ("enumerate"): Up to fourteen covariates, complete enumeration of all
models is the default option: This means that instead of an approximation by means
of the aforementioned MCMC sampling schemes all possible models are evaluated. As
enumeration becomes quite time-consuming or infeasible for many variables, the default
option is mcmc = "bd" in case of K > 14, though enumeration can still be invoked with
the command mcmc = "enumerate".

The quality of an MCMC approximation to the actual posterior distribution depends on the
number of draws the MCMC sampler runs for. In particular, the sampler has to start out
from some model14 that might not be a “good” one. Hence the first batch of iterations will
typically not draw models with high PMPs as the sampler will only after a while converge to
spheres of models with the largest marginal likelihoods. Therefore, this first set of iterations
(the “burn-ins”) is to be omitted from the computation of results. In bms, the argument burn
specifies the number of burn-ins, and the argument iter the number of subsequent iterations
to be retained.

4.2. An example: Economic growth

In one of the most prominent applications of BMA, Fernández, Ley, and Steel (2001b) analyze
the importance of 41 explanatory variables on long-term term economic growth in 72 countries
by the means of BMA. The data set is available in package BMS, a short description is
available via help("datafls"). They employ a uniform model prior and the birth-death
MCMC sampler. Their g prior is set to g = max(N,K2), a mechanism such that PMPs
asymptotically either behave like the Bayesian information criterion (with g = N) or the risk
inflation criterion (g = K2) – in bms this prior is assigned via the argument g = "BRIC".

Moreover Fernández et al. (2001b) employ more than 200 million number of iterations after
a substantial number of burn-ins. Since this would take quite a time, the following example
reenacts their setting with only 50,000 burn-ins and 100,000 draws and will take about 30
seconds on a modern computer:

14bms has some simple algorithms implemented to choose “good” starting models; consult the option
start.value under help("bms") for more information.
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R> data("datafls", package = "BMS")

R> fls1 <- bms(datafls, burn = 50000, iter = 1e+05, g = "BRIC",

+ mprior = "uniform", nmodel = 2000, mcmc = "bd", user.int = FALSE)

Before looking at the coefficients, we can check for practical convergence of the MCMC chain
by invoking the summary command:

R> summary(fls1)

Mean no. regressors Draws Burnins

"10.5441" "1e+05" "50000"

Time No. models visited Modelspace 2^K

"21.74757 secs" "26469" "2.2e+12"

% visited % Topmodels Corr PMP

"1.2e-06" "42" "0.9169"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

Shrinkage-Stats

"Av=0.9994"

Note that due to stochastic variation in the MCMC chain your results might slightly differ
from those reported here. Under Corr PMP, we find the correlation between iteration counts
and analytical PMPs for the 2000 best models (the number 2000 was specified with the nmodel
= 2000 argument). At summary(fls1)["Corr PMP"], this correlation is far from perfect but
already indicates a good degree of convergence. For a closer look at convergence between
analytical and MCMC PMPs, compare the actual distribution of both concepts:

R> plotConv(fls1)

Figure 5, left panel, presents the best 2,000 models encountered ordered by their analytical
PMP (the red line), and plots their MCMC iteration counts (the blue line). For an even closer
look, one might just check the corresponding image for just the best 100 models. The results
are provided in Figure 5, right panel, and can be achieved with the following command:15

R> plotConv(fls1[1:100])

4.3. Analytical vs. MCMC likelihoods

The example above already achieved a decent level of correlation among analytical likelihoods
and iteration counts with a comparatively small number of sampling draws. In general, the
more complicated the distribution of marginal likelihoods, the more difficulties the sampler
will meet before converging to a good approximation of PMPs. The quality of approximation
may be inferred from the number of times a model got drawn vs. their actual marginal

15With bma objects such as fls1, the indexing parentheses [] are used to select subsets of the (ranked) best
models retained in the object. For instance, while fls1 contains 2,000 models, fls1[1:100] only contains
the 100 best models among them. Correspondingly, fls1[37] would only contain the 37th best model. Cf.,
help("[.bma")
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Figure 5: Convergence plot. Left panel illustrates the convergence of the MCMC chain based
on 2,000 models, right panel for a subset of 100 models. The blue line corresponds to posterior
model probabilities based on sampling frequencies, red line on its analytical counterpart.
Convergence of the MCMC chain is achieved if both lines are strongly correlated.

likelihoods. Partly for this reason, bms retains a pre-specified number of models with the
highest PMPs encountered during MCMC sampling, for which PMPs and draw counts are
stored. Their respective distributions and their correlation indicate how well the sampler has
converged.

However, due to RAM limits, the sampling chain can hardly retain more than a few 100,000
of these models. Instead, it computes aggregate statistics on-the-fly, taking iteration counts
as model weights. For model convergence and some posterior statistics bms retains only
the “top” (highest PMP) nmodel models it encounters during the iterations. Since the time
for updating the iteration counts for the “top” models grows in line with their number, the
sampler becomes considerably slower the more “top” models are to be kept. Still, if they are
sufficiently numerous, those best models can already cover most of the posterior model mass –
in this case it is feasible to base posterior statistics on analytical likelihoods instead of MCMC
frequencies, just as in the enumeration case from Section 2. From bms results, the PMPs of
“top” models may be displayed with the command pmp. For instance, one could display the
PMPs of the best five models for fls1 as follows:16

R> pmp(fls1)[1:5, ]

PMP (Exact) PMP (MCMC)

0046845800c 0.010585312 0.00863

0046844800c 0.009244863 0.00750

00474440008 0.006160265 0.00650

00064450008 0.004119108 0.00430

00464440008 0.003792446 0.00282

16pmp returns a matrix with two columns and one row for each model. Consequently pmp(fls1)[1:5, ]

extracts the first five rows and all columns of this matrix.
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The numbers in the left-hand column represent analytical PMPs (PMP (Exact)) while the
right-hand side displays MCMC-based PMPs (PMP (MCMC)). Both decline in roughly the
same fashion, however sometimes the values for analytical PMPs differ considerably from
the MCMC-based ones. This comes from the fact that MCMC-based PMPs derive from the
number of iteration counts, while the “exact” PMPs are calculated from comparing the ana-
lytical likelihoods of the best models – cf., Equation 2.17 In order to see the importance of all
“top models” with respect to the full model space, we can thus sum up their MCMC-based
PMPs as follows:

R> colSums(pmp(fls1))

PMP (Exact) PMP (MCMC)

0.42133 0.42133

Both columns sum up to the same number and show that in total, the top 2,000 models
account for ca. 44% of posterior model mass.18 This can be verified via:

R> round(colSums(pmp(fls1))[[2]], 2) * 100

They should thus provide a rough approximation of posterior results that might or might not
be better than the MCMC-based results. For this purpose, compare the best 5 covariates in
terms of PIP by analytical and MCMC methods: coef(fls1) will display the results based
on MCMC counts.

R> coef(fls1)[1:5, ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 0.99497 -0.0161529327 0.0032782851 0 12

Confucian 0.99054 0.0567793035 0.0144399600 1 19

LifeExp 0.92986 0.0008388346 0.0003466536 1 11

EquipInv 0.92738 0.1593294278 0.0677028844 1 38

SubSahara 0.75162 -0.0115418192 0.0082556040 0 7

In contrast, the results based on analytical PMPs will be invoked with the exact argument:

R> coef(fls1, exact = TRUE)[1:5, ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 1.0000000 -0.016252921 0.0029270331 0 12

Confucian 0.9998987 0.056382088 0.0124665093 1 19

LifeExp 0.9671257 0.000849363 0.0002992502 1 11

EquipInv 0.9641156 0.165775220 0.0592304138 1 38

SubSahara 0.7846298 -0.011906481 0.0077020153 0 7

17In the call to topmodels on page 7, the PMPs under “MCMC” and analytical (“exact”) concepts were equal
since 1) enumeration bases both “top” model calculation and aggregate on-the-fly results on analytical PMPs
and 2) because all possible models were retained in the object att.

18Note that this share was already provided in column % Topmodels resulting from the summary command
on page 14.
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The ordering of covariates in terms of PIP as well as the coefficients are roughly similar.
However, the PIPs under exact = TRUE are somewhat larger than for the MCMC results.
Closer inspection will also show that the analytical results downgrade the PIPs of the worst
variables with respect to the PIPs under MCMC. This stems from the fact that analytical
results do not take into account the many “bad” models that include “worse” covariates and
are factored into MCMC results.

Whether to prefer analytical or MCMC results is a matter of taste – however the literature
prefers coefficients the analytical way: Fernández et al. (2001b), for instance, retain 5,000
models and report results based on them.

4.4. Combining sampling chains

The MCMC samplers described in Section 4.1 need to discard the first batch of draws (the
burn-ins) since they start out from some peculiar starting model and may reach the altitudes
of “high” PMPs only after many iterations. Here, choosing an appropriate starting model may
help to speed up convergence. By default bms selects its starting model as follows: from the
full model19, all covariates with OLS t-statistics > 0.2 are kept and included in the starting
model. Other starting models may be assigned outright or chosen according to a similar
mechanism (cf., argument start.value in help("bms")).

However, in order to improve the sampler’s convergence to the PMP distribution, one might
actually start from several different starting models. This could by particularly helpful if the
models with high PMPs are clustered in distant “regions”. For instance, one could set up the
Fernández et al. (2001b) example above to get iteration chains from different starting values
and combine them subsequently. Start, e.g., a shorter chain from the null model (the model
containing just an intercept), and use the “reversible jump” MCMC sampler:

R> fls2 <- bms(datafls, burn = 20000, iter = 50000, g = "BRIC",

+ mprior = "uniform", mcmc = "rev.jump", start.value = 0,

+ user.int = FALSE)

R> summary(fls2)

Mean no. regressors Draws Burnins

"10.5036" "50000" "20000"

Time No. models visited Modelspace 2^K

"10.84385 secs" "10952" "2.2e+12"

% visited % Topmodels Corr PMP

"5e-07" "26" "0.8009"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

Shrinkage-Stats

"Av=0.9994"

Via:

R> round(cor(pmp(fls2))[2, 1], 2)

R> round(cor(pmp(fls1))[2, 1], 2)

19Actually, a model with randomly drawn min(K,N − 3) variables.
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one can compare the degree of MCMC convergence for both models. Accordingly, with 0.86,
the correlation between analytical and MCMC PMPs is a bit smaller than that from the
fls1 example in Section 4.3, which is 0.92. However, the results of this sampling run may be
combined to yield more iterations and thus a better representation of the PMP distribution.

R> fls_combi <- c(fls1, fls2)

R> summary(fls_combi)

Mean no. regressors Draws Burnins

"10.5306" "150000" "70000"

Time No. models visited Modelspace 2^K

"32.59142 secs" "37421" "2.2e+12"

% visited % Topmodels Corr PMP

"1.7e-06" "37" "0.9392"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

Shrinkage-Stats

"Av=0.9994"

With 0.95, the PMP correlation from the combined results is broadly better than either of its
two constituent chains fls1 and fls2. Still, the PIPs and coefficients do not change much
with respect to fls1 – as evidenced, e.g., by plotComp(fls1, fls_combi, comp = "Std

Mean").

5. Alternative formulations for Zellner’s g prior

5.1. Alternative fixed g priors

Virtually all BMA applications rely on the presented framework with Zellner’s g prior, and
the bulk of them relies on specifying a fixed g. As mentioned in Section 1.2, the value
of g corresponds to the degree of prior uncertainty: A low g renders the prior coefficient
distribution tight around a zero mean, while a large g implies large prior coefficient variance
and thus decreases the importance of the coefficient prior.

While some popular default elicitation mechanisms for the g prior (e.g., we have seen UIP
and BRIC) are quite popular, they are also subject to severe criticism. Some (e.g Fernández,
Ley, and Steel 2001a) advocate a comparatively large g prior to minimize prior impact on the
results, stay close to the OLS coefficients, and represent the absolute lack of prior knowledge.
Others (e.g., Ciccone and Jarociński 2010) demonstrate that such a large g may not be robust
to noise innovations and risks over-fitting – in particular if the noise component plays a
substantial role in the data. Again others (Eicher, Papageorgiou, and Raftery 2011) advocate
intermediate fixed values for the g priors or present alternative default specifications (Liang,
Paulo, Molina, Clyde, and Berger 2008).20

20Note however, that g should in general be monotonously increasing in N : Fernández et al. (2001a) prove
that this is sufficient for “consistency”, i.e., if there is one single linear model as in Equation 1, than its PMP
asymptotically reaches 100% as sample size N →∞.
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In package BMS, any fixed g prior may be specified directly by submitting its value to the
bms function argument g. For instance, compare the results for the Fernández et al. (2001b)
setting when a more conservative prior such as g = 5 is employed (and far too few iterations
are performed):

R> fls_g5 <- bms(datafls, burn = 20000, iter = 50000, g = 5,

+ mprior = "uniform", user.int = FALSE)

R> coef(fls_g5)[1:5, ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 0.99644 -0.0138831190 0.0039496898 0.00000000 12

Confucian 0.95382 0.0478522293 0.0202463636 1.00000000 19

LifeExp 0.89468 0.0007017799 0.0003933174 1.00000000 11

EquipInv 0.80270 0.1030272051 0.0744926697 1.00000000 38

SubSahara 0.74282 -0.0103114225 0.0087756753 0.00045772 7

R> summary(fls_g5)

Mean no. regressors Draws Burnins

"20.1228" "50000" "20000"

Time No. models visited Modelspace 2^K

"11.58503 secs" "43996" "2.2e+12"

% visited % Topmodels Corr PMP

"2e-06" "2" "0.0856"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "numeric"

Shrinkage-Stats

"Av=0.8333"

The PIPs and coefficients for the best five covariates are comparable to the results from Sec-
tion 4.2 but considerably smaller, due to a tight shrinkage factor of g

1+g = 5
6 (cf., Section 1.2).

More important, with 20.4, the posterior expected model size exceeds that of fls_combi by
a large amount. This stems from the less severe size penalty imposed by eliciting a small g.
Finally, with a correlation between analytical and MCMC PMPs of −0.03 we can conclude
that the MCMC sampler has not at all converged yet. Feldkircher and Zeugner (2009) show
that the smaller the g prior, the less concentrated is the PMP distribution, and therefore the
harder it is for the MCMC sampler to provide a reasonable approximation to the actual PMP
distribution. Hence the above command should actually be run with many more iterations in
order to achieve meaningful results.

5.2. Model-specific g priors

The examples and references above illustrate that eliciting a fixed g prior common to all
models can be fraught with difficulties and unintended consequences. Under a shrinkage
factor close to 1 (i.e., under a large g), posterior estimates can easily overfit. This not only
has implications for the estimated coefficients but also for the PIPs. A too large “overfitting”
shrinkage factor leads to tight PMP concentrations and small model sizes, which result into
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an unduly skewed PIP distribution. Consequently, an “overfitting” shrinkage factor attributes
a relatively high PIP to just a few variables, while all other covariates yield very low PIPs. In
contrast a too low shrinkage factor (i.e., low g) does not exploit the data signals, and typically
leads to very similar intermediate PIPs for a large share of covariates. In order to address this
issue, several authors have proposed to rely on model-specific “flexible” g priors (cf., Liang
et al. 2008 for an overview). The virtue of such flexible shrinkage factors g

1+g is that they
adapt to the data: The better the signal-to-noise ratio, the closer the (expected) posterior
shrinkage factor will be to 1, and vice versa. Consequently, the average shrinkage factor
over all models can be interpreted as a Bayesian “goodness-of-fit” indicator. Feldkircher and
Zeugner (2009) show how the model specific priors implemented in BMS can be interpreted in
terms of the OLS F -statistic. Overall, there are two flexible g priors that allow for closed-form
solutions and are implemented in package BMS:

� Empirical Bayes g – local ("EBL"): gγ = arg maxg p(y|Mγ , X, g). Authors such as
George and Foster (2000) or Hansen and Yu (2001) advocate an “empirical Bayes”
approach by using information contained in the data (y,X) to elicit g via maximum
likelihood. This amounts to setting gγ = max(0, FOLSγ −1) where FOLSγ is the standard
OLS F -statistic for model Mγ . Each single model thus has single shrinkage factor g

1+g
estimated in this way, but those shrinkage factors differ over models. The function
gdensity provides density plots and data on the discrete distribution of the shrinkage
factor over all models.

Note that the local "EBL" prior is popular with some for its simplicity and effectiveness,
while it is despised by others: It does not constitute a “real”’ prior since it involves
“peeking” at the data in order to formulate a prior. Moreover, asymptotic “consistency”
of BMA is not guaranteed in this case.

� Hyper-g prior ("hyper"): Liang et al. (2008) propose putting a hyper-prior on g. In
order to arrive at closed-form solutions, they suggest a Beta prior on the shrinkage factor
of the form g

1+g ∼ B
(
1, a2 − 1

)
, where a is a parameter in the range of 2 < a ≤ 4. Then,

the prior expected value of the shrinkage factor is E( g
1+g ) = 2

a . Moreover, setting a = 4

corresponds to the uniform prior distribution of g
1+g over the interval [0, 1], while a→ 2

concentrates prior mass very close to 1 (thus corresponding to g →∞). (bms allows to
set a via the argument g = "hyper = x", where x denotes the a parameter.) The virtue
of the hyper-prior is that it allows for prior assumptions about g, but relies on Bayesian
updating to adjust it. This limits the risk of unintended consequences on the posterior
results, while retaining the theoretical advantages of a fixed g. Therefore Feldkircher
and Zeugner (2009) prefer the use of hyper-g over other available g prior frameworks.
In an application Feldkircher and Zeugner (2012) show that the use of the hyper-g prior
leads to more robust results. Moreover, the hyper-g prior has the advantage over similar
proposals that its closed-form posterior moments allow for computing them at a speed
that is only slightly slower than fixed g priors.

Both model-specific g priors adapt to the data: The better the signal-to-noise ratio, the closer
the (expected) posterior shrinkage factor will be to one, and vice versa. Therefore average
statistics on the shrinkage factor offer the interpretation as a “goodness-of-fit” indicator. See
also Feldkircher and Zeugner (2009) who show that both EBL and hyper-g can be interpreted
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in terms of the OLS F -statistic.21

Consider, for instance, the Fernández et al. (2001b) example under an empirical Bayes prior:

R> fls_ebl <- bms(datafls, burn = 20000, iter = 50000, g = "EBL",

+ mprior = "uniform", nmodel = 1000, user.int = FALSE)

R> summary(fls_ebl)

Mean no. regressors Draws Burnins

"20.5683" "50000" "20000"

Time No. models visited Modelspace 2^K

"12.32304 secs" "28833" "2.2e+12"

% visited % Topmodels Corr PMP

"1.3e-06" "7.9" "0.0651"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "EBL"

Shrinkage-Stats

"Av=0.9595"

The result Shrinkage-Stats reports a posterior average EBL shrinkage factor of 0.96, which
corresponds to a shrinkage factor g

1+g under g ≈ 24. Consequently, posterior model size is con-
siderably larger than under fls_combi, and the sampler has had a harder time to converge,
as evidenced in a quite low Corr PMP. This can also be seen by invoking the plot(fls_ebl)

command that yields a two-layer plot featuring the plotModelsize and plotConv plots illus-
trated previously.

The above results show that using a flexible and model-specific prior on Fernández et al.
(2001b) data results in rather small posterior estimates of g

1+g , thus indicating that the g

= "BRIC" prior used in fls_combi may be set too far from zero. This interacts with the
uniform model prior to concentrate posterior model mass on quite large models. However,
imposing a uniform model prior means to expect a model size of K/2 = 20.5, which may seem
overblown. Instead, try to impose a smaller model size through a corresponding model prior –
e.g., impose a prior model size of 7 as in Sala-i-Martin, Doppelhofer, and Miller (2004). This
can be combined with a hyper-g prior, where the argument g = "hyper = UIP" imposes an
a parameter such that the prior expected value of g corresponds to the unit information prior
(g = N).22

R> fls_hyper <- bms(datafls, burn = 20000, iter = 50000, g = "hyper=UIP",

+ mprior = "random", mprior.size = 7, nmodel = 1000, user.int = FALSE)

R> summary(fls_hyper)

21For instance, the posterior expected value of the shrinkage factor for each model Ms with ks parameters
and R-squared R2

S is

E

(
g

1 + g
|y,Xs,Ms

)
=

1

R2
s(N − 3− ks − a+ 2)

(
ks + a− 2

2F1(N−1
2
, 1, ks+a

2
, R2

s)
− (ks + a− 2) + (N − 3)R2

s

)
.

Its formulation mainly relates to R2
s and ks and thus resembles a goodness-of-fit indicator. Feldkircher and

Zeugner (2009) note that this also holds for its average across models: under some fairly standard conditions
1

1−E(
g

1+g
|X,y) behaves similarly to an adjusted F -statistic of the model average.

22This is the default hyper-g prior and may therefore be as well obtained with g = "hyper".
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Figure 6: Left panel: Posterior density of the shrinkage factor (g/(1 + g)). Solid line cor-
responds to the expected value E(g/1 + g)|Y ), dashed line to a +/− 2 standard deviation
interval. m̄ = 3. Right panel: Image plot. Blue color corresponds to a positive coefficient, red
to a negative coefficient, and white to non-inclusion of the respective variable. The horizontal
axis is scaled by the models’ posterior model probabilities. Hyper-g prior employed.

Mean no. regressors Draws Burnins

"15.0763" "50000" "20000"

Time No. models visited Modelspace 2^K

"13.49753 secs" "22745" "2.2e+12"

% visited % Topmodels Corr PMP

"1e-06" "14" "0.3249"

No. Obs. Model Prior g-Prior

"72" "random / 7" "hyper (a=2.02778)"

Shrinkage-Stats

"Av=0.9613, Stdev=0.018"

From Shrinkage-stats, posterior expected shrinkage is 0.96 with rather tight standard devi-
ation bounds. Similar to the EBL case before, the data thus indicates that shrinkage should
be rather small (corresponding to a fixed g of g ≈ 24) and not vary too much from its expected
value. Since the hyper-g prior induces a proper posterior distribution for the shrinkage factor,
it might be helpful to plot its density with the command below.

R> gdensity(fls_hyper)

Figure 6, left panel, confirms that posterior shrinkage is tightly concentrated around 0.94,
which can be also verified via:

R> round(fls_hyper$gprior.info$shrinkage.moments[[1]] -

+ as.numeric(strsplit(summary(fls_hyper)[13], "=")[[1]][[3]]), 2)

While the hyper-g prior had an effect similar to the effect in the EBL case fls_ebl, the
model prior now employed leaves the data more leeway to adjust posterior model size. The
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results depart from the expected prior model size and point to an intermediate size of ca. 16.
The focus on smaller models is evidenced by charting the best 1,000 models with the image

command:

R> image(fls_hyper)

In a broad sense, the coefficient results correspond to those of fls_combi, at least in ex-
pected values. However, the results from fls_hyper were obtained under more sophisticated
priors that were specifically designed to avoid unintended influence from prior parameters:
By construction, the large shrinkage factor under fls_combi induced a quite small posterior
model size of 10.4 and concentrated posterior mass tightly on the best models encountered
(they make up 39% of the entire model mass). In contrast, the hyper-g prior employed for
fls_hyper indicated a rather low posterior shrinkage factor and consequently resulted in
higher posterior model size 16 and less model mass concentration 13%.

5.3. Posterior coefficient densities

In order to compare more than just coefficient expected values, it might be preferable to look
at the entire posterior distribution of coefficients. For instance, the posterior density of the
coefficient for Muslim, a variable with a PIP of 64%, can be generated via density:

R> density(fls_combi, reg = "Muslim")

The computed marginal posterior densities are a Bayesian model averaging mixture of the
marginal posterior densities of the individual models. The accuracy of the result therefore
depends on the number of “best” models contained in fls_combi. Note that the marginal
posterior density can be interpreted as “conditional on inclusion”: If the posterior inclusion
probability of a variable is smaller than one, then some of its posterior density is Dirac at
zero. Therefore the integral of the returned density vector adds up to the posterior inclusion
probability, i.e., the probability that the coefficient is not zero.

The marginal densities of posterior coefficient distributions can be plotted with the argument
reg specifying the variable under scrutiny.

The right panel of Figure 7 illustrates that the coefficient is neatly above zero, but somewhat
skewed. The integral of this density will add up to 0.68:

R> round(estimates(fls_combi, exact = TRUE)["Muslim", 1], 3)

which roughly complies with the analytical PIP of Muslim. The vertical bars correspond to
the analytical coefficient conditional on inclusion from fls_combi as in

R> coef(fls_combi, exact = TRUE, condi.coef = TRUE)["Muslim", ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

0.694049809 0.012790551 0.004541992 1.000000000 23.000000000

Note that the posterior marginal density is actually a model-weighted mixture of posterior
densities for each model and can thus be calculated only for the top models contained in
fls_combi.
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Figure 7: Posterior density attached to coefficient “muslim” conditional on inclusion. Left
panel, results based on the “BRIC” prior, right panel based on the hyper-g prior. Cond. EV
denotes the posterior expected value Cond. SD the posterior standard deviation, and median
the median of the posterior distribution. All statistics based on “best” model likelihoods. The
right panel shows on top of that the posterior expected value of the single best models, and
the conditional expected value based on MCMC frequencies.

Now let us compare this density with the results under the hyper-g prior:23

R> dmuslim <- density(fls_hyper, reg = "Muslim", addons = "Eebl")

Figure 7, right panel, illustrates the posterior distribution of the coefficient Muslim. The
addons argument assigns the vertical bars to be drawn: The expected conditional coefficient
from MCMC (E) results should be indicated in contrast to the expected coefficient based on
analytical PMPs (e). In addition, the expected coefficients under the individual models are
plotted (b) and a legend is included (l). The density seems more symmetric than before and
the analytical results a bit smaller than what could be expected from MCMC results.

Nonetheless, even though fls_hyper and fls_combi applied very different g and model priors,
the results for the Muslim covariate are broadly similar: It is unanimously positive, with a
conditional expected value somewhat above 0.01. In fact 95% of the posterior coefficient mass
seems to be concentrated between 0.004 and 0.022.

R> quantile(dmuslim, c(0.025, 0.975))

2.5% 97.5%

0.004019685 0.021635443

23Since for the hyper-g prior, the marginal posterior coefficient distribution derives from quite complicated
expressions, executing this command could take a few seconds.
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6. Predictive densities

Of course, BMA lends itself not only to inference, but also to prediction. The employed
“Bayesian regression” models naturally give rise to predictive densities, whose mixture yields
the BMA predictive density – a procedure very similar to the coefficient densities explored in
the previous section.

Let us, for instance, use the information from the first 70 countries contained in datafls to
forecast economic growth for the latter two, namely Zambia (identifier ZM) and Zimbabwe
(identifier ZW). Based on their macro-fundamentals (i.e., the explanatory variables contained
in datafls) we can form predictions invoking the function pred.density:

R> fcstbma <- bms(datafls[1:70, ], mprior = "uniform", burn = 20000,

+ iter = 50000, user.int = FALSE)

R> pdens <- pred.density(fcstbma, newdata = datafls[71:72, ])

The resulting object pdens holds the distribution of the forecast for the two countries, con-
ditional on what we know from other countries, and the explanatory data from Zambia and
Zimbabwe. The expected value of this growth forecast is very similar to the classical point fore-
cast and can be accessed with pdens$fit.24 Likewise the standard deviations of the predictive
distribution correspond to classical standard errors and are returned by pdens$std.err. But
the predictive density for economic growth in, e.g., Zimbabwe might be as well visualized with
the following command:25

R> plot(pdens, 2)

Figure 8, left panel, shows that conditional on Zimbabwe’s explanatory data, we expect growth
to be concentrated around 0. And the actual value in datafls[72, 1] with 0.0046 is not too
far off from that prediction. A closer look at both our densities with the function quantile

shows that for Zimbabwe, any growth rate between −0.01 and 0.01 is quite likely.

R> quantile(pdens, c(0.05, 0.95))

5% 95%

ZM 0.003284431 0.02752649

ZW -0.010804288 0.01154784

For Zambia (ZM), though, based on our regression model we would expect growth to be
positive. Compared to Zimbabwe, however, economic growth over our evaluation period has
been even worse.26 Under the predictive density for Zambia, its realized value (−0.012) seems
quite unlikely.

To compare the BMA prediction performance with actual outcomes, we could look, e.g., at
the forecast error:

R> pdens$fit - datafls[71:72, 1]

24Note that this is equivalent to predict(fcstbma, datafls[71:72, ]).
25Here, 2 means to plot for the second forecasted observation, in this case ZW, the 72th row of datafls.
26Note that since ZM is the row name of the 71st row of datafls, this is equivalent to calling datafls[71,].
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Figure 8: Posterior predictive density for economic growth in Zimbabwe (left panel) and
Zambia (right panel). Solid red line denotes the expected value of the forecast, dashed red
lines a +/− 2 standard deviations interval. In the right panel, the blue dashed line denotes
the realized value for Zambian economic growth.
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Taking a more Bayesian stance, one can evaluate the predictive distributions via:

R> pdens$dyf(datafls[71:72, 1])

[1] 0.06990264 47.91784502

The density for Zimbabwe is quite high (similar to the mode of the predictive density as seen
in Figure 8, left panel), whereas the one for Zambia is quite low. In order to visualize how
bad the forecast for Zambia was, compare a plot of predictive density to the actual outcome,
which is situated far to the left.

R> plot(pdens, "ZM", realized.y = datafls["ZM", 1])

The results for Zambia might imply that the country can be considered as an outlier. One
could also try different prior settings and compare the resulting models by their joint predic-
tions for Zambia and Zimbabwe (or even more countries). Last, as opposed to evaluating the
goodness of forecasts via its mean squared errors, we illustrate how to make use of the whole
distribution of the forecast. Following Fernández et al. 2001a we calculate the “log-predictive
score” (LPS), which is defined as follows:

−
∑
i

log(p(yfi |X, y,X
f
i )),

where p(yfi |X, y,X
f
i ) denotes predictive density for yfi (Zambian growth) based on the model

information (y,X) (the first 70 countries) and the explanatory variables for the forecast
observation (Zambian investment, schooling, etc.).

The log-predictive score can be accessed with lps.
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R> lps(pdens, datafls[71:72, 1])

[1] -0.604418

If you compare different forecasting settings, the model that achieves a lower score is to be
preferred. Note however, that the LPS is only meaningful when comparing different forecast
settings.

7. Concluding remarks

The BMS package implements Bayesian model averaging for R. It excels in offering a range
of widely used prior structures coupled with efficient MCMC algorithms to sort through
the model space. Amini and Parmeter (2011) and Amini and Parmeter (2012) carry out a
comparison of R software packages that implement Bayesian model averaging, in particular the
packages BAS (Clyde 2012) and BMA (Raftery, Hoeting, Volinsky, Painter, and Yeung 2014).
Amini and Parmeter (2012) conclude that package BMS is the only one among its competitors
that is able to reproduce empirical results in Fernández et al. (2001b); Doppelhofer and Weeks
(2009) and the working paper version of Masanjala and Papageorgiou (2008).

The BMS package is very flexible regarding the use of prior information. It allows for uniform
and binomial-beta priors on the model space as well as informative prior inclusion probabil-
ities. Via these “customized” model priors one can thus fuse prior beliefs into the otherwise
purely agnostic analysis, that is prevalent in the applied literature using BMA. The BMS
package also provides various specifications for Zellner’s g prior including the so-called hyper-
g priors advocated in Liang et al. (2008); Ley and Steel (2012); Feldkircher and Zeugner
(2009). The sensitivity of BMA results to the specification of Zellner’s g prior is well doc-
umented in the literature (Feldkircher and Zeugner 2012). It is thus of ample importance
to offer a wide range of prior specifications in order to allow the user to carry out a serious
sensitivity analysis.

Finally, the package comes along with numerous graphical tools to analyze posterior coeffi-
cient densities, the posterior model size or predictive densities. It also includes a graphical
representation of the model space via an image plot. The flexibility and user-friendliness
of the package is proved by the fact that various studies have used package BMS to per-
form Bayesian model averaging (among others, see Giannone, Lenza, and Reichlin 2011;
Horváth 2011; Amini and Parmeter 2012; Babecký, Havránek, Matěju, Rusnák, Šmı́dková,
and Vaš́ıček 2013; Horváth 2013; Iršová and Havránek 2013; Feldkircher 2014; Feldkircher,
Horváth, and Rusnák 2014; Horváth, Rusnák, Šmı́dková, and Zapal 2014). Future versions of
BMS might include spatial regression models (Crespo Cuaresma and Feldkircher 2013; Cre-
spo Cuaresma, Doppelhofer, and Feldkircher 2014), model averaging based on the predictive
likelihood (Eklund and Karlsson 2007; Feldkircher 2012), so-called “heredity priors” to handle
related predictors (Chipman 1996) and dilution priors that penalize models which contain
highly collinear regressors (George 2010). For a detailed discussion on dilution and hered-
ity priors see Moser and Hofmarcher (2014). An add-on to package BMS programmed also
by Moser and Hofmarcher (2014) is available at https://bitbucket.org/matmo/dilutbms2
featuring among others a dilution prior put forward by Durlauf, Kourtellos, and Tan (2012),
the heredity priors proposed in Chipman (1996) and employed in Feldkircher et al. (2014);
Feldkircher (2014) and the tessellation sampler proposed by George (2010) that accounts for

https://bitbucket.org/matmo/dilutbms2
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model space redundancy. The interested reader may be further referred to the “BMS-blog”
section at http://bms.zeugner.eu/. The web page contains (video) tutorials on the usage
of package BMS as well as further BMS add-on packages.
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A. Appendix

A.1. Available model priors – Synopsis

The following provides an overview over the model priors available in bms. Default is mprior =

"random". For details and examples on built-in priors, consult help("bms"). For defining dif-
ferent, custom g priors, consult help("gprior") or http://bms.zeugner.eu/custompriors.
php.

Uniform model prior

� Argument : mprior = "uniform".

� Parameter : none.

� Concept : p(Mγ) ∝ 1.

� Reference: none.

Binomial model prior

� Argument : mprior = "fixed".

� Parameter (mprior.size): prior model size m̄ (scalar); default is m̄ = K/2.

� Concept : p(Mγ) ∝
(
m̄
K

)kγ (1− m̄
K

)K−kγ .

� Reference: Sala-i-Martin et al. (2004).

Binomial-beta model prior

� Argument : mprior = "random".

� Parameter (mprior.size): prior model size m̄ (scalar).

� Concept : p(Mγ) ∝ Γ(1 + kγ)Γ(K−mm +K − kγ); default is m̄ = K/2.

� Reference: Ley and Steel (2009).

Custom prior inclusion probabilities

� Argument : mprior = "pip".

� Parameter (mprior.size): a vector of size K, detailing K prior inclusion probabilities
πi: 0 < πi < 1 ∀i.

http://bms.zeugner.eu/custompriors.php
http://bms.zeugner.eu/custompriors.php
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� Concept : p(Mγ) ∝
∏
i∈γ πi

∏
j /∈γ(1− πj).

� Reference: none.

Custom model size prior

� Argument : mprior = "customk".

� Parameter (mprior.size): a vector of size K + 1, detailing prior θj for 0 to K size
models: any real > 0 admissible.

� Concept : p(Mγ) ∝ θkγ .

� Reference: none.

A.2. Available g priors – Synopsis

The following provides an overview over the g priors available in bms. Default is g = "UIP".
For implementation details and examples, consult help("bms"). For defining different, cus-
tom g priors, consult help("gprior") or http://bms.zeugner.eu/custompriors.php.

Fixed g

� Argument : g = x where x is a positive real scalar.

� Concept : fixed g common to all models.

� Reference: Fernández et al. (2001a).

� Sub-options: Unit information prior g = "UIP" sets g = N ; g = "BRIC" sets g =
max(N,K2), a combination of BIC and RIC. (Note that these two options guarantee
asymptotic consistency.) Other options include g = "RIC" for g = K2 and g = "HQ"

for the Hannan-Quinn setting g = log(N)3.

Empirical Bayes (Local) g

� Argument : g = "EBL".

� Concept : Model-specific gγ estimated via maximum likelihood: amounts to gγ = max(0, Fγ−
1), where Fγ ≡

R2
γ(N−1−kγ)

(1−R2
γ)kγ

and R2
γ is the OLS R-squared of model Mγ .

� Reference: George and Foster (2000); Liang et al. (2008).

� Sub-options: none.

Hyper-g prior

http://bms.zeugner.eu/custompriors.php
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� Argument : g = "hyper".

� Concept : A Beta prior on the shrinkage factor with p( g
1+g ) = B(1, a2 − 1). Parameter

a (2 < a ≤ 4) represents prior beliefs: a = 4 implies prior shrinkage to be uniformly
distributed over [0, 1], a → 2 concentrates mass close to unity. Note that the prior
expected value of the shrinkage facor is E( g

1+g ) = 2
a .

� Reference: Liang et al. (2008); Feldkircher and Zeugner (2009).

� Sub-options: g = "hyper = x" with x defining the parameter a (e.g., g = "hyper = 3"

sets a = 3). g = "hyper" resp. g = "hyper = UIP" sets the prior expected shrinkage
factor equivalent to the UIP prior E( g

1+g ) = N
1+N ; g = "hyper = BRIC" sets the prior

expected shrinkage factor equivalent to the BRIC prior. Note that the latter two options
guarantee asymptotic consistency.

A.3. “Bayesian regression” with Zellner’s g – Bayesian model selection

The linear model presented in Section 1.2 using Zellner’s g prior is implemented under the
function zlm. For instance, we might consider the attitude data from Section 2 and estimate
just the full model containing all 6 variables. For this purpose, first load the built-in data set
with the command

R> data("attitude", package = "datasets")

The full model is obtained by applying the function zlm to the data set and storing the
estimation into att_full. Zellner’s g prior is estimated by the argument g just in the same
way as in Section 5.27

R> att_full <- zlm(attitude, g = "UIP")

The results can then be displayed by using, e.g., the summary method.

R> summary(att_full)

Coefficients

Exp.Val. St.Dev.

(Intercept) 12.52405242 NA

complaints 0.59340736 0.1524868

privileges -0.07069369 0.1285614

learning 0.30999882 0.1596262

raises 0.07909561 0.2097886

critical 0.03714334 0.1392373

advance -0.21005485 0.1688040

Log Marginal Likelihood:

-113.7063

g-Prior: UIP

Shrinkage Factor: 0.968

27Likewise, most methods applicable to bms, such as density, predict or coef, work analogously for zlm.
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The results are very similar to those resulting from OLS (which can be obtained using
summary(lm(attitude))). The less conservative, i.e., the larger g becomes, the closer the
results get to OLS. But remember that the full model was not the best model from the BMA
application in Section 2. In order to extract the best encountered model, use the function
as.zlm to extract this single model for further analysis (with the argument model specifying
the rank-order of the model to be extracted). The following command reads the best model
from the BMA results into the variable att_best.

R> att_best <- as.zlm(att, model = 1)

R> summary(att_best)

Coefficients

Exp.Val. St.Dev.

(Intercept) 15.9975134 NA

complaints 0.7302676 0.1010205

Log Marginal Likelihood:

-107.4047

g-Prior: UIP

Shrinkage Factor: 0.968

As suspected, the best model according to BMA is the one including only complaints and
the intercept, as it has the highest log-marginal likelihood (logLik(att_best)). In such a
way, the command as.zlm can be combined with bms for “Bayesian model selection”, i.e.,
using the model prior and posterior framework to focus on the model with highest posterior
mass. Via the utility model.frame, this best model can be straightforwardly converted into
a standard OLS model:

R> att_bestlm <- lm(model.frame(as.zlm(att)))

R> summary(att_bestlm)

Call:

lm(formula = model.frame(as.zlm(att)))

Residuals:

Min 1Q Median 3Q Max

-12.8799 -5.9905 0.1783 6.2978 9.6294

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.37632 6.61999 2.172 0.0385 *

complaints 0.75461 0.09753 7.737 1.99e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.993 on 28 degrees of freedom

Multiple R-squared: 0.6813, Adjusted R-squared: 0.6699

F-statistic: 59.86 on 1 and 28 DF, p-value: 1.988e-08
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A.4. BMA when keeping a fixed set of regressors

While BMA should usually compare as many models as possible, some considerations might
dictate the restriction to a subspace of the 2K models. For complicated settings one might
employ a customary designed model prior (cf., Section A.1). The by far most common setting,
though, is to keep some regressors fixed in the model setting, and apply Bayesian model
uncertainty only to a subset of regressors.

Suppose, for instance, that prior research tells us that any meaningful model for attitude

(as in Section 2) must include the variables complaints and learning. The only question
is whether the additional four variables matter (which reduces the potential model space to
24 = 16). We thus sample over these models while keeping complaints and learning as
fixed regressors:

R> att_learn <- bms(attitude, mprior = "uniform",

+ fixed.reg = c("complaints", "learning"))

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 1.0000000 0.622480469 0.12718297 1.0000000 1

learning 1.0000000 0.237607970 0.15086061 1.0000000 3

advance 0.2878040 -0.053972968 0.11744640 0.0000000 6

privileges 0.1913388 -0.017789715 0.06764219 0.0000000 2

raises 0.1583504 0.001767835 0.07951209 0.3080239 4

critical 0.1550556 0.002642777 0.05409412 1.0000000 5

Mean no. regressors Draws Burnins

"2.7925" "16" "0"

Time No. models visited Modelspace 2^K

"0.008205175 secs" "16" "64"

% visited % Topmodels Corr PMP

"25" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "uniform / 4" "UIP"

Shrinkage-Stats

"Av=0.9677"

Time difference of 0.008205175 secs

The results show that the PIP and the coefficients for the remaining variables increase a
bit compared to att. The higher PIPs are related to the fact that the posterior model size
(as in sum(coef(att_learn)[, 1])) is quite larger as under att. This follows naturally
from our model prior: putting a uniform prior on all models between parameter size 2 (the
base model) and 6 (the full model) implies a prior expected model size of 4 for att_learn

instead of the 3 for att.28 So to achieve comparable results, one needs to take the number of
fixed regressors into account when setting the model prior parameter mprior.size. Consider
another example: Suppose we would like to sample the importance and coefficients for the

28The command att_learn2 = bms(attitude, mprior = "fixed", mprior.size = 3, fixed.reg =

c("complaints", "learning")) produces coefficients that are much more similar to att.
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cultural dummies in the dataset datafls, conditional on information from the remaining
”hard” variables. This implies keeping 27 fixed regressors, while sampling over the 14 cultural
dummies. Since model uncertainty thus applies only to 214 = 16, 384 models, we resort to full
enumeration of the model space.

R> fls_culture <- bms(datafls, fixed.reg = c(1, 8:16, 24, 26:41),

+ mprior = "random", mprior.size = 28, mcmc = "enumerate",

+ user.int = FALSE)

Here, the vector c(1, 8:16, 24, 26:41) denotes the indices of the regressors in datafls to
be kept fixed.29 Moreover, we use the binomial-beta (”random”) model prior. The prior model
size of 30 embodies our prior expectation that on average 1 out of the 14 cultural dummies
should be included in the true model. As we only care about those 14 variables, let us just
display the results for the 14 variables with the least PIP:

R> coef(fls_culture)[28:41, ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

Confucian 0.99950018 6.796387e-02 0.0130198193 1.00000000 19

Hindu 0.94793751 -7.519094e-02 0.0270173174 0.00000000 21

SubSahara 0.84127891 -1.584077e-02 0.0091307736 0.00000000 7

EthnoL 0.70497895 9.238430e-03 0.0070484067 0.99999675 20

Protestants 0.57157577 -6.160916e-03 0.0061672877 0.00001431 25

Muslim 0.53068726 7.908574e-03 0.0086009027 0.99999949 23

LatAmerica 0.52063035 -6.538488e-03 0.0074843453 0.00469905 6

Spanish 0.21738032 2.105990e-03 0.0047683535 0.98325917 2

French 0.17512267 1.065459e-03 0.0027682773 0.99999954 3

Buddha 0.11583307 9.647944e-04 0.0033462133 0.99999992 17

Brit 0.10056773 4.095469e-04 0.0017468022 0.94203569 4

Catholic 0.09790780 -1.072004e-05 0.0019274111 0.45246829 18

WarDummy 0.07478332 -1.578379e-04 0.0007599415 0.00123399 5

Jewish 0.04114852 -5.614758e-05 0.0018626191 0.24834675 22

As before, we find that Confucian (with positive sign) as well as Hindu and SubSahara

(negative signs) have the most important impact conditional on ”hard”information. Moreover,
the data seems to attribute more importance to cultural dummies as we expected with our
model prior: Comparing prior and posterior model size with the following command shows
how much importance is attributed to the dummies.

R> plotModelsize(fls_culture, ksubset = 27:41)

Figure 9 shows that expected posterior model size is close to 33, which means that 6 out of
the cultural dummies should actually be included in a “true” model.

29Here, indices start from the first regressor, i.e., they do not take the dependent variable into account. The
fixed data used above therefore corresponds to datafls[, c(1, 8:16, 24, 26:41) + 1].



Journal of Statistical Software 37

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Model Size

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Posterior Prior

Figure 9: Posterior distribution of model size. Example using fixed regressors.
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