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Abstract

Least-squares means are predictions from a linear model, or averages thereof. They are
useful in the analysis of experimental data for summarizing the effects of factors, and for
testing linear contrasts among predictions. The lsmeans package (Lenth 2016) provides
a simple way of obtaining least-squares means and contrasts thereof. It supports many
models fitted by R (R Core Team 2015) core packages (as well as a few key contributed
ones) that fit linear or mixed models, and provides a simple way of extending it to cover
more model classes.
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1. Introduction
Least-squares means (LS means for short) for a linear model are simply predictions – or
averages thereof – over a regular grid of predictor settings which I call the reference grid.
They date back at least to Harvey (1960) and his associated computer program LSML (Harvey
1977) and the contributed SAS procedure named HARVEY (Harvey 1976). Later, they were
incorporated via LSMEANS statements for various linear model procedures such as GLM in the
regular SAS releases. See also Goodnight and Harvey (1997) and SAS Institute Inc. (2012)
for more information about the SAS implementation.
In simple analysis-of-covariance models, LS means are the same as covariate-adjusted means
(Oehlert 2000, p. 456, for example). In unbalanced factorial experiments, LS means for each
factor mimic the main-effects means but are adjusted for imbalance. The latter interpretation
is quite similar to the “unweighted means” method for unbalanced data (Milliken and Johnson
1992, Section 11.2).
LS means are not always well understood, in part because the term itself is confusing. The
most important things to remember are:

• LS means are computed relative to a reference grid.
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• Once the reference grid is established, LS means are simply predictions on this grid, or
marginal averages of a table of these predictions.

A user who understands these points will know what is being computed, and thus can judge
whether or not LS means are appropriate for the analysis.

2. The reference grid
Since the reference grid is fundamental, it is our starting point. For each predictor in the
model, we define a set of one or more reference levels. The reference grid is then the set of
all combinations of reference levels. If not specified explicitly, the default reference levels are
obtained as follows:

• For each predictor that is a factor, its reference levels are the unique levels of that factor.

• Each numeric predictor has just one reference level – its mean over the dataset.

So the reference grid depends on both the model and the dataset.

Example: Orange sales. To illustrate, consider the oranges data provided with lsmeans.
This dataset has sales of two varieties of oranges (response variables sales1 and sales2)
at 6 stores (factor store), over a period of 6 days (factor day). The prices of the oranges
(covariates price1 and price2) fluctuate in the different stores and the different days. There
is just one observation on each store on each day.
For starters, let’s consider an additive covariance model for sales of the first variety, with the
two factors and both price1 and price2 as covariates (since the price of the other variety
could also affect sales).

R> library("lsmeans")
R> oranges.lm1 <- lm(sales1 ~ price1 + price2 + day + store, data = oranges)
R> anova(oranges.lm1)

Analysis of Variance Table

Response: sales1
Df Sum Sq Mean Sq F value Pr(>F)

price1 1 516.6 516.6 29.100 1.76e-05
price2 1 62.7 62.7 3.533 0.07287
day 5 422.2 84.4 4.757 0.00395
store 5 223.8 44.8 2.522 0.05835
Residuals 23 408.3 17.8

The ref.grid function in lsmeans may be used to establish the reference grid. Here is the
default one:

R> ( oranges.rg1 <- ref.grid(oranges.lm1) )
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'ref.grid' object with variables:
price1 = 51.222
price2 = 48.556
day = 1, 2, 3, 4, 5, 6
store = 1, 2, 3, 4, 5, 6

As outlined above, the two covariates price1 and price2 have their means as their sole
reference level; and the two factors have their levels as reference levels. The reference grid
thus consists of the 1 × 1 × 6 × 6 = 36 combinations of these reference levels. LS means are
based on predictions on this reference grid, which we can obtain using predict or summary:

R> summary(oranges.rg1)

price1 price2 day store prediction SE df
51.2222 48.5556 1 1 2.91841 2.71756 23
51.2222 48.5556 2 1 3.84880 2.70134 23
51.2222 48.5556 3 1 11.01857 2.53456 23
51.2222 48.5556 4 1 6.09629 2.65137 23
51.2222 48.5556 5 1 12.79580 2.44460 23
51.2222 48.5556 6 1 8.74878 2.78618 23
51.2222 48.5556 1 2 4.96147 2.37774 23
51.2222 48.5556 2 2 5.89187 2.33558 23
51.2222 48.5556 3 2 13.06163 2.41645 23
51.2222 48.5556 4 2 8.13935 2.35219 23
51.2222 48.5556 5 2 14.83886 2.46615 23
51.2222 48.5556 6 2 10.79184 2.33760 23
51.2222 48.5556 1 3 3.20089 2.37774 23
51.2222 48.5556 2 3 4.13128 2.33558 23
51.2222 48.5556 3 3 11.30105 2.41645 23
51.2222 48.5556 4 3 6.37876 2.35219 23
51.2222 48.5556 5 3 13.07828 2.46615 23
51.2222 48.5556 6 3 9.03126 2.33760 23
51.2222 48.5556 1 4 6.19876 2.36367 23
51.2222 48.5556 2 4 7.12915 2.35219 23
51.2222 48.5556 3 4 14.29891 2.43168 23
51.2222 48.5556 4 4 9.37663 2.38865 23
51.2222 48.5556 5 4 16.07614 2.51909 23
51.2222 48.5556 6 4 12.02912 2.36469 23
51.2222 48.5556 1 5 5.54322 2.36312 23
51.2222 48.5556 2 5 6.47361 2.33067 23
51.2222 48.5556 3 5 13.64337 2.36367 23
51.2222 48.5556 4 5 8.72109 2.33760 23
51.2222 48.5556 5 5 15.42060 2.39554 23
51.2222 48.5556 6 5 11.37358 2.35232 23
51.2222 48.5556 1 6 10.56374 2.36668 23
51.2222 48.5556 2 6 11.49413 2.33925 23
51.2222 48.5556 3 6 18.66390 2.34784 23
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51.2222 48.5556 4 6 13.74161 2.34130 23
51.2222 48.5556 5 6 20.44113 2.37034 23
51.2222 48.5556 6 6 16.39411 2.37054 23

2.1. LS means as marginal averages over the reference grid

The ANOVA indicates there is a significant day effect after adjusting for the covariates, so
we might want to do a follow-up analysis that involves comparing the days. The lsmeans
function provides a starting point:

R> lsmeans(oranges.lm1, "day")

or, equivalently (and more efficiently),

R> lsmeans(oranges.rg1, "day")

day lsmean SE df lower.CL upper.CL
1 5.56442 1.76808 23 1.90686 9.22197
2 6.49481 1.72896 23 2.91818 10.07143
3 13.66457 1.75150 23 10.04131 17.28783
4 8.74229 1.73392 23 5.15540 12.32918
5 15.44180 1.78581 23 11.74758 19.13603
6 11.39478 1.76673 23 7.74003 15.04953

Results are averaged over the levels of: store
Confidence level used: 0.95

These results, as indicated in the annotation in the output, are in fact the averages of the
predictions shown earlier, for each day, over the 6 stores. The above LS means are not the
same as the overall means for each day:

R> with(oranges, tapply(sales1, day, mean))

1 2 3 4 5 6
7.87275 7.10060 13.75860 8.04247 12.92460 11.60365

These unadjusted means are not comparable with one another because they are affected by
the differing price1 and price2 values on each day, whereas the LS means are comparable
because they use predictions at uniform price1 and price2 values.
Note that one may call lsmeans with either the reference grid or the model. If the model is
given, then the first thing it does is create the reference grid; so if the reference grid is already
available, as in this example, it’s more efficient to make use of it.

2.2. Altering the reference grid

The at argument may be used to override defaults in defining the reference grid. The user
may specify this argument either in a ref.grid call or an lsmeans call; and should specify a
list with named sets of reference levels. Here is a silly example:
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R> lsmeans(oranges.lm1, "day", at = list(price1 = 50, price2 = c(40, 60),
+ day = c("2", "3", "4")))

day lsmean SE df lower.CL upper.CL
2 7.72470 1.73517 23 4.13524 11.3142
3 14.89446 1.75104 23 11.27217 18.5168
4 9.97218 1.76613 23 6.31866 13.6257

Results are averaged over the levels of: price2, store
Confidence level used: 0.95

Here, we restricted the results to three of the days, and used different prices. One possible
surprise is that the predictions are averaged over the two price2 values. That is because
price2 is no longer a single reference level, and we average over the levels of all factors not
used to split-out the LS means. This is probably not what we want. To get separate sets
of predictions for each price2, one must specify it as another factor or as a by factor in the
lsmeans call (we will save the result for later discussion):

R> org.lsm <- lsmeans(oranges.lm1, "day", by = "price2",
+ at = list(price1 = 50, price2 = c(40, 60), day = c("2", "3", "4")))
R> org.lsm

price2 = 40:
day lsmean SE df lower.CL upper.CL
2 6.23623 1.88711 23 2.33245 10.1400
3 13.40599 2.11938 23 9.02173 17.7903
4 8.48371 1.86651 23 4.62254 12.3449

price2 = 60:
day lsmean SE df lower.CL upper.CL
2 9.21317 2.10945 23 4.84944 13.5769
3 16.38293 1.90522 23 12.44169 20.3242
4 11.46065 2.17805 23 6.95500 15.9663

Results are averaged over the levels of: store
Confidence level used: 0.95

Note: We could have obtained the same results using any of these:

R> lsmeans(oranges.lm1, ~ day | price, at = ... )
R> lsmeans(oranges.lm1, c("day", "price2"), at = ... )
R> lsmeans(oranges.lm1, ~ day * price, at = ... )

The first line above illustrates the formula method for specifying factors, which is more
compact. The | character replaces the by specification. Lines 2 and 3 produce the same
results, but their results are displayed as one table (with columns for day and price) rather
than as two separate tables.
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3. Working with the results
The ref.grid function produces an object of class "ref.grid", and the lsmeans function
produces an object of class "lsmobj", which is a subclass of "ref.grid". There is really
no practical difference between these two classes except for their show methods – what is
displayed by default – and the fact that an "lsmobj" is not (necessarily) a true reference grid
as defined earlier in this article. Let’s use the str function to examine the "lsmobj" object
just produced:

R> str(org.lsm)

'lsmobj' object with variables:
day = 2, 3, 4
price2 = 40, 60

We no longer see the reference levels for all predictors in the model – only the levels of day
and price2. These act like reference levels, but they do not define the reference grid upon
which the predictions are based.
There are several methods for "ref.grid" (and hence also for "lsmobj") objects. One
already seen is summary. It has a number of arguments – see its help page. In the following
call, we summarize days.lsm differently than before. We will also save the object produced
by summary for further discussion.

R> ( org.sum <- summary(org.lsm, infer = c(TRUE,TRUE), null = 7.50,
+ level = 0.90, adjust = "bon", by = "day") )

day = 2:
price2 lsmean SE df lower.CL upper.CL null t.ratio p.value

40 6.23623 1.88711 23 2.33245 10.1400 7.5 -0.670 1.0000
60 9.21317 2.10945 23 4.84944 13.5769 7.5 0.812 0.8501

day = 3:
price2 lsmean SE df lower.CL upper.CL null t.ratio p.value

40 13.40599 2.11938 23 9.02173 17.7903 7.5 2.787 0.0210
60 16.38293 1.90522 23 12.44169 20.3242 7.5 4.662 0.0002

day = 4:
price2 lsmean SE df lower.CL upper.CL null t.ratio p.value

40 8.48371 1.86651 23 4.62254 12.3449 7.5 0.527 1.0000
60 11.46065 2.17805 23 6.95500 15.9663 7.5 1.818 0.1641

Results are averaged over the levels of: store
Confidence level used: 0.9
Conf-level adjustment: bonferroni method for 2 estimates
P value adjustment: bonferroni method for 2 tests

The infer argument causes both confidence intervals and tests to be produced; the default
confidence level of 0.95 was overridden; and the default null hypothesis that a mean is zero
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is overridden. A Bonferroni adjustment was applied to both the intervals and the p values
(which causes some of the latter to hit their maximum of 1.0). Because of the by specification,
the tables are organized the opposite way from what we saw before.
What kind of object was produced by summary? Let’s see:

R> class(org.sum)

[1] "summary.ref.grid" "data.frame"

The "summary.ref.grid" class is an extension of "data.frame". It includes some attributes
that, among other things, cause additional messages to appear when the object is displayed.
But it can also be used as a "data.frame" if the user just wants to use the results compu-
tationally. For example, suppose we want to convert the LS means from dollars to Russian
rubles (at the January 24, 2016 exchange rate):

R> transform(org.sum, lsrubles = lsmean * 78.47)

day price2 lsmean SE df lower.CL upper.CL null t.ratio p.value lsrubles
1 2 40 6.2362 1.8871 23 2.3325 10.140 7.5 -0.66969 1.00000000 489.36
2 3 40 13.4060 2.1194 23 9.0217 17.790 7.5 2.78667 0.02097233 1051.97
3 4 40 8.4837 1.8665 23 4.6225 12.345 7.5 0.52703 1.00000000 665.72
4 2 60 9.2132 2.1094 23 4.8494 13.577 7.5 0.81214 0.85007434 722.96
5 3 60 16.3829 1.9052 23 12.4417 20.324 7.5 4.66243 0.00021593 1285.57
6 4 60 11.4607 2.1781 23 6.9550 15.966 7.5 1.81844 0.16409035 899.32

Observe also that the summary is just one data frame with six rows, rather than a collection
of three data frames; and it contains a column for all reference variables, including any by
variables.
Besides str and summary, there is also a confint method, which is the same as summary with
infer = c(TRUE, FALSE), and a test method (same as summary with infer = c(FALSE,
TRUE)). There is also an update method which may be used for changing the object’s display
settings. For example:

R> org.lsm2 <- update(org.lsm, by.vars = NULL, level = 0.99)
R> org.lsm2

day price2 lsmean SE df lower.CL upper.CL
2 40 6.23623 1.88711 23 0.938488 11.5340
3 40 13.40599 2.11938 23 7.456193 19.3558
4 40 8.48371 1.86651 23 3.243791 13.7236
2 60 9.21317 2.10945 23 3.291240 15.1351
3 60 16.38293 1.90522 23 11.034351 21.7315
4 60 11.46065 2.17805 23 5.346122 17.5752

Results are averaged over the levels of: store
Confidence level used: 0.99
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4. Contrasts and comparisons

4.1. Contrasts in general

Often, people want to do pairwise comparisons of LS means, or compute other contrasts
among them. This is the purpose of the contrast function, which uses a "ref.grid" or
"lsmobj" object as input. There are several standard contrast families such as "pairwise",
"trt.vs.ctrl", and "poly". In the following command, we request "eff" contrasts, which
are differences between each mean and the overall mean:

R> contrast(org.lsm, method = "eff")

price2 = 40:
contrast estimate SE df t.ratio p.value
2 effect -3.13908 1.41529 23 -2.218 0.0551
3 effect 4.03068 1.44275 23 2.794 0.0310
4 effect -0.89160 1.42135 23 -0.627 0.5366

price2 = 60:
contrast estimate SE df t.ratio p.value
2 effect -3.13908 1.41529 23 -2.218 0.0551
3 effect 4.03068 1.44275 23 2.794 0.0310
4 effect -0.89160 1.42135 23 -0.627 0.5366

Results are averaged over the levels of: store
P value adjustment: fdr method for 3 tests

Note that this preserves the by specification from before, and obtains the effects for each
group. In this example, since it is an additive model, we obtain exactly the same results in
each group. This isn’t wrong, it’s just redundant.
Another popular method is Dunnett-style contrasts, where a particular LS mean is compared
with each of the others. This is done using "trt.vs.ctrl". In the following, we obtain
(again) the LS means for days, and compare each with the average of the LS means on day 5
and 6.

R> days.lsm <- lsmeans(oranges.rg1, "day")
R> contrast(days.lsm, "trt.vs.ctrl", ref = c(5, 6))

contrast estimate SE df t.ratio p.value
1 - avg(5,6) -7.853877 2.19424 23 -3.579 0.0058
2 - avg(5,6) -6.923486 2.12734 23 -3.255 0.0125
3 - avg(5,6) 0.246279 2.15553 23 0.114 0.9979
4 - avg(5,6) -4.676003 2.11076 23 -2.215 0.1184

Results are averaged over the levels of: store
P value adjustment: dunnettx method for 4 tests
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For convenience, "trt.vs.ctrl1" and "trt.vs.ctrlk" methods are provided for use in lieu
of ref for comparing with the first and the last LS means.
Note that by default, lsmeans results are displayed with confidence intervals while contrast
results are displayed with t tests. One can easily override this; for example,

R> confint(contrast(days.lsm, "trt.vs.ctrlk"))

(Results not shown.)
In the above examples, a default multiplicity adjustment is determined from the contrast
method. This may be overridden by adding an adjust argument.

4.2. Pairwise comparisons

Often, users want pairwise comparisons among the LS means. These may be obtained by
specifying "pairwise" or "revpairwise" as the method argument in the call to contrast.
For group labels A,B,C, "pairwise" generates the comparisons A−B,A− C,B − C while
"revpairwise" generates B−A,C−A,C−B. As a convenience, a pairs method is provided
that calls contrast with method="pairwise" (or optionally, revpairwise):

R> pairs(org.lsm, reverse = TRUE)

price2 = 40:
contrast estimate SE df t.ratio p.value
3 - 2 7.16976 2.47970 23 2.891 0.0216
4 - 2 2.24748 2.44234 23 0.920 0.6333
4 - 3 -4.92228 2.49007 23 -1.977 0.1406

price2 = 60:
contrast estimate SE df t.ratio p.value
3 - 2 7.16976 2.47970 23 2.891 0.0216
4 - 2 2.24748 2.44234 23 0.920 0.6333
4 - 3 -4.92228 2.49007 23 -1.977 0.1406

Results are averaged over the levels of: store
P value adjustment: tukey method for comparing a family of 3 estimates

There is also a cld (compact letter display) method that lists the LS means along with
grouping symbols for pairwise contrasts. It requires the multcompView package (Graves,
Piepho, Selzer, and Dorai-Raj 2015) to be installed.

R> cld(days.lsm, alpha = 0.10)

day lsmean SE df lower.CL upper.CL .group
1 5.56442 1.76808 23 1.90686 9.22197 1
2 6.49481 1.72896 23 2.91818 10.07143 1
4 8.74229 1.73392 23 5.15540 12.32918 12
6 11.39478 1.76673 23 7.74003 15.04953 12
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3 13.66457 1.75150 23 10.04131 17.28783 2
5 15.44180 1.78581 23 11.74758 19.13603 2

Results are averaged over the levels of: store
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.1

Two LS means that share one or more of the same grouping symbols are not significantly
different at the stated value of alpha, after applying the multiplicity adjustment (in this
case Tukey’s HSD). By default, the LS means are ordered in this display, but this may be
overridden with the argument sort = FALSE. cld returns a "summary.ref.grid" object,
not an "lsmobj".

4.3. Two-sided formulas

In its original design, the only way to obtain contrasts and comparisons in lsmeans was to
specify a two-sided formula, e.g., pairwise ~ treatment, in the lsmeans call. The result is
then a list of lsmobj objects. In its newer versions, lsmeans offers a richer family of objects
that can be re-used, and dealing with a list of objects can be awkward or confusing, so its
continued use is not encouraged. Nonetheless, it is still available for backward compatibility.
Here is an example where, with one command, we obtain both the LS means and polynomial
contrasts for day, averaged over price2, for the object org.lsm:

R> lsmeans(org.lsm, poly ~ day)

$lsmeans
day lsmean SE df lower.CL upper.CL
2 7.72470 1.73517 23 4.13524 11.3142
3 14.89446 1.75104 23 11.27217 18.5168
4 9.97218 1.76613 23 6.31866 13.6257

Results are averaged over the levels of: store, price2
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
linear 2.24748 2.44234 23 0.920 0.3670
quadratic -12.09205 4.32824 23 -2.794 0.0103

Results are averaged over the levels of: store, price2

5. Additional examples
While estimates and pairwise comparisons are the fundamental things we need with LS means,
other descriptions and analyses are helpful. This section introduces some more data exam-
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ples and discusses lsmeans’s capabilities for displaying results graphically, dealing with trans-
formed responses (or link functions in generalized linear models), estimating trends when
covariates interact with factors, and dealing with messy data.

Example: Oat yields. The Oats dataset in the nlme package (Pinheiro, Bates, and R
Core Team 2015) has the results of a split-plot experiment discussed in Yates (1935). The
experiment was conducted on six blocks (factor Block). Each block was divided into three
plots, which were randomized to three varieties (factor Variety) of oats. Each plot was di-
vided into subplots and randomized to four levels of nitrogen (variable nitro). The response,
yield, was measured once on each subplot after a suitable growing period.
We will fit a model using the lmer function in the lme4 package (Bates, Mächler, Bolker,
and Walker 2015). This will be a mixed model with random intercepts for Block and
Block:Variety (which identifies the plots). A logarithmic transformation is applied to the
response variable (mostly for illustration purposes, though it does produce a good fit to the
data). Note that nitro is stored as a numeric variable, but we want to consider it as a factor
in this initial model.

R> data("Oats", package = "nlme")
R> library("lme4")
R> Oats.lmer <- lmer(log(yield) ~ Variety * factor(nitro) +
+ (1 | Block / Variety), data = Oats)
R> anova(Oats.lmer)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

Variety 2 0.0750 0.0375 2.008
factor(nitro) 3 2.1350 0.7117 38.110
Variety:factor(nitro) 6 0.0451 0.0075 0.402

Apparently, the interaction is not needed. But perhaps we can further simplify the model by
using only a linear or quadratic trend in nitro. We can find out by looking at polynomial
contrasts:

R> contrast(lsmeans(Oats.lmer, "nitro"), "poly")

NOTE: Results may be misleading due to involvement in interactions

contrast estimate SE df t.ratio p.value
linear 1.50565129 0.1440469 45 10.453 <.0001
quadratic -0.14510997 0.0644197 45 -2.253 0.0292
cubic 0.00273198 0.1440469 45 0.019 0.9850

Results are averaged over the levels of: Variety

(A message is issued when we average over predictors that interact with those that delineate
the LS means. In this case, it is not a serious problem because the interaction is weak.) Both
the linear and quadratic contrasts are pretty significant.
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The results for Oats.lmer suggest fitting an additive model where nitro is included as a
numeric predictor with a quadratic trend.

R> Oats.lmer2 <- lmer(log(yield) ~ Variety + poly(nitro, 2) +
+ (1 | Block / Variety), data = Oats)

Remember that nitro is now used as a quantitative predictor. But for comparing with the
previous model, we want to see predictions at the four unique nitro values rather than at
the average of nitro. This may be done using at as illustrated earlier, or a shortcut is to
specify cov.reduce as FALSE, which tells ref.grid to use all the unique values of numeric
predictors.

R> Oats.lsm2 <- lsmeans(Oats.lmer2, ~ nitro | Variety, cov.reduce = FALSE)
R> Oats.lsm2

Variety = Golden Rain:
nitro lsmean SE df lower.CL upper.CL

0.0 4.35458 0.0770328 11.77 4.18637 4.52279
0.2 4.57770 0.0745363 10.34 4.41235 4.74304
0.4 4.72826 0.0745363 10.34 4.56292 4.89361
0.6 4.80627 0.0770328 11.77 4.63806 4.97448

Variety = Marvellous:
nitro lsmean SE df lower.CL upper.CL

0.0 4.41223 0.0770328 11.77 4.24402 4.58044
0.2 4.63535 0.0745363 10.34 4.47000 4.80069
0.4 4.78591 0.0745363 10.34 4.62057 4.95126
0.6 4.86392 0.0770328 11.77 4.69571 5.03213

Variety = Victory:
nitro lsmean SE df lower.CL upper.CL

0.0 4.27515 0.0770328 11.77 4.10694 4.44336
0.2 4.49827 0.0745363 10.34 4.33292 4.66361
0.4 4.64883 0.0745363 10.34 4.48349 4.81418
0.6 4.72684 0.0770328 11.77 4.55863 4.89505

Results are given on the log scale.
Confidence level used: 0.95

These LS means follow the same quadratic trend for each variety, but with different intercepts.
Fractional degrees of freedom are displayed in these results. These are obtained from the
pbkrtest package (Halekoh and Højsgaard 2014), and they use the Kenward-Rogers method.
(The degrees of freedom for the polynomial contrasts were also obtained from pbkrtest, but
the results turn out to be integers.)
Incidentally, the polynomial model above could have been specified using nitro + I(nitro^2)
instead of poly(nitro, 2). What is not recommended is to use nitro + nitrosq, where
nitrosq is a previously calculated variable equal to nitro^2. The reason is that with
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Figure 1: Display of confidence intervals and comparison arrows for the Oats example.

cov.reduce = TRUE, lsmeans will use separate covariate means for nitro and nitrosq, and
the latter will probably not be equal to mean(nitro)^2 as would be required for consistency.

5.1. Displaying LS means graphically

There is a plot method for "ref.grid" and "lsmobj" objects that displays side-by-side con-
fidence intervals, and/or “comparison arrows” that may be used to graphically judge which
LS means differ significantly from one another based on whether or not they overlap. In the
command below, we request both intervals and comparison arrows. By default, the compar-
isons will be done using a 0.05 Tukey-adjusted significance level. However, we use int.adjust
to request that the confidence intervals (defaulting to the 95% level) be unadjusted.

R> plot(Oats.lsm2, intervals = TRUE, int.adjust = "none", comparisons = TRUE)

The results are shown in Figure 1. Owing to the fact that the model is additive, the com-
parisons are the same within each Variety. The overlapping arrows for nitro of 0.4 and
0.6 indicate a nonsignificant difference. The remaining differences are quite significant. Note
that it is a mistake to try to use confidence intervals to judge comparisons. In this example,
the standard errors of comparisons are much smaller than those of the LS means, because the
between-block and between-plot variations cancel out in the comparisons.
In certain other situations where the standard errors of differences vary widely, the comparison-
arrow display may not work. In that case, a warning message is displayed.
The lsmeans package also includes a function lsmip that displays predictions in an interaction-
plot-like manner. It uses a formula of the form

curve.factors ~ x.factors | by.factors

The function requires the lattice package (Sarkar 2008) to be installed. In this formula,
curve.factors specifies factor(s) used to delineate one displayed curve from another (i.e.,
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Figure 2: Interaction plots for the cell means and the fitted model, Oats example.

groups in lattice’s parlance). x.factors are those whose levels are plotted on the horizontal
axis. And by.factors, if present, break the plots into panels.
To illustrate, let’s do a graphical comparison of the two models we have fitted to the Oats
data.

R> lsmip(Oats.lmer, Variety ~ nitro, ylab = "Observed log(yield)")
R> lsmip(Oats.lsm2, Variety ~ nitro, ylab = "Predicted log(yield)")

The plots are shown in Figure 2. Note that the first model fits the cell means perfectly, so
its plot is truly an interaction plot of the data. The other displays the parabolic trends we
fitted in the revised model.
The help page for lsmip gives examples involving several factors, showing the flexibility we
have in combining factors or using them to create multi-panel plots.

5.2. Transformations

When a transformation or link function is used in fitting a model, ref.grid (also called by
lsmeans) stores that information in the returned object, as seen in this example:

R> str(Oats.lsm2)

'lsmobj' object with variables:
nitro = 0.0, 0.2, 0.4, 0.6
Variety = Golden Rain, Marvellous, Victory

Transformation: "log"

This allows us to conveniently unravel the transformation, via the type argument in summary
or related functions such as lsmip and predict. Here are the predicted yields (as opposed
to predicted log yields) for the polynomial model:

R> summary(Oats.lsm2, type = "response")
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Variety = Golden Rain:
nitro response SE df lower.CL upper.CL

0.0 77.8340 5.99577 11.77 65.7834 92.0921
0.2 97.2902 7.25165 10.34 82.4632 114.7831
0.4 113.0989 8.42998 10.34 95.8627 133.4343
0.6 122.2751 9.41920 11.77 103.3439 144.6742

Variety = Marvellous:
nitro response SE df lower.CL upper.CL

0.0 82.4529 6.35158 11.77 69.6871 97.5571
0.2 103.0637 7.68199 10.34 87.3568 121.5946
0.4 119.8106 8.93024 10.34 101.5515 141.3527
0.6 129.5313 9.97816 11.77 109.4766 153.2596

Variety = Victory:
nitro response SE df lower.CL upper.CL

0.0 71.8907 5.53794 11.77 60.7602 85.0601
0.2 89.8612 6.69793 10.34 76.1664 106.0184
0.4 104.4629 7.78628 10.34 88.5428 123.2454
0.6 112.9383 8.69996 11.77 95.4527 133.6271

Confidence level used: 0.95

It is important to realize that the statistical inferences are all done before reversing the
transformation. Thus, t ratios are based on the linear predictors and will differ from those
computed using the printed estimates and standard errors. Likewise, confidence intervals are
computed on the linear-predictor scale, then the endpoints are back-transformed.
This kind of automatic support for transformations is available only for certain standard
transformations, namely those supported by the make.link function in the stats package.
Others require more work – see the documentation for update for details.

5.3. Trends

The lstrends function is provided for estimating and comparing the slopes of fitted lines (or
curves). To illustrate, consider the built-in R dataset ChickWeight which has data on the
growths of newly hatched chicks under four different diets. The following code produces the
display in Figure 3.

R> library(lattice)
R> xyplot(weight ~ Time | Diet, groups = ~ Chick, data = ChickWeight,
+ type = "o", layout = c(4, 1))

Let us fit a model to these data using random slopes for each chick and allowing for a different
average slope for each diet:

R> Chick.lmer <- lmer(weight ~ Diet * Time + (0 + Time | Chick),
+ data = ChickWeight)
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Figure 3: Growth curves of chicks, dataset ChickWeight.

We can then call lstrends to estimate and compare the average slopes for each diet.

R> ( Chick.lst <- lstrends (Chick.lmer, ~ Diet, var = "Time") )

Diet Time.trend SE df lower.CL upper.CL
1 6.33856 0.610488 49.86 5.11227 7.56484
2 8.60914 0.838003 48.28 6.92447 10.29380
3 11.42287 0.838003 48.28 9.73821 13.10753
4 9.55583 0.839245 48.56 7.86892 11.24273

Confidence level used: 0.95

Here we obtain estimates and pairwise comparisons of the slopes using a compact letter
display.

R> cld (Chick.lst)

Diet Time.trend SE df lower.CL upper.CL .group
1 6.33856 0.610488 49.86 5.11227 7.56484 1
2 8.60914 0.838003 48.28 6.92447 10.29380 12
4 9.55583 0.839245 48.56 7.86892 11.24273 2
3 11.42287 0.838003 48.28 9.73821 13.10753 2

Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05

According to the Tukey HSD comparisons (with default significance level of 0.05), there are
two groupings of slopes: Diet 1’s mean slope is significantly less than 3 or 4’s, Diet 2’s slope
is not distinguished from any other.
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Note: lstrends computes a difference quotient based on two slightly different reference grids.
Thus, it must be called with a model object, not a ref.grid object.

5.4. Messy data

To illustrate some more lsmeans capabilities, consider the dataset named nutrition that is
provided with the lsmeans package. These data come from Milliken and Johnson (1992), and
contain the results of an observational study on nutrition education. Low-income mothers
are classified by race, age category, and whether or not they received food stamps (the group
factor); and the response variable is a gain score (post minus pre scores) after completing a
nutrition training program.
Consider the model that includes all main effects and two-way interactions. A Type-II (hi-
erarchical) analysis-of-variance table is also shown using the car package (Fox and Weisberg
2011).

R> nutr.lm <- lm(gain ~ (age + group + race)^2, data = nutrition)
R> library("car")
R> Anova(nutr.lm)

Anova Table (Type II tests)

Response: gain
Sum Sq Df F value Pr(>F)

age 82.4 3 0.961 0.414
group 658.1 1 23.044 6.1e-06
race 11.2 2 0.196 0.823
age:group 91.6 3 1.069 0.366
age:race 87.3 3 1.019 0.388
group:race 113.7 2 1.991 0.142
Residuals 2627.5 92

One main effect (group) is quite significant, and there is possibly an interaction with race.
Let us look at the group by race LS means:

R> lsmip(nutr.lm, race ~ age | group)
R> lsmeans(nutr.lm, ~ group * race)

group race lsmean SE df lower.CL upper.CL
FoodStamps Black 4.70826 2.36812 92 0.00497136 9.41154
NoAid Black -2.19040 2.49058 92 -7.13689810 2.75610
FoodStamps Hispanic NA NA NA NA NA
NoAid Hispanic NA NA NA NA NA
FoodStamps White 3.60768 1.15562 92 1.31252147 5.90284
NoAid White 2.25634 2.38927 92 -2.48896668 7.00164

Results are averaged over the levels of: age
Confidence level used: 0.95
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Figure 4: Predictions for the nutrition data.

Figure 4 shows the predictions from this model. One thing the output illustrates is that
lsmeans incorporates an estimability check, and returns a missing value when a prediction
cannot be made uniquely. In this example, we have very few Hispanic mothers in the dataset,
resulting in empty cells. This creates a rank deficiency in the fitted model, and some predictors
are thrown out.
We can avoid non-estimable cases by using at to restrict the reference levels to a smaller set.
A useful summary of the results might be obtained by narrowing the scope of the reference
levels to two races and the two middle age groups, where most of the data lie. However, always
keep in mind that whenever we change the reference grid, we also change the definition of
the LS means. Moreover, it may be more appropriate to average the two ages using weights
proportional to their frequencies in the data set. With those ideas in mind, here are the
LS means and comparisons within rows and columns:

R> nutr.lsm <- lsmeans(nutr.lm, ~ group * race, weights = "proportional",
+ at = list(age = c("2", "3"), race = c("Black", "White")))

Here are the results:

R> nutr.lsm

group race lsmean SE df lower.CL upper.CL
FoodStamps Black 8.275710 2.917880 92 2.48055 14.070871
NoAid Black -2.858277 1.678104 92 -6.19114 0.474582
FoodStamps White 5.270305 0.868032 92 3.54632 6.994292
NoAid White -0.316369 1.010292 92 -2.32290 1.690158

Results are averaged over the levels of: age
Confidence level used: 0.95

R> summary(pairs(nutr.lsm, by = "race"), by = NULL)
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contrast race estimate SE df t.ratio p.value
FoodStamps - NoAid Black 11.13399 3.55123 92 3.135 0.0023
FoodStamps - NoAid White 5.58667 1.33198 92 4.194 0.0001

Results are averaged over the levels of: age

R> summary(pairs(nutr.lsm, by = "group"), by = NULL)

contrast group estimate SE df t.ratio p.value
Black - White FoodStamps 3.00540 3.01639 92 0.996 0.3217
Black - White NoAid -2.54191 1.95876 92 -1.298 0.1976

Results are averaged over the levels of: age

The general conclusion from these analyses is that for age groups 2 and 3, the expected gains
from the training are higher among families receiving food stamps. Note that this analysis is
somewhat different than the results we would obtain by subsetting the data before analysis,
as we are borrowing information from the other observations in estimating and testing these
LS means.
The weights argument is a convenience for certain standard weighting schemes. More general
weighting schemes may be implemented by writing a custom function and using fac.reduce.
For example, to weight by the frequencies in the whole dataset instead of just ages 2 and 3,
use (results not shown):

R> wtavg <- function(coefs, lev) (23 * coefs[1, ] + 64 * coefs[2, ]) / 87
R> nutr.lsm <- lsmeans(nutr.lm, ~ group * race, fac.reduce = wtavg, ...

As a side note, the effects package (Fox 2003; Fox and Hong 2009) provides an alternative
way to analyze these data:

R> library("effects")
R> nutr.eff <- Effect(c("group", "race"), nutr.lm)
R> as.data.frame(nutr.eff)

group race fit se lower upper
1 FoodStamps Black 6.604295 2.459631 1.71926 11.489334
2 NoAid Black -2.633269 1.705714 -6.02096 0.754427
3 FoodStamps Hispanic -0.895705 5.489855 -11.79903 10.007621
4 NoAid Hispanic 3.533398 3.953760 -4.31911 11.385907
5 FoodStamps White 4.763892 0.770703 3.23321 6.294575
6 NoAid White 1.073640 1.419825 -1.74625 3.893534

These results differ considerably from those we showed above for the first lsmeans call for
this model. That is because lsmeans weights equally while Effect weights proportionately,
as demonstrated here:

R> lsmeans(nutr.lm, ~ group * race, weights = "proportional")
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group race lsmean SE df lower.CL upper.CL
FoodStamps Black 6.60430 2.459631 92 1.71926 11.489334
NoAid Black -2.63327 1.705714 92 -6.02096 0.754427
FoodStamps Hispanic NA NA NA NA NA
NoAid Hispanic NA NA NA NA NA
FoodStamps White 4.76389 0.770703 92 3.23321 6.294575
NoAid White 1.07364 1.419825 92 -1.74625 3.893534

Results are averaged over the levels of: age
Confidence level used: 0.95

Note that Effects does not do an estimability check, so its results for Hispanics are suspect.

6. Interfacing with multcomp
The multcomp package (Hothorn, Bretz, and Westfall 2008) supports a greater variety of
corrections for simultaneous testing than are available in lsmeans. Its glht (general linear hy-
pothesis testing) function and associated "glht" class are similar in some ways to "lsmeans"
and "lsmobj" objects, respectively. So we provide methods such as as.glht for working with
glht. To illustrate, consider testing comparisons of consecutive means in days.lsm using the
two packages:

> ( days.consec <- contrast(days.lsm, "consec", adjust = "mvt") )

contrast estimate SE df t.ratio p.value
2 - 1 0.93039 2.4668 23 0.377 0.9950
3 - 2 7.16976 2.4797 23 2.891 0.0359
4 - 3 -4.92228 2.4901 23 -1.977 0.2277
5 - 4 6.69951 2.4885 23 2.692 0.0557
6 - 5 -4.04702 2.5566 23 -1.583 0.4245

Results are averaged over the levels of: store
P value adjustment: mvt method for 5 tests

These results provide a single-step adjustment to the family of comparisons. If we want
one of the more sophisticated adjustments provided in the multcomp package – say, the
Westfall (1997) method – just use as.glht to construct a "glht" object, and summarize it
in the desired way:

> library(multcomp)
> summary(as.glht(days.consec), test = adjusted("Westfall"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
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2 - 1 == 0 0.93 2.47 0.38 0.710
3 - 2 == 0 7.17 2.48 2.89 0.036
4 - 3 == 0 -4.92 2.49 -1.98 0.166
5 - 4 == 0 6.70 2.49 2.69 0.047
6 - 5 == 0 -4.05 2.56 -1.58 0.235
(Adjusted p values reported -- Westfall method)

If we had specified test = adjusted("single-step"), we would have obtained exactly the
same results as we did above with the "mvt" adjustment. But with the Westfall adjustment,
the smallest adjusted P value is the same, but the others are smaller because of the stepwise
nature of the adjustment method.
If you are already working primarily with glht, the lsmeans package provides an lsm function
that can be used as an alternative to multcomp’s mcp function, but with the flexibility and
context of an lsmeans call:

> Oats.glht <- glht(Oats.lmer, lsm(~ nitro | Variety))

If there is a by variable in effect, as in this example, glht or as.glht returns a list of glht
objects – one for each by level.

> names(Oats.glht)

[1] "Variety = Golden Rain" "Variety = Marvellous" "Variety = Victory"

> confint(Oats.glht[[1]])

Simultaneous Confidence Intervals

Fit: lmer(formula = log(yield) ~ Variety * factor(nitro) + (1 | Block/Variety),
data = Oats)

Quantile = 2.641
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

0 == 0 4.356 4.125 4.586
0.2 == 0 4.582 4.352 4.812
0.4 == 0 4.714 4.484 4.945
0.6 == 0 4.815 4.584 5.045

There is a courtesy summary method for this "glht.list" class to make things a bit more user-
friendly. Recall the earlier example result org.lsm, which contains information for LS means
for three days at each of two values of price2. Suppose we are interested in pairwise com-
parisons of these LS means, by price2. If we call
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R> summary(as.glht(pairs(org.lsm)))

(results not displayed) we will obtain two glht objects with three contrasts each, so that the
results shown will incorporate multiplicity adjustments for each family of three contrasts. If,
on the other hand, we want to consider those six contrasts as one family, use

R> summary(as.glht(pairs(org.lsm), by = NULL))

. . . and note (look carefully at the parentheses) that this is not the same as

R> summary(as.glht(pairs(org.lsm, by = NULL)))

which removes the by grouping before the pairwise comparisons are generated, thus yielding(6
2
)

= 15 contrasts instead of just six.
Finally, we note that as.glht may be used as a back-door way to get glht to work with a
model supported by lsmeans, but not multcomp.

7. Extensions for certain types of models
The lsmeans package includes support for a wide and ever-growing variety of fitted-model
objects. As this is written, the supported types include "aov", "aovlist", "betareg",
"carbayes", "clm", "clmm", "coxme", "coxph", "gee", "geeglm", "geese", "glm", "glmerMod",
"glmmadmb", "gls", "hurdle", "lm", "lme", "lmerMod", some "mcmc", "mcmcglmm", "mer",
"merMod", "mlm", "multinom", "nlme", "polr", "rms", "survreg", and "zeroinfl"; and
several others that extend these classes. lsmeans support for all these models works similarly
to the examples we have presented. Support for some classes is limited.
Extended capabilities for some are available by way of optional arguments passed via ref.grid
or lsmeans. Details may be found using help("models", package = "lsmeans"). In this
section, we illustrate some examples of these extensions.

7.1. Multivariate models

The oranges data has two response variables. Let’s try a multivariate model for predicting
the sales of the two varieties of oranges, and see what we get if we call ref.grid:

R> oranges.mlm <- lm(cbind(sales1, sales2) ~ price1 + price2 + day + store,
+ data = oranges)
R> ref.grid(oranges.mlm)

'ref.grid' object with variables:
price1 = 51.222
price2 = 48.556
day = 1, 2, 3, 4, 5, 6
store = 1, 2, 3, 4, 5, 6
rep.meas = multivariate response levels: sales1, sales2
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What happens is that the multivariate response is treated like an additional factor, by default
named rep.meas. In turn, it can be used to specify levels for LS means. Here we rename the
multivariate response to "variety" and obtain day means (and a compact letter display for
comparisons thereof) for each variety:

R> org.mlsm <- lsmeans(oranges.mlm, ~ day | variety, mult.name = "variety")
R> cld(org.mlsm, sort = FALSE)

variety = sales1:
day lsmean SE df lower.CL upper.CL .group
1 5.56442 1.76808 23 1.906856 9.22197 1
2 6.49481 1.72896 23 2.918183 10.07143 12
3 13.66457 1.75150 23 10.041308 17.28783 23
4 8.74229 1.73392 23 5.155403 12.32918 123
5 15.44180 1.78581 23 11.747576 19.13603 3
6 11.39478 1.76673 23 7.740031 15.04953 123

variety = sales2:
day lsmean SE df lower.CL upper.CL .group
1 7.71566 2.32649 23 2.902962 12.52836 12
2 3.97645 2.27500 23 -0.729758 8.68265 1
3 16.59781 2.30467 23 11.830240 21.36539 2
4 11.04454 2.28153 23 6.324832 15.76425 12
5 14.99079 2.34981 23 10.129837 19.85174 2
6 12.04878 2.32470 23 7.239777 16.85779 12

Results are averaged over the levels of: store
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.05

Suppose that we want to compare the two varieties on each day using this model; and in
turn, compare these resulting differences with one another. This is a contrast of contrasts.
To start, let’s obtain the daily differences:

R> org.vardiff <- update(pairs(org.mlsm, by = "day"), by = NULL)

The results (not yet shown) will comprise the six sales1-sales2 differences, one for each day.
It seems odd to have two by specifications, but the one in pairs specifies doing a separate
comparison for each day, and the one in update asks that we convert it to one table with six
rows, rather than 6 tables with one row each. Now, let’s compare these differences to see if
they vary from day to day.

R> cld(org.vardiff)

contrast day estimate SE df t.ratio p.value .group
sales1 - sales2 3 -2.933243 2.69411 23 -1.089 0.2875 1
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sales1 - sales2 4 -2.302251 2.66706 23 -0.863 0.3969 1
sales1 - sales2 1 -2.151248 2.71961 23 -0.791 0.4370 1
sales1 - sales2 6 -0.654002 2.71752 23 -0.241 0.8120 1
sales1 - sales2 5 0.451016 2.74688 23 0.164 0.8710 1
sales1 - sales2 2 2.518361 2.65943 23 0.947 0.3535 1

Results are averaged over the levels of: store
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.05

There is little evidence of variety differences, nor that these differences vary from day to day.
This is all made possible by the fact that lsmeans, contrast, and relatives all produce
the same class of object, so we can compound the results as needed to obtain all types of
interaction contrasts.

7.2. Proportional-odds example

The housing data in the MASS package (Venables and Ripley 2002) is an example where
the response variable is an ordinal variable Sat (satisfaction) with a three-point scale of low,
medium, high. The predictors include Type (type of rental unit, four levels), Infl (influence
on management of the unit, three levels), and Cont (contact with other residents, two levels).
Ordinal-data models may be fitted using the polr function in MASS, or, with more modeling
options, clm or clmm in the ordinal package. Here, we fit a second-order model, using the
default logit link function.

R> library("MASS")
R> housing.plr <- polr(Sat ~ (Infl + Type + Cont)^2, data = housing,
+ weights = Freq)

One way to view an ordinal-response model is in terms of a latent variable S having a partic-
ular type of probability distribution (in this case, logistic, as implied by the logit link) that
depends linearly on the predictors. The model posits that the observed ordinal responses
comprise a categorization of S into classes, based on fixed thresholds that define the “low,”
“medium,” and “high” levels. By default, lsmeans produces estimates of the mean of S for
each factor combination. (The location and scale of S are not identifiable from the data, so by
default it is scaled to have a marginal mean of zero and scale parameter of 1.) The command
below produces the display in Figure 5 of the latent-variable predictions from this model.

R> lsmip(housing.plr, Infl ~ Cont | Type, ylab = "Latent mean",
+ layout = c(4, 1))

Some interesting interactions are in evidence, e.g., between Type and Cont, and this war-
rants looking at various combinations of the factors. But in the interest of compactness,
the remaining illustrations ignore these interactions and focus only on the effects of Infl on
satisfaction.

R> cld(lsmeans(housing.plr, ~ Infl))



Journal of Statistical Software 25

Levels of Cont

La
te

nt
 m

ea
n

−1.0

−0.5

0.0

0.5

1.0

1.5

Low High

●

●

 = Type Tower

Low High

●

●

 = Type Apartment

Low High

●

●

 = Type Atrium

Low High

●

●

 = Type Terrace

Infl
Low
Medium
High

●

Figure 5: Display of the model for the housing data on the latent-variable scale.

Infl lsmean SE df asymp.LCL asymp.UCL .group
Low -0.336147 0.0853213 NA -0.5033735 -0.168920 1
Medium 0.146357 0.0820731 NA -0.0145029 0.307218 2
High 0.860442 0.1151551 NA 0.6347421 1.086142 3

Results are averaged over the levels of: Type, Cont
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 3 estimates
significance level used: alpha = 0.05

From these results, it seems clear that the latent mean satisfaction increases with influence.
Support for ordinal models in lsmeans also allows for an optional mode argument depending
on what you want to summarize. The default, as demonstrated above, is mode = "latent".
Using mode = "linear.predictor" produces results comparable to those for logistic regres-
sion, but for each boundary between ordinal levels. Accordingly, an extra factor named "cut"
is created to identify which boundary is being referenced. In the code below, we summarize
the linear-predictor means and pairwise differences thereof, transformed back to the response
scale.

R> housing.lsm <- lsmeans(housing.plr, ~ Infl | cut, mode = "lin")
R> summary(housing.lsm, type = "response")

cut = Low|Medium:
Infl cumprob SE df asymp.LCL asymp.UCL
Low 0.433765 0.0215480 NA 0.392109 0.476379
Medium 0.321037 0.0189094 NA 0.285154 0.359167
High 0.187995 0.0184320 NA 0.154498 0.226805

cut = Medium|High:
Infl cumprob SE df asymp.LCL asymp.UCL
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Low 0.718857 0.0183059 NA 0.681629 0.753307
Medium 0.612135 0.0202689 NA 0.571745 0.651040
High 0.435907 0.0283404 NA 0.381382 0.492027

Results are averaged over the levels of: Type, Cont
Confidence level used: 0.95

R> summary(pairs(housing.lsm), type = "response")[1:3, ]

cut = Low|Medium:
contrast odds.ratio SE df z.ratio p.value
Low - Medium 1.62013 0.190065 NA 4.11289 0.0001
Low - High 3.30881 0.472446 NA 8.38040 <.0001
Medium - High 2.04232 0.286476 NA 5.09078 <.0001

Results are averaged over the levels of: Type, Cont
P value adjustment: tukey method for comparing a family of 3 estimates
Tests are performed on the linear-predictor scale

With type = "response", the logits are transformed to cumulative probabilities. Noting that
a low cumulative probability at the low cut means a low number of people are dissatisfied,
we again find that those having more influence tend to be more satisfied. Note also that the
pairwise comparisons transform to odds ratios on the "response" scale. Only the first three
rows of the comparisons table are shown because the comparisons for cut = Medium|High
will be identical.
Other modes available for ordinal-response models include "cum.prob", "prob", and
"mean.class". Results from "cum.prob" mode will be similar to those above for the re-
sponse scale – but not identical because the averaging and statistical tests are performed
after applying the reverse-logit transformation. Also, the results of pairs will be differences
rather than odds ratios.
In "prob" mode, the grid will include the levels of the response variable itself, and estimation
is done of the probabilities of each ordinal level:

R> lsmeans(housing.plr, ~ Sat | Infl, mode = "prob")

Infl = Low:
Sat prob SE df asymp.LCL asymp.UCL
Low 0.440397 0.0202378 NA 0.400732 0.480063
Medium 0.264374 0.0119024 NA 0.241046 0.287702
High 0.295229 0.0175813 NA 0.260770 0.329687

Infl = Medium:
Sat prob SE df asymp.LCL asymp.UCL
Low 0.325891 0.0187177 NA 0.289205 0.362577
Medium 0.282483 0.0118429 NA 0.259271 0.305694
High 0.391627 0.0196727 NA 0.353069 0.430185
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Infl = High:
Sat prob SE df asymp.LCL asymp.UCL
Low 0.195277 0.0193966 NA 0.157260 0.233294
Medium 0.244024 0.0130633 NA 0.218420 0.269627
High 0.560699 0.0275617 NA 0.506679 0.614719

Results are averaged over the levels of: Type, Cont
Confidence level used: 0.95

The "mean.class" mode outputs the means of each of the above probability distributions
based on ordinal values of 1, 2, 3:

R> lsmeans(housing.plr, ~ Infl, mode = "mean.class")

Infl mean.class SE df asymp.LCL asymp.UCL
Low 1.85483 0.0359955 NA 1.78428 1.92538
Medium 2.06574 0.0365306 NA 1.99414 2.13733
High 2.36542 0.0458378 NA 2.27558 2.45526

Results are averaged over the levels of: Type, Cont
Confidence level used: 0.95

These results are comparable to those for mode = "latent" (not shown). Both suggest satis-
faction scores below center, slightly above center, and considerably above center, respectively.

7.3. MCMC samplers

The lsmeans package provides special support for Bayesian models that are fitted via Markov
chain Monte Carlo (MCMC) methods. A slot exists in the fitted object which holds the sample
from the posterior distribution of the fixed-effects coefficients. Since LS means depend on these
regression coefficients, we can calculate a posterior sample of LS means (or contrasts thereof)
simply by performing the needed calculations with each posterior realization of the coefficients.
The as.mcmc function returns this posterior sample with the R class "mcmc" (defined in the
coda package), which then may be examined using any of the methods available for that class.
To illustrate, consider once again the Oats example, where we instead fit a Bayesian mixed
model via the MCMCglmm package (Hadfield 2010):

R> library("MCMCglmm")
R> Oats.mc <- MCMCglmm(log(yield) ~ Variety + factor(nitro),
+ random = ~ Block + Block:Variety, nitt = 2300, burnin = 300,
+ verbose = FALSE, data = Oats)
R> Oats.mclsm <- lsmeans(Oats.mc, "nitro", data = Oats)

Now we may, for exsmple, visualize the posterior densities of the nitro LS means as we would
for any other mcmc object:

R> plot(as.mcmc(Oats.mclsm))
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Figure 6: Display of MCMC results for Oats.mclsm.

The plot is shown in Figure 6.
The ordinary summary of such results is based on frequentist estimates of the mean and
covariance matrix of the sample. For example, here is a summary of consecutive differences
of LS means:

R> contrast(Oats.mclsm, "consec")
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contrast estimate SE df z.ratio p.value
0.2 - 0 0.2207535 0.0477878 NA 4.61945 <.0001
0.4 - 0.2 0.1502174 0.0467240 NA 3.21499 0.0039
0.6 - 0.4 0.0795495 0.0399272 NA 1.99236 0.1214

Results are averaged over the levels of: Variety
Results are given on the log scale.
P value adjustment: mvt method for 3 tests

8. Briefly mentioned

8.1. Other capabilities
lsmeans has several other functions and capabilities not shown in detail in this article, and
briefly described here.
The lsm.options function may be used to set such things as default confidence and signif-
icance levels, disable using pbkrtest for obtaining degrees of freedom, and default display
options for objects produced by lsmeans and contrast.
In the summary or test method, one may provide null and side specifications to specify null
hypotheses or obtain one-sided tests; or delta to set a threshold value for a test of equivalence
(if two-sided) or noninferiority/nonsuperiority (if one-sided). Also, the test method has an
optional joint argument that, when TRUE, will output joint F statistics (or χ2 statistics when
degrees of freedom are unavailable) for the collection of linear functions.
In constructing a reference grid, the user may specify a formula in cov.reduce. For example,
suppose that conc is a covariate and treat is a factor, but you believe that conc is affected by
treat. Then ordinary adjusted means are misleading because it is unreasonable to hold conc
constant while varyig treatment. Instead, one may specify cov.reduce = conc ~ treat,
which causes a linear model to be fitted to this formula within the original dataset, then to
use it to predict conc at each point in the reference grid. An example is given in the package
vignette "using-lsmeans".
A function lsmobj is provided that will construct an "lsmobj" object given the factor levels,
linear functions, coefficients, covariance matrix, and degrees of freedom. This can be handy
for accessing lsmeans’s capabilities for a model not supported but these statistics are available,
or even using summary statistics in a textbook or article.
There are a few other lsmeans features too new to be included in any depth in this article:

• An rbind method for "ref.grid" objects that makes it easy to combine two or more
(conforming) objects; for example,

R> rbind(pairs(lsmeans(Oats.lmer, "Variety")),
+ pairs(lsmeans(Oats.lmer, "nitro")))

combines all 3 + 6 = 9 main-effects comparisons into one family. By default, the
summary will apply the "mvt" multiplicity adjustment to the family of tests.
There is also a new [.ref.grid method for selecting a subset of the estimates.
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• A configurable limit whereby the degrees of freedom and adjusted covariances from
pbkrtest are bypassed when the dataset is too large, in order to avoid undue computation
time.

• For those who prefer the term “predicted marginal means,” wrappers such as pmmeans,
pmtrends, and pmmip are provided. They call the corresponding ls... functions and
relabel any results that start with “ls.”

• The code for checking for estimability has been moved to a separate estimability pack-
age (Lenth 2015), which is available from CRAN. This was done to make it easy for
other package developers to incorporate estimability checks in their code, e.g., predict
methods for new data.

• The contrast function has a new interaction option for constructing interaction
contrasts.

8.2. Extending to more models

The functions ref.grid and lsmeans work by first reconstructing the dataset (so that the
reference grid can be identified) and extracting needed information about the model, such as
the regression coefficients, covariance matrix, and the linear functions associated with each
point in the reference grid. For a fitted model of class, say, "modelobj", these tasks are ac-
complished by defining S3 methods recover.data.modelobj and lsm.basis.modelobj. The
functions nonest.basis and is.estble (recently moved to a separate estimability package)
are helpful in providing for estimability checking, and regrid may be used when it is necessary
to reparameterize a reference grid. The help page "extending-lsmeans" and the vignette by
the same name provide details and examples.
Developers of packages that fit models are encouraged to include support for lsmeans by
incorporating (and exporting) recover.data and lsm.basis methods for their model classes.

8.3. Comparisons with other software

A unique feature of lsmeans is its explicit reliance on the concept of a reference grid, which I
feel is a useful approach for understanding what is being computed. The use of a reference grid
has the effect of slightly extending the concepts as discussed in Searle, Speed, and Milliken
(1980), in that covariates can have more than one value in the grid, and predictions may then
be averaged over those different covariate values. Often, this would be inappropriate; but it
does make sense in our Oats example where we were comparing LS means for the model with
nitro as a factor with those when nitro is a covariate.
The design goal of lsmeans is primarily to provide the functionality of the LSMEANS statement
in various SAS procedures. Thus its emphasis is on tabular results which, of course, may also
be used as data for further analysis or graphics. By design, it can be extended with relative
ease to additional model classes.
Some lsmeans capabilities exceed those of SAS, including the lstrends capability, more
flexibility in organizing the output, and more built-in contrast families. In addition, SAS does
not allow LS means for factor combinations when the model does not include the interaction
of those factors; or creating a grid of covariate values using at.
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There are a few other R packages that provide capabilities that overlap with those of lsmeans.
We have already mentioned effects in Section 5.4. The emphasis of effects is on graphical
rather than tabular displays. For a model with continuous predictors, effects automatically
generates a grid of values of those predictors for use in its graphs, whereas one would have
to use an at specification to do the same in lsmeans. Thus, effects has special strengths for
curve-fitting models such as splines. In contrast, lsmeans’s strengths are more in the area of
factorial models where one wants traditional summaries in the form of estimates, contrasts,
and interaction plots.
The doBy package (Højsgaard, Halekoh, Robison-Cox, Wright, and Leidi 2014) provides an
LSmeans function that has some of the capabilities of lsmeans, but it produces a data frame
rather than a reusable object. In earlier versions of the package, this function was named
popMeans. The package also has an LSmatrix function to obtain the linear functions needed
to obtain LS means. The lmerTest package (Kuznetsova, Brockhoff, and Christensen 2015)
offers a competing lsmeans function that claims to be based on doBy’s popMatrix function,
but its results don’t seem to be consistent with it (as this is written). There is the possibility
that one of these lsmeans functions will mask the other, so users must be careful if they use
both packages.
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