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Abstract

Partially observed Markov process (POMP) models, also known as hidden Markov
models or state space models, are ubiquitous tools for time series analysis. The R package
pomp provides a very flexible framework for Monte Carlo statistical investigations using
nonlinear, non-Gaussian POMPmodels. A range of modern statistical methods for POMP
models have been implemented in this framework including sequential Monte Carlo, it-
erated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation,
maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory match-
ing. In this paper, we demonstrate the application of these methodologies using some
simple toy problems. We also illustrate the specification of more complex POMP mod-
els, using a nonlinear epidemiological model with a discrete population, seasonality, and
extra-demographic stochasticity. We discuss the specification of user-defined models and
the development of additional methods within the programming environment provided by
pomp.

Keywords: Markov processes, hidden Markov model, state space model, stochastic dynamical
system, maximum likelihood, plug-and-play, time series, mechanistic model, sequential Monte
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1. Introduction
A partially observed Markov process (POMP) model consists of incomplete and noisy mea-
surements of a latent, unobserved Markov process. The far-reaching applicability of this class
of models has motivated much software development (Commandeur, Koopman, and Ooms
2011). It has been a challenge to provide a software environment that can effectively handle
broad classes of POMP models and take advantage of the wide range of statistical method-
ologies that have been proposed for such models. The pomp software package (King et al.
2016) differs from previous approaches by providing a general and abstract representation of
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a POMP model. Therefore, algorithms implemented within pomp are necessarily applicable
to arbitrary POMP models. Moreover, models formulated with pomp can be analyzed using
multiple methodologies in search of the most effective method, or combination of methods,
for the problem at hand. However, since pomp is designed for general POMP models, meth-
ods that exploit additional model structure have yet to be implemented. In particular, when
linear, Gaussian approximations are adequate for one’s purposes, or when the latent process
takes values in a small, discrete set, methods that exploit these additional assumptions to ad-
vantage, such as the extended and ensemble Kalman filter methods or exact hidden Markov
model methods, are available, but not yet as part of pomp. It is the class of nonlinear,
non-Gaussian POMP models with large state spaces upon which pomp is focused.
A POMP model may be characterized by the transition density for the Markov process and
the measurement density1. However, some methods require only simulation from the transi-
tion density whereas others require evaluation of this density. Still other methods may not
work with the model itself but with an approximation, such as a linearization. Algorithms
for which the dynamic model is specified only via a simulator are said to be plug-and-play
(Bretó, He, Ionides, and King 2009; He, Ionides, and King 2010). Plug-and-play methods
can be employed once one has “plugged” a model simulator into the inference machinery.
Since many POMP models of scientific interest are relatively easy to simulate, the plug-and-
play property facilitates data analysis. Even if one candidate model has tractable transition
probabilities, a scientist will frequently wish to consider alternative models for which these
probabilities are intractable. In a plug-and-play methodological environment, analysis of vari-
ations in the model can often be achieved by changing a few lines of the model simulator codes.
The price one pays for the flexibility of plug-and-play methodology is primarily additional
computational effort, which can be substantial. Nevertheless, plug-and-play methods imple-
mented using pomp have proved capable for state-of-the-art inference problems (e.g., King,
Ionides, Pascual, and Bouma 2008; Bhadra, Ionides, Laneri, Pascual, Bouma, and Dhiman
2011; Shrestha, King, and Rohani 2011; Shrestha, Foxman, Weinberger, Steiner, Viboud, and
Rohani 2013; Earn, He, Loeb, Fonseca, Lee, and Dushoff 2012; Roy, Bouma, Ionides, Dhiman,
C., and Pascual 2012; Blackwood, Cummings, Broutin, Iamsirithaworn, and Rohani 2013a;
Blackwood, Streicker, Altizer, and Rohani 2013b; He, Dushoff, Day, Ma, and Earn 2013;
Bretó 2014; Blake et al. 2014). The recent surge of interest in plug-and-play methodology
for POMP models includes the development of nonlinear forecasting (Ellner, Bailey, Boba-
shev, Gallant, Grenfell, and Nychka 1998), iterated filtering (Ionides, Bretó, and King 2006;
Ionides, Nguyen, Atchadé, Stoev, and King 2015), ensemble Kalman filtering (Shaman and
Karspeck 2012), approximate Bayesian computation (ABC; Sisson, Fan, and Tanaka 2007),
particle Markov chain Monte Carlo (PMCMC; Andrieu, Doucet, and Holenstein 2010), probe
matching (Kendall, Briggs, Murdoch, Turchin, Ellner, McCauley, Nisbet, and Wood 1999),
and synthetic likelihood (Wood 2010). Although the pomp package provides a general en-
vironment for methods with and without the plug-and-play property, development of the
package to date has emphasized plug-and-play methods.
The pomp package is philosophically neutral as to the merits of Bayesian inference. It en-
ables a POMP model to be supplemented with prior distributions on parameters, and several
Bayesian methods are implemented within the package. Thus pomp is a convenient environ-

1We use the term “density” in this article to encompass both the continuous and discrete cases. Thus, in the
latter case, i.e., when state variables and/or measured quantities are discrete, one could replace “probability
density function” with “probability mass function”.
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ment for those who wish to explore both Bayesian and non-Bayesian data analyses.
The remainder of this paper is organized as follows. Section 2 defines mathematical notation
for POMP models and relates this to their representation as objects of class ‘pomp’ in the
pomp package. Section 3 introduces several of the statistical methods currently implemented
in pomp. Section 4 constructs and explores a simple POMP model, demonstrating the use of
the available statistical methods. Section 5 illustrates the implementation of more complex
POMPs, using a model of infectious disease transmission as an example. Finally, Section 6
discusses extensions and applications of pomp.

2. POMP models and their representation in pomp
Let θ be a p-dimensional real-valued parameter, θ ∈ Rp. For each value of θ, let {X(t ;θ), t ∈
T} be a Markov process, withX(t ;θ) taking values in Rq. The time index set T ⊂ Rmay be an
interval or a discrete set. Let {ti ∈ T, i = 1, . . . , N}, be the times at which X(t ;θ) is observed,
and t0 ∈ T be an initial time. Assume t0 ≤ t1 < t2 < · · · < tN . We write Xi = X(ti ;θ)
and Xi:j = (Xi, Xi+1, . . . , Xj). The process X0:N is only observed by way of another process
Y1:N = (Y1, . . . , YN ) with Yn taking values in Rr. The observable random variables Y1:N are
assumed to be conditionally independent given X0:N . The data, y∗1:N = (y∗1, . . . , y∗N ), are
modeled as a realization of this observation process and are considered fixed. We suppose
that X0:N and Y1:N have a joint density fX0:N ,Y1:N (x0:N , y1:N ;θ). The POMP structure
implies that this joint density is determined by the initial density, fX0(x0; θ), together with
the conditional transition probability density, fXn|Xn−1(xn |xn−1 ;θ), and the measurement
density, fYn|Xn

(yn |xn ;θ), for 1 ≤ n ≤ N . In particular, we have

fX0:N ,Y1:N (x0:N , y1:N ; θ) = fX0(x0; θ)
N∏
n=1

fXn|Xn−1(xn|xn−1; θ) fYn|Xn
(yn|xn; θ). (1)

Note that this formalism allows the transition density, fXn|Xn−1 , and measurement density,
fYn|Xn

, to depend explicitly on n.

2.1. Implementation of POMP models

pomp is fully object-oriented: in the package, a POMP model is represented by an S4 object
(Chambers 1998; Genolini 2008) of class ‘pomp’. Slots in this object encode the components of
the POMPmodel, and can be filled or changed using the constructor function pomp and various
other convenience functions. Methods for the class ‘pomp’ class use these components to carry
out computations on the model. Table 1 gives the mathematical notation corresponding to
the elementary methods that can be executed on a class ‘pomp’ object.
The rprocess, dprocess, rmeasure, and dmeasure arguments specify the transition probabil-
ities fXn|Xn−1(xn |xn−1 ;θ) and measurement densities fYn|Xn

(yn |xn ;θ). Not all of these ar-
guments must be supplied for any specific computation. In particular, plug-and-play method-
ology by definition never uses dprocess. An empty dprocess slot in a class ‘pomp’ object
is therefore acceptable unless a non-plug-and-play algorithm is attempted. In the package,
the data and corresponding measurement times are considered necessary parts of a class
‘pomp’ object whilst specific values of the parameters and latent states are not. Applying the
simulate function to an object of class ‘pomp’ returns another object of class ‘pomp’, within
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Method Argument to the Mathematical terminology
pomp constructor

rprocess rprocess Simulate from fXn|Xn−1(xn |xn−1 ;θ)
dprocess dprocess Evaluate fXn|Xn−1(xn |xn−1 ;θ)
rmeasure rmeasure Simulate from fYn|Xn

(yn |xn ;θ)
dmeasure dmeasure Evaluate fYn|Xn

(yn |xn ;θ)
rprior rprior Simulate from the prior distribution π(θ)
dprior dprior Evaluate the prior density π(θ)
init.state initializer Simulate from fX0(x0 ;θ)
timezero t0 t0
time times t1:N
obs data y∗1:N
states — x0:N
coef params θ

Table 1: Constituent methods for class ‘pomp’ objects and their translation into mathematical
notation for POMP models. For example, the rprocess method is set using the rprocess
argument to the pomp constructor function.

which the data y∗1:N have been replaced by a stochastic realization of Y1:N , the corresponding
realization of X0:N is accessible via the states method, and the params slot has been filled
with the value of θ used in the simulation.
To illustrate the specification of models in pomp and the use of the package’s inference
algorithms, we will use a simple example. The Gompertz (1825) model can be constructed
via

R> library("pomp")
R> pompExample(gompertz)

which results in the creation of an object of class ‘pomp’, named gompertz, in the workspace.
The structure of this model and its implementation in pomp is described below, in Section 4.
One can view the components of gompertz listed in Table 1 by executing

R> obs(gompertz)
R> states(gompertz)
R> as.data.frame(gompertz)
R> plot(gompertz)
R> timezero(gompertz)
R> time(gompertz)
R> coef(gompertz)
R> init.state(gompertz)

Executing pompExample() lists other examples provided with the package.

2.2. Initial conditions

In some experimental situations, fX0(x0 ;θ) corresponds to a known experimental initializa-
tion, but in general the initial state of the latent process will have to be inferred. If the
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transition density for the dynamic model, fXn|Xn−1(xn |xn−1 ;θ), does not depend on time
and possesses a unique stationary distribution, it may be natural to set fX0(x0 ;θ) to be this
stationary distribution. Otherwise, and more commonly in the authors’ experience, no clear
scientifically motivated choice of fX0(x0 ;θ) exists and one can proceed by treating the value
of X0 as a parameter to be estimated. In this case, fX0(x0 ;θ) concentrates at a point, the
location of which depends on θ.

2.3. Covariates

Scientifically, one may be interested in the role of a vector-valued covariate process {Z(t)}
in explaining the data. Modeling and inference conditional on {Z(t)} can be carried out
within the general framework for nonhomogeneous POMP models, since the arbitrary den-
sities fXn|Xn−1 , fX0 and fYn|Xn

can depend on the observed process {Z(t)}. For example, it
may be the case that fXn|Xn−1(xn |xn−1 ;θ) depends on n only through Z(t) for tn−1 ≤ t ≤ tn.
The covar argument in the pomp constructor allows for time-varying covariates measured at
times specified in the tcovar argument. An example using covariates is given in Section 5.

3. Methodology for POMP models
Data analysis typically involves identifying regions of parameter space within which a postu-
lated model is statistically consistent with the data. Additionally, one frequently desires to
assess the relative merits of alternative models as explanations of the data. Once the user
has encoded one or more POMP models as objects of class ‘pomp’, the package provides a
variety of algorithms to assist with these data analysis goals. Table 2 provides an overview
of several inference methodologies for POMP models. Each method may be categorized as
full-information or feature-based, Bayesian or frequentist, and plug-and-play or not plug-and-
play.
Approaches that work with the full likelihood function, whether in a Bayesian or frequentist
context, can be called full-information methods. Since low-dimensional sufficient statistics
are not generally available for POMP models, methods which take advantage of favorable
low-dimensional representations of the data typically lose some statistical efficiency. We use
the term “feature-based” to describe all methods not based on the full likelihood, since such
methods statistically emphasize some features of the data over others.
Many Monte Carlo methods of inference can be viewed as algorithms for the exploration of
high-dimensional surfaces. This view obtains whether the surface in question is the likelihood
surface or that of some other objective function. The premise behind many recent method-
ological developments in Monte Carlo methods for POMP models is that generic stochastic
numerical analysis tools, such as standard Markov chain Monte Carlo and Robbins-Monro
type methods, are effective only on the simplest models. For many models of scientific interest,
therefore, methods that leverage the POMP structure are needed. Though pomp has suffi-
cient flexibility to encode arbitrary POMP models and methods and therefore also provides a
platform for the development of novel POMP inference methodology, pomp’s development to
date has focused on plug-and-play methods. However, the package developers welcome con-
tributions and collaborations to further expand pomp’s functionality in non-plug-and-play
directions also. In the remainder of this section, we describe and discuss several inference
methods, all currently implemented in the package.
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(a) Plug-and-play
Frequentist Bayesian

Full information Iterated filtering (mif,
Section 3.2)

PMCMC (pmcmc, Section 3.3)

Feature-based Nonlinear forecasting (nlf,
Section 3.6),

ABC (abc, Section 3.5)

synthetic likelihood
(probe.match, Section 3.4)

(b) Not plug-and-play
Frequentist Bayesian

Full information EM and Monte Carlo EM, MCMC
Kalman filter

Feature-based Trajectory matching
(traj.match),

Extended Kalman filter

extended Kalman filter,
Yule-Walker equations

Table 2: Inference methods for POMP models. For those currently implemented in pomp,
the function name and a reference for description are provided in parentheses. Standard
expectation-maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms are not
plug-and-play since they require evaluation of fXn|Xn−1(xn |xn−1 ;θ). The Kalman filter and
extended Kalman filter are not plug-and-play since they cannot be implemented based on a
model simulator. The Kalman filter provides the likelihood for a linear, Gaussian model. The
extended Kalman filter employs a local linear Gaussian approximation which can be used
for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate
Bayesian inference (by adding the parameters to the state vector). The Yule-Walker equations
for ARMA models provide an example of a closed-form method of moments estimator.

3.1. The likelihood function and sequential Monte Carlo

The log likelihood for a POMP model is `(θ) = log fY1:N (y∗1:N ;θ), which can be written as a
sum of conditional log likelihoods,

`(θ) =
N∑
n=1

`n|1:n−1(θ), (2)

where
`n|1:n−1(θ) = log fYn|Y1:n−1(y∗n | y∗1:n−1 ;θ), (3)

and we use the convention that y∗1:0 is an empty vector. The structure of a POMP model
implies the representation

`n|1:n−1(θ) = log
∫
fYn|Xn

(y∗n|xn ;θ)fXn|Y1:n−1(xn | y∗1:n−1 ;θ) dxn (4)

(cf. Equation 1). Although `(θ) typically has no closed form, it can frequently be computed
by Monte Carlo methods. Sequential Monte Carlo (SMC) builds up a representation of
fXn|Y1:n−1(xn | y∗1:n−1 ;θ) that can be used to obtain an estimate, ˆ̀

n|1:n−1(θ), of `n|1:n−1(θ)
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Algorithm 1: Sequential Monte Carlo (SMC, or particle filter): pfilter( P, Np = J),
using notation from Table 1 where P is a class ‘pomp’ object with definitions for rprocess,
dmeasure, init.state, coef, and obs.
input: Simulator for fXn|Xn−1(xn |xn−1 ;θ); evaluator for fYn|Xn

(yn |xn ;θ); simulator for
fX0(x0 ;θ); parameter, θ; data, y∗1:N ; number of particles, J .

1 Initialize filter particles: simulate XF
0,j ∼ fX0 ( · ;θ) for j in 1:J .

2 for n in 1:N do
3 Simulate for prediction: XP

n,j ∼ fXn|Xn−1

(
· |XF

n−1,j ; θ
)
for j in 1:J .

4 Evaluate weights: w(n, j) = fYn|Xn
(y∗n|XP

n,j ;θ) for j in 1:J .
5 Normalize weights: w̃(n, j) = w(n, j)/

∑J
m=1w(n,m).

6 Apply Algorithm 2 to select indices k1:J with P [kj = m] = w̃(n,m).
7 Resample: set XF

n,j = XP
n,kj

for j in 1:J .
8 Compute conditional log likelihood: ˆ̀

n|1:n−1 = log
(
J−1 ∑J

m=1w(n,m)
)
.

9 end
output: Log likelihood estimate, ˆ̀(θ) =

∑N
n=1

ˆ̀
n|1:n−1; filter sample, XF

n,1:J , for n in 1:N .
complexity: O(J)

and hence an approximation, ˆ̀(θ), to `(θ). SMC (a basic version of which is presented as
Algorithm 1), is also known as the particle filter, since it is conventional to describe the Monte
Carlo sample, {XF

n,j , j in 1:J} as a swarm of particles representing fXn|Y1:n(xn | y∗1:n ;θ). The
swarm is propagated forward according to the dynamic model and then assimilated to the next
data point. Using an evolutionary analogy, the prediction step (line 3) mutates the particles
in the swarm and the filtering step (line 7) corresponds to selection. SMC is implemented
in pomp in the pfilter function. The basic particle filter in Algorithm 1 possesses the
plug-and-play property. Many variations and elaborations to SMC have been proposed; these
may improve numerical performance in appropriate situations (Cappé, Godsill, and Moulines
2007) but typically lose the plug-and-play property. Arulampalam, Maskell, Gordon, and
Clapp (2002), Doucet and Johansen (2009), and Kantas, Doucet, Singh, and Maciejowski
(2015) have written excellent introductory tutorials on the particle filter and particle methods
more generally.
Basic SMC methods fail when an observation is extremely unlikely given the model. This
leads to the situation that at most a few particles are consistent with the observation, in
which case the effective sample size (Liu 2001) of the Monte Carlo sample is small and the
particle filter is said to suffer from particle depletion. Many elaborations of the basic SMC
algorithm have been proposed to ameliorate this problem. However, it is often preferable to
remedy the situation by seeking a better model. The plug-and-play property assists in this
process by facilitating investigation of alternative models.
In line 6 of Algorithm 1, systematic resampling (Algorithm 2) is used in preference to multi-
nomial resampling. Algorithm 2 reduces Monte Carlo variability while resampling with the
proper marginal probability. In particular, if all the particle weights are equal then Algo-
rithm 2 has the appropriate behavior of leaving the particles unchanged. As pointed out by
Douc, Cappé, and Moulines (2005), stratified resampling performs better than multinomial
sampling and Algorithm 2 is in practice comparable in performance to stratified resampling
and somewhat faster.
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Algorithm 2: Systematic resampling: Line 6 of Algorithm 1.
input: Weights, w̃1:J , normalized so that

∑J
j=1 w̃j = 1.

1 Construct cumulative sum: cj =
∑j
m=1 w̃m, for j in 1 : J .

2 Draw a uniform initial sampling point: U1 ∼ Uniform(0, J−1).
3 Construct evenly spaced sampling points: Uj = U1 + (j − 1)J−1, for j in 2 : J .
4 Initialize: set p = 1.
5 for j in 1 : J do
6 while Uj > cp do
7 Step to the next resampling index: set p = p+ 1.
8 end
9 Assign resampling index: set kj = p.

10 end
output: Resampling indices, k1:J .
complexity: O(J)

3.2. Iterated filtering

Iterated filtering techniques maximize the likelihood obtained by SMC (Ionides et al. 2006;
Ionides, Bhadra, Atchadé, and King 2011; Ionides et al. 2015). The key idea of iterated
filtering is to replace the model we are interested in fitting – which has time-invariant param-
eters – with a model that is just the same except that its parameters take a random walk
in time. Over multiple repetitions of the filtering procedure, the intensity of this random
walk approaches zero and the modified model approaches the original one. Adding additional
variability in this way has four positive effects:

A1. It smooths the likelihood surface, which facilitates optimization.

A2. It combats particle depletion by adding diversity to the population of particles.

A3. The additional variability can be exploited to explore the likelihood surface and estimate
the gradient of the (smoothed) likelihood, based on the same filtering procedure that is
required to estimate the value of the likelihood (Ionides et al. 2006, 2011).

A4. It preserves the plug-and-play property, inherited from the particle filter.

Iterated filtering is implemented in the mif function. By default, mif carries out the procedure
of Ionides et al. (2006). The improved iterated filtering algorithm (IF2) of Ionides et al. (2015)
has shown promise. A limited version of IF2 is available via the method = "mif2" option; a
full version of this algorithm will be released soon. In all iterated filtering methods, by analogy
with annealing, the random walk intensity can be called a temperature, which is decreased
according to a prescribed cooling schedule. One strives to ensure that the algorithm will
freeze at the maximum of the likelihood as the temperature approaches zero.
The perturbations on the parameters in lines 2 and 7 of Algorithm 3 follow a normal distri-
bution, with each component, [θ]i, of the parameter vector perturbed independently. Neither
normality nor independence are necessary for iterated filtering, but, rather than varying the
perturbation distribution, one can transform the parameters to make these simple algorithmic
choices reasonable.
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Algorithm 3: Iterated filtering: mif(P, start = θ0, Nmif =M, Np = J, rw.sd = σ1:p,
ic.lag =L, var.factor =C, cooling.factor = a), using notation from Table 1 where P is
a class ‘pomp’ object with defined rprocess, dmeasure, init.state, and obs components.
input: Starting parameter, θ0; simulator for fX0(x0 ;θ); simulator for

fXn|Xn−1(xn |xn−1 ;θ); evaluator for fYn|Xn
(yn |xn ;θ); data, y∗1:N ; labels,

I ⊂ {1, . . . , p}, designating IVPs; fixed lag, L, for estimating IVPs; number of
particles, J , number of iterations, M ; cooling rate, 0 < a < 1; perturbation scales,
σ1:p; initial scale multiplier, C > 0.

1 for m in 1:M do
2 Initialize parameters: [ΘF

0,j ]i ∼ Normal
(
[θm−1]i, (Cam−1σi)2) for i in 1:p, j in 1 : J .

3 Initialize states: simulate XF
0,j ∼ fX0

(
· ; ΘF

0,j
)
for j in 1:J .

4 Initialize filter mean for parameters: θ̄0 = θm−1.
5 Define [V1]i = (C2 + 1)(am−1σi)2.
6 for n in 1 : N do
7 Perturb parameters:

[
ΘP
n,j

]
i
∼ Normal

([
ΘF
n−1,j

]
i
, (am−1σi)2

)
for i 6∈ I, j in 1 : J .

8 Simulate prediction particles: XP
n,j ∼ fXn|Xn−1

(
· |XF

n−1,j ;ΘP
n,j

)
for j in 1 : J .

9 Evaluate weights: w(n, j) = fYn|Xn
(y∗n|XP

n,j ;ΘP
n,j) for j in 1 : J .

10 Normalize weights: w̃(n, j) = w(n, j)/
∑J
u=1w(n, u).

11 Apply Algorithm 2 to select indices k1:J with P [ku = j] = w̃ (n, j).
12 Resample particles: XF

n,j = XP
n,kj

and ΘF
n,j = ΘP

n,kj
for j in 1 : J .

13 Filter mean:
[
θ̄n
]
i

=
∑J
j=1 w̃(n, j)

[
ΘP
n,j

]
i
for i 6∈ I.

14 Prediction variance: [Vn+1]i = (am−1σi)2 +
∑
j w̃(n, j)

(
[ΘP

n,j ]i − [θ̄n]i
)2 for i 6∈ I.

15 end
16 Update non-IVPs: [θm]i = [θm−1]i + [V1]i

∑N
n=1[Vn]−1

i

(
[θ̄n]i − [θ̄n−1]i

)
for i 6∈ I.

17 Update IVPs: [θm]i = 1
J

∑
j

[
ΘF
L,j

]
i
for i ∈ I.

18 end
output: Monte Carlo maximum likelihood estimate, θM .
complexity: O(JM)

Algorithm 3 gives special treatment to a subset of the components of the parameter vector
termed initial value parameters (IVPs), which arise when unknown initial conditions are
modeled as parameters. These IVPs will typically be inconsistently estimable as the length of
the time series increases, since for a stochastic process one expects only early time points to
contain information about the initial state. Searching the parameter space using time-varying
parameters is inefficient in this situation, and so Algorithm 3 perturbs these parameters only
at time zero.
Lines 7–12 of Algorithm 3 are exactly an application of SMC (Algorithm 1) to a modified
POMP model in which the parameters are added to the state space. This approach has
been used in a variety of previously proposed POMP methodologies (Kitagawa 1998; Liu and
West 2001; Wan and Merwe 2000) but iterated filtering is distinguished by having theoretical
justification for convergence to the maximum likelihood estimate (Ionides et al. 2011).
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Algorithm 4: Particle Markov chain Monte Carlo: pmcmc(P, start = θ0, Nmcmc =M,
Np = J, proposal = q), using notation from Table 1 where P is a class ‘pomp’ object with
defined methods for rprocess, dmeasure, init.state, dprior, and obs. The supplied
proposal samples from a symmetric, but otherwise arbitrary, MCMC proposal distribution,
q(θP | θ).
input: Starting parameter, θ0; simulator for fX0(x0 | θ); simulator for

fXn|Xn−1(xn |xn−1 ;θ); evaluator for fYn|Xn
(yn |xn ;θ); simulator for q(θP | θ); data,

y∗1:N ; number of particles, J ; number of filtering operations, M ; perturbation scales,
σ1:p; evaluator for prior, fΘ(θ).

1 Initialization: compute ˆ̀(θ0) using Algorithm 1 with J particles.
2 for m in 1:M do
3 Draw a parameter proposal, θPm, from the proposal distribution: ΘP

m ∼ q ( · | θm−1).
4 Compute ˆ̀(θPm) using Algorithm 1 with J particles.
5 Generate U ∼ Uniform(0, 1).

6 Set
(
θm, ˆ̀(θm)

)
=


(
θPm,

ˆ̀(θPm)
)
, if U <

fΘ(θPm) exp(ˆ̀(θPm))
fΘ(θm−1) exp(ˆ̀(θm−1))

,(
θm−1, ˆ̀(θm−1)

)
, otherwise.

7 end
output: Samples, θ1:M , representing the posterior distribution, fΘ|Y1:N (θ | y∗1:N ).
complexity: O(JM)

3.3. Particle Markov chain Monte Carlo

Full information plug-and-play Bayesian inference for POMP models is enabled by particle
Markov chain Monte Carlo (PMCMC) algorithms (Andrieu et al. 2010). PMCMC methods
combine likelihood evaluation via SMC with MCMC moves in the parameter space. The
simplest and most widely used PMCMC algorithm, termed particle marginal Metropolis-
Hastings (PMMH), is based on the observation that the unbiased likelihood estimate provided
by SMC can be plugged into the Metropolis-Hastings update procedure to give an algorithm
targeting the desired posterior distribution for the parameters (Andrieu and Roberts 2009).
PMMH is implemented in pmcmc, as described in Algorithm 4. In part because it gains
only a single likelihood evaluation from each particle filtering operation, PMCMC can be
computationally relatively inefficient (Bhadra 2010; Ionides et al. 2015). Nevertheless, its
invention introduced the possibility of full-information plug-and-play Bayesian inferences in
some situations where they had been unavailable.

3.4. Synthetic likelihood of summary statistics

Some motivations to estimate parameters based on features rather than the full likelihood
include:

B1. Reducing the data to sensibly selected and informative low-dimensional summary statis-
tics may have computational advantages (Wood 2010).

B2. The scientific goal may be to match some chosen characteristics of the data rather than
all aspects of it. Acknowledging the limitations of all models, this limited aspiration may
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Algorithm 5: Synthetic likelihood evaluation: probe(P, nsim = J, probes = S), using
notation from Table 1 where P is a class ‘pomp’ object with defined methods for rprocess,
rmeasure, init.state, and obs.
input: Simulator for fXn|Xn−1(xn |xn−1 ;θ); simulator for fX0(x0 ;θ); simulator for

fYn|Xn
(yn |xn ;θ); parameter, θ; data, y∗1:N ; number of simulations, J ; vector of

summary statistics or probes, S = (S1, . . . ,Sd).
1 Compute observed probes: s∗i = Si(y∗1:N ) for i in 1:d.
2 Simulate J datasets: Y j

1:N ∼ fY1:N ( · ;θ) for j in 1:J .
3 Compute simulated probes: sij = Si(Y j

1:N ) for i in 1 : d and j in 1:J .
4 Compute sample mean: µi = J−1∑J

j=1 sij for i in 1:d.
5 Compute sample covariance: Σik = (J − 1)−1∑J

j=1(sij − µi)(skj − µk) for i and k in 1:d.
6 Compute the log synthetic likelihood:

ˆ̀S(θ) = −1
2 (s∗ − µ)>Σ−1(s∗ − µ)− 1

2 log |Σ| − d

2 log(2π). (5)

output: Synthetic likelihood, ˆ̀S(θ).
complexity: O(J)

be all that can reasonably be demanded (Kendall et al. 1999; Wood 2001).

B3. In conjunction with full-information methodology, consideration of individual features has
diagnostic value to determine which aspects of the data are driving the full-information
inferences (Reuman, Desharnais, Costantino, Ahmad, and Cohen 2006).

B4. Feature-based methods for dynamic models typically do not require the POMP model
structure. However, that benefit is outside the scope of the pomp package.

B5. Feature-based methods are typically doubly plug-and-play, meaning that they require
simulation, but not evaluation, for both the latent process transition density and the
measurement model.

When pursuing goal B1, one aims to find summary statistics which are as close as possible
to sufficient statistics for the unknown parameters. Goals B2 and B3 deliberately look for
features which discard information from the data; in this context the features have been
called probes (Kendall et al. 1999). The features are denoted by a collection of functions,
S = (S1, . . . ,Sd), where each Si maps an observed time series to a real number. We write
S = (S1, . . . , Sd) for the vector-valued random variable with S = S(Y1:N ), with fS(s ;θ)
being the corresponding joint density. The observed feature vector is s∗ where s∗i = Si(y∗1:N ),
and for any parameter set one can look for parameter values for which typical features for
simulated data match the observed features. One can define a likelihood function, `S(θ) =
fS(s∗ ;θ). Arguing that S should be approximately multivariate normal, for suitable choices
of the features, Wood (2010) proposed using simulations to construct a multivariate normal
approximation to `S(θ), and called this a synthetic likelihood.
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Algorithm 6: Approximate Bayesian computation: abc(P, start = θ0, Nmcmc =M,
probes = S, scale = τ1:d, proposal = q, epsilon = ε), using notation from Table 1, where P
is a class ‘pomp’ object with defined methods for rprocess, rmeasure, init.state, dprior,
and obs.
input: Starting parameter, θ0; simulator for fX0(x0 ;θ); simulator for

fXn|Xn−1(xn |xn−1 ;θ); simulator for fYn|Xn
(yn |xn ;θ); simulator for q(θP | θ); data,

y∗1:N ; number of proposals, M ; vector of probes, S = (S1, . . . ,Sd); perturbation
scales, σ1:p; evaluator for prior, fΘ(θ); feature scales, τ1:d; tolerance, ε.

1 Compute observed probes: s∗i = Si(y∗1:N ) for i in 1 : d.
2 for m in 1 : M do
3 Draw a parameter proposal, θPm, from the proposal distribution: ΘP

m ∼ q ( · | θm−1).
4 Simulate dataset: Y1:N ∼ fY1:N ( · ;θPm).
5 Compute simulated probes: si = Si(Y1:N ) for i in 1:d.
6 Generate U ∼ Uniform(0, 1).

7 Set θm =


θPm, if

d∑
i=1

(
si − s∗i
τi

)2
< ε2 and U <

fΘ(θPm)
fΘ(θm−1) ,

θm−1, otherwise.
8 end
output: Samples, θ1:M , representing the posterior distribution, fΘ|S1:d(θ | s∗1:d).
complexity: Nominally O(M), but performance will depend on the choice of ε, τi, and σi,

as well as on the choice of probes S.

Simulation-based evaluation of a feature matching criterion is implemented by probe (Algo-
rithm 5). The feature matching criterion requires a scale, and a natural scale to use is the
empirical covariance of the simulations. Working on this scale, as implemented by probe, there
is no substantial difference between the probe approaches of Kendall et al. (1999) and Wood
(2010). Numerical optimization of the synthetic likelihood is implemented by probe.match,
which offers the choice of either the subplex method (Rowan 1990; King 2015) or any method
provided by optim or the nloptr package (Johnson 2014; Ypma 2014).

3.5. Approximate Bayesian computation (ABC)

ABC algorithms are Bayesian feature-matching techniques, comparable to the frequentist
generalized method of moments (Marin, Pudlo, Robert, and Ryder 2012). The vector of
summary statistics S, the corresponding random variable S, and the value s∗ = S(y∗1:N ), are
defined as in Section 3.4. The goal of ABC is to approximate the posterior distribution of
the unknown parameters given S = s∗. ABC has typically been motivated by computational
considerations, as in point B1 of Section 3.4 (Sisson et al. 2007; Toni, Welch, Strelkowa, Ipsen,
and Stumpf 2009; Beaumont 2010). Points B2 and B3 also apply (Ratmann, Andrieu, Wiuf,
and Richardson 2009).
The key theoretical insight behind ABC algorithms is that an unbiased estimate of the like-
lihood can be substituted into a Markov chain Monte Carlo algorithm to target the required
posterior, the same result that justifies PMCMC (Andrieu and Roberts 2009). However,
ABC takes a different approach to approximating the likelihood. The likelihood of the ob-
served features, `S(θ) = fS(s∗ ;θ), has an approximately unbiased estimate based on a single
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Monte Carlo realization Y1:N ∼ fY1:N ( · ;θ) given by

ˆ̀ABC
S (θ) =


ε−dB−1

d

d∏
i=1

τi, if
d∑
i=1

(
si − s∗i
τi

)2
< ε2,

0, otherwise,
(6)

where Bd is the volume of the d-dimensional unit ball and τi is a scaling chosen for the ith
feature. The likelihood approximation in Equation 6 differs from the synthetic likelihood in
Algorithm 5 in that only a single simulation is required. As ε becomes small, the bias in
Equation 6 decreases but the Monte Carlo variability increases. The ABC implementation
abc (presented in Algorithm 6) is a random walk Metropolis implementation of ABC-MCMC
(Algorithm 3 of Marin et al. 2012). In the same style as iterated filtering and PMCMC, we
assume a Gaussian random walk in parameter space; the package supports alternative choices
of the proposal distribution.

3.6. Nonlinear forecasting
Nonlinear forecasting (NLF) uses simulations to build up an approximation to the one-step
prediction distribution that is then evaluated on the data. We saw in Section 3.1 that SMC
evaluates the prediction density for the observation, fYn|Y1:n−1(y∗n | y∗1:n−1 ;θ), by first building
an approximation to the prediction density of the latent process, fXn|Y1:n−1(xn | y∗1:n−1 ;θ).
By contrast, NLF uses simulations to fit a linear regression of Yn on the L variables Yn−c1 ,
. . . , Yn−cL , for some choice of positive lags c1:L. The prediction errors when this model is
applied to the data give rise to a quantity called the quasi-likelihood, which behaves for many
purposes like a likelihood (Smith 1993). The implementation in nlf maximizes the quasi-
likelihood computed in Algorithm 7, using the subplex method (Rowan 1990; King 2015)
or any other optimizer offerered by optim. The construction of the quasi-likelihood in nlf
follows the specific recommendations of Kendall, Ellner, McCauley, Wood, Briggs, Murdoch,
and Turchin (2005). In particular, the choice of radial basis functions, fk, in line 5 and the
specification of mk and s in lines 3 and 4 were proposed by Kendall et al. (2005) based on
trial and error. The quasi-likelihood is mathematically most similar to a likelihood when
min(c1:L) = 1, so that `Q(θ) approximates the factorization of the likelihood in Equation 2.
With this in mind, it is natural to choose contiguous lags c1:L = 1 : L. However, Kendall
et al. (2005) found that a two-step prediction criterion, with min(c1:L) = 2, led to improved
numerical performance. It is natural to ask when one might choose to use quasi-likelihood
estimation in place of full likelihood estimation implemented by SMC. Some considerations
follow, closely related to the considerations for the synthetic likelihood and ABC (Sections 3.4
and 3.5):

C1. NLF benefits from stationarity since (unlike SMC) it uses all time points in the simulation
to build a prediction rule valid at all time points. Indeed, NLF has not been considered
applicable for non-stationary models and, on account of this, nlf is not appropriate if the
model includes time-varying covariates. An intermediate scenario between stationarity
and full non-stationarity is seasonality, where the dynamic model is forced by cyclical
covariates, and this is supported by nlf (cf. B1 in Section 3.4).

C2. Potentially, quasi-likelihood could be preferable to full likelihood in some situations. It
has been argued that a two-step prediction criterion may sometimes be more robust than
the likelihood to model misspecification (Xia and Tong 2011) (cf. B2).
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Algorithm 7: Simulated quasi log likelihood for NLF. Pseudocode for the
quasi-likelihood function optimized by nlf( P, start = θ0, nasymp = J, nconverge =B,
nrbf =K, lags = c1:L). Using notation from Table 1, P is a class ‘pomp’ object with defined
methods for rprocess, rmeasure, init.state, and obs.
input: Simulator for fXn|Xn−1(xn |xn−1 ;θ); simulator for fX0(x0 ;θ); simulator for

fYn|Xn
(yn |xn ;θ); parameter, θ; data, y∗1:N ; collection of lags, c1:L; length of

discarded transient, B; length of simulation, J ; number of radial basis functions, K.
1 Simulate long stationary time series: Y1:(B+J) ∼ fY1:(B+J)( · ;θ).
2 Set Ymin = min{Y(B+1):(B+J)}, Ymax = max{Y(B+1):(B+J)} and R = Ymax − Ymin.
3 Locations for basis functions: mk = Ymin +R× [1.2× (k − 1)(K − 1)−1 − 0.1] for k in 1:K.
4 Scale for basis functions: s = 0.3×R .
5 Define radial basis functions: fk(x) = exp{(x−mk)2/2s2} for k in 1:K.
6 Define prediction function: H(yn−c1 , yn−c2 , . . . , yn−cL) =

∑L
j=1

∑K
k=1 ajkfk(yn−cj ).

7 Compute {ajk : j ∈ 1:L, k ∈ 1:K} to minimize

σ̂2 = 1
J

B+J∑
n=B+1

[
Yn −H(Yn−c1 , Yn−c2 , . . . , Yn−cL)

]2
. (7)

8 Compute the simulated quasi log likelihood:

ˆ̀
Q(θ) = −N − c2 log 2πσ̂2 −

N∑
n=1+c

[
y∗n −H(y∗n−c1 , y

∗
n−c2 , . . . , y

∗
n−cL

)
]2

2σ̂2 , (8)

where c = max(c1:L).
output: Simulated quasi log likelihood, ˆ̀

Q(θ).
complexity: O(B) +O(J)

C3. Arguably, two-step prediction should be viewed as a diagnostic tool that can be used to
complement full likelihood analysis rather than replace it (Ionides 2011) (cf. B3).

C4. NLF does not require that the model be Markovian (cf. B4), although the pomp imple-
mentation, nlf, does.

C5. NLF is doubly plug-and-play (cf. B5).

C6. The regression surface reconstruction carried out by NLF does not scale well with the
dimension of the observed data. NLF is recommended only for low-dimensional time
series observations.

NLF can be viewed as an estimating equation method, and so standard errors can be com-
puted by standard sandwich estimator or bootstrap techniques (Kendall et al. 2005). The
optimization in NLF is typically carried out with a fixed seed for the random number gen-
erator, so the simulated quasi-likelihood is a deterministic function. If rprocess depends
smoothly on the random number sequence and on the parameters, and the number of calls to
the random number generator does not depend on the parameters, then fixing the seed results
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in a smooth objective function. However, some common components to model simulators,
such as rnbinom, make different numbers of calls to the random number generator depending
on the arguments, which introduces nonsmoothness into the objective function.

4. Model construction and data analysis: Simple examples

4.1. A first example: The Gompertz model
The plug-and-play methods in pomp were designed to facilitate data analysis based on com-
plicated models, but we will first demonstrate the basics of pomp using simple discrete-time
models, the Gompertz and Ricker models for population growth (Reddingius 1971; Ricker
1954). The Ricker model will be introduced in Section 4.5 and used in Section 4.6; the re-
mainder of Section 4 will use the Gompertz model. The Gompertz model postulates that the
density, Xt+∆t, of a population of organisms at time t + ∆t depends on the density, Xt, at
time t according to

Xt+∆t = K1−e−r ∆t
Xe−r ∆t

t εt. (9)
In Equation 9, K is the carrying capacity of the population, r is a positive parameter, and
the εt are independent and identically-distributed lognormal random variables with log εt ∼
Normal(0, σ2). Additionally, we will assume that the population density is observed with
errors in measurement that are lognormally distributed:

log Yt ∼ Normal
(
logXt, τ

2
)
. (10)

Taking a logarithmic transform of Equation 9 gives

logXt+∆t ∼ Normal
((

1− e−r∆t
)

logK + e−r∆t logXt, σ
2
)
. (11)

On this transformed scale, the model is linear and Gaussian and so we can obtain exact
values of the likelihood function by applying the Kalman filter. Plug-and-play methods are
not strictly needed; this example therefore allows us to compare the results of generally
applicable plug-and-play methods with exact results from the Kalman filter. Later we will
look at the Ricker model and a continuous-time model for which no such special tricks are
available.
The first step in implementing this model in pomp is to construct an R (R Core Team 2016)
object of class ‘pomp’ that encodes the model and the data. This involves the specification
of functions to do some or all of rprocess, rmeasure, and dmeasure, along with data and
(optionally) other information. The documentation (?pomp) spells out the usage of the pomp
constructor, including detailed specifications for all its arguments and links to several exam-
ples.
To begin, we will write a function that implements the process model simulator. This is a
function that will simulate a single step (t→ t+ ∆t) of the unobserved process (Equation 9).

R> gompertz.proc.sim <- function(x, t, params, delta.t, ...) {
+ eps <- exp(rnorm(n = 1, mean = 0, sd = params["sigma"]))
+ S <- exp(-params["r"] * delta.t)
+ setNames(params["K"]^(1 - S) * x["X"]^S * eps, "X")
+ }
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The translation from the mathematical description (Equation 9) to the simulator is straight-
forward. When this function is called, the argument x contains the state at time t. The
parameters (including K, r, and σ) are passed in the argument params. Notice that x and
params are named numeric vectors and that the output must likewise be a named numeric
vector, with names that match those of x. The argument delta.t specifies the time-step size.
In this case, the time-step will be 1 unit; we will see below how this is specified.
Next, we will implement a simulator for the observation process, Equation 10.

R> gompertz.meas.sim <- function(x, t, params, ...) {
+ setNames(rlnorm(n = 1, meanlog = log(x["X"]), sd = params["tau"]), "Y")
+ }

Again the translation from the measurement model Equation 10 is straightforward. When
the function gompertz.meas.sim is called, the named numeric vector x will contain the
unobserved states at time t; params will contain the parameters as before. This return
value will be a named numeric vector containing a single draw from the observation process
(Equation 10).
Complementing the measurement model simulator is the corresponding measurement model
density, which we implement as follows:

R> gompertz.meas.dens <- function(y, x, t, params, log, ...) {
+ dlnorm(x = y["Y"], meanlog = log(x["X"]), sdlog = params["tau"],
+ log = log)
+ }

We will need this later on for inference using pfilter, mif and pmcmc. When the function
gompertz.meas.dens is called, y will contain the observation at time t, x and params will
be as before, and the parameter log will indicate whether the likelihood (log = FALSE) or
the log likelihood (log = TRUE) is required.
With the above in place, we build an object of class ‘pomp’ via a call to pomp:

R> gompertz <- pomp(data = data.frame(time = 1:100, Y = NA), times = "time",
+ rprocess = discrete.time.sim(step.fun = gompertz.proc.sim, delta.t = 1),
+ rmeasure = gompertz.meas.sim, t0 = 0)

The first argument (data) specifies a data frame that holds the data and the times at which
the data were observed. Since this is a toy problem, we have as yet no data; in a moment,
we will generate some simulated data. The second argument (times) specifies which of the
columns of data is the time variable. The rprocess argument specifies that the process model
simulator will be in discrete time, with each step of duration delta.t taken by the function
given in the step.fun argument. The rmeasure argument specifies the measurement model
simulator function. t0 fixes t0 for this model; here we have chosen this to be one time unit
prior to the first observation.
It is worth noting that implementing the rprocess, rmeasure, and dmeasure components as R
functions, as we have done above, leads to needlessly slow computation. As we will see below,
pomp provides facilities for specifying the model in C, which can accelerate computations
manyfold.
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Figure 1: Simulated data from the Gompertz model (Equations 9 and 10). This figure shows
the result of executing plot(gompertz, variables = "Y").

Before we can simulate from the model, we need to specify some parameter values. The
parameters must be a named numeric vector containing at least all the parameters referenced
by the functions gompertz.proc.sim and gompertz.meas.sim. The parameter vector needs
to determine the initial condition X(t0) as well. Let us take our parameter vector to be

R> theta <- c(r = 0.1, K = 1, sigma = 0.1, tau = 0.1, X.0 = 1)

The parameters r, K, σ, and τ appear in gompertz.proc.sim and gompertz.meas.sim. The
initial condition X0 is also given in theta. The fact that the initial condition parameter’s
name ends in .0 is significant: It tells pomp that this is the initial condition of the state variable
X. This use of the .0 suffix is the default behavior of pomp: One can however parameterize
the initial condition distribution arbitrarily using pomp’s optional initializer argument.
We can now simulate the model at these parameters:

R> gompertz <- simulate(gompertz, params = theta)

Now gompertz is identical to what it was before, except that the missing data have been
replaced by simulated data. The parameter vector (theta) at which the simulations were
performed has also been saved internally to gompertz. We can plot the simulated data via

R> plot(gompertz, variables = "Y")

Figure 1 shows the results of this operation.

4.2. Computing the likelihood using SMC

As discussed in Section 3, some parameter estimation algorithms in the pomp package are
doubly plug-and-play in that they require only rprocess and rmeasure. These include the
nonlinear forecasting algorithm nlf, the probe-matching algorithm probe.match, and ap-
proximate Bayesian computation via abc. The plug-and-play full-information methods in
pomp, however, require dmeasure, i.e., the ability to evaluate the likelihood of the data given
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the unobserved state. The gompertz.meas.dens above does this, but we must fold it into
the class ‘pomp’ object in order to use it. We can do this with another call to pomp:

R> gompertz <- pomp(gompertz, dmeasure = gompertz.meas.dens)

The result of the above is a new class ‘pomp’ object gompertz in every way identical to the one
we had before, but with the measurement-model density function dmeasure now specified.
To estimate the likelihood of the data, we can use the function pfilter, an implementation of
Algorithm 1. We must decide how many concurrent realizations (particles) to use: the larger
the number of particles, the smaller the Monte Carlo error but the greater the computational
burden. Here, we run pfilter with 1000 particles to estimate the likelihood at the true
parameters:

R> pf <- pfilter(gompertz, params = theta, Np = 1000)
R> loglik.truth <- logLik(pf)
R> loglik.truth

[1] 36.27102

Since the true parameters (i.e., the parameters that generated the data) are stored within the
class ‘pomp’ object gompertz and can be extracted by the coef function, we could have done

R> pf <- pfilter(gompertz, params = coef(gompertz), Np = 1000)

or simply

R> pf <- pfilter(gompertz, Np = 1000)

Now let us compute the log likelihood at a different point in parameter space, one for which
r, K, and σ are each 50% higher than their true values.

R> theta.guess <- theta.true <- coef(gompertz)
R> theta.guess[c("r", "K", "sigma")] <-
+ 1.5 * theta.true[c("r", "K", "sigma")]
R> pf <- pfilter(gompertz, params = theta.guess, Np = 1000)
R> loglik.guess <- logLik(pf)
R> loglik.guess

[1] 25.19585

In this case, the Kalman filter computes the exact log likelihood at the true parameters to
be 36.01, while the particle filter with 1000 particles gives 36.27. Since the particle filter
gives an unbiased estimate of the likelihood, the difference is due to Monte Carlo error in
the particle filter. One can reduce this error by using a larger number of particles and/or
by re-running pfilter multiple times and averaging the resulting estimated likelihoods. The
latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
we will demonstrate this in Section 4.3.
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4.3. Maximum likelihood estimation via iterated filtering

Let us use the iterated filtering approach described in Section 3.2 to obtain an approximate
maximum likelihood estimate for the data in gompertz. Since the parameters of Equations 9
and 10 are constrained to be positive, when estimating, we transform them to a scale on
which they are unconstrained. The following encodes such a transformation and its inverse:

R> gompertz.log.tf <- function(params, ...) log(params)
R> gompertz.exp.tf <- function(params, ...) exp(params)

We add these to the existing class ‘pomp’ object via:

R> gompertz <- pomp(gompertz, toEstimationScale = gompertz.log.tf,
+ fromEstimationScale = gompertz.exp.tf)

The following code initializes the iterated filtering algorithm at several starting points around
theta.true and estimates the parameters r, τ , and σ.

R> estpars <- c("r", "sigma", "tau")
R> library("foreach")
R> mif1 <- foreach(i = 1:10, .combine = c) %dopar% {
+ theta.guess <- theta.true
+ theta.guess[estpars] <- rlnorm(n = length(estpars),
+ meanlog = log(theta.guess[estpars]), sdlog = 1)
+ mif(gompertz, Nmif = 100, start = theta.guess, transform = TRUE,
+ Np = 2000, var.factor = 2, cooling.fraction = 0.7,
+ rw.sd = c(r = 0.02, sigma = 0.02, tau = 0.02))
+ }
R> pf1 <- foreach(mf = mif1, .combine = c) %dopar% {
+ pf <- replicate(n = 10, logLik(pfilter(mf, Np = 10000)))
+ logmeanexp(pf)
+ }

Note that we have set transform = TRUE in the call to mif above: This causes the parameter
transformations we have specified to be applied to enforce the positivity of parameters. Note
also that we have used the foreach package (Kane, Emerson, and Weston 2013; Revolution
Analytics and Weston 2014) to parallelize the computations.
Each of the 10 mif runs ends up with a different point estimate (Figure 2). We focus on that
with the highest estimated likelihood, having evaluated the likelihood several times to reduce
the Monte Carlo error in the likelihood evaluation. The particle filter produces an unbiased
estimate of the likelihood; therefore, we will average the likelihoods, not the log likelihoods.

R> mf1 <- mif1[[which.max(pf1)]]
R> theta.mif <- coef(mf1)
R> loglik.mif <- replicate(n = 10, logLik(pfilter(mf1, Np = 10000)))
R> loglik.mif <- logmeanexp(loglik.mif, se = TRUE)
R> theta.true <- coef(gompertz)
R> loglik.true <- replicate(n = 10, logLik(pfilter(gompertz, Np = 20000)))
R> loglik.true <- logmeanexp(loglik.true, se = TRUE)
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Figure 2: Convergence plots can be used to help diagnose convergence of the iterated filtering
(IF) algorithm. These and additional diagnostic plots are produced when plot is applied to
a class ‘mif’ or class ‘mifList’ object.

For the calculation above, we have replicated the iterated filtering search, made a careful
estimation of the log likelihood, ˆ̀, and its standard error using pfilter at each of the resulting
point estimates, and then chosen the parameter corresponding to the highest likelihood as
our numerical approximation to the maximum likelihood estimate (MLE). Taking advantage
of the Gompertz model’s tractability, we also use the Kalman filter to maximize the exact log
likelihood, `, and evaluate it at the estimated MLE obtained by mif. The resulting estimates
are shown in Table 3. Usually, the last row and column of Table 3 would not be available
even for a simulation study validating the inference methodology for a known POMP model.
In this case, we see that the mif procedure is successfully maximizing the likelihood up to an
error of about 0.1 log units.

4.4. Full information Bayesian inference via PMCMC

To carry out Bayesian inference we need to specify a prior distribution on unknown parame-
ters. The pomp constructor function provides the rprior and dprior arguments, which can be
filled with functions that simulate from and evaluate the prior density, respectively. Methods
based on random walk Metropolis-Hastings require evaluation of the prior density (dprior),
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r σ τ ˆ̀ s.e. `

Truth 0.1000 0.1000 0.1000 35.99 0.03 36.01
mif MLE 0.0127 0.0655 0.1200 37.68 0.04 37.62

Exact MLE 0.0322 0.0694 0.1170 37.87 0.02 37.88

Table 3: Results of estimating parameters r, σ, and τ of the Gompertz model (Equations 9
and 10) by maximum likelihood using iterated filtering (Algorithm 3), compared with the
exact MLE and with the true value of the parameter. The first three columns show the
estimated values of the three parameters. The next two columns show the log likelihood, ˆ̀,
estimated by SMC (Algorithm 1) and its standard error, respectively. The exact log likelihood,
`, is shown in the rightmost column. An ideal likelihood-ratio 95% confidence set, not usually
computationally available, includes all parameters having likelihood within qchisq(0.95, df
= 3)/2 = 3.91 of the exact MLE. We see that both the mif MLE and the truth are in this
set. In this example, the mif MLE is close to the exact MLE, so it is reasonable to expect
that profile likelihood confidence intervals and likelihood ratio tests constructed using the mif
MLE have statistical properties similar to those based on the exact MLE.

but not simulation (rprior), so we specify dprior for the Gompertz model as follows.

R> hyperparams <- list(min = coef(gompertz)/10, max = coef(gompertz) * 10)
R> gompertz.dprior <- function (params, ..., log) {
+ f <- sum(dunif(params, min = hyperparams$min, max = hyperparams$max,
+ log = TRUE))
+ if (log) f else exp(f)
+ }

The PMCMC algorithm described in Section 3.3 can then be applied to draw a sample from
the posterior. Recall that, for each parameter proposal, PMCMC pays the full price of a
particle filtering operation in order to obtain the Metropolis-Hastings acceptance probability.
For the same price, iterated filtering obtains, in addition, an estimate of the derivative and
a probable improvement of the parameters. For this reason, PMCMC is relatively inefficient
at traversing parameter space. When Bayesian inference is the goal, it is therefore advisable
to first locate a neighborhood of the MLE using, for example, iterated filtering. PMCMC
can then be initialized in this neighborhood to sample from the posterior distribution. The
following adopts this approach, running 5 independent PMCMC chains using a multivariate
normal random walk proposal (with diagonal variance-covariance matrix, see ?mvn.diag.rw).

R> pmcmc1 <- foreach(i = 1:5, .combine = c) %dopar% {
+ pmcmc(pomp(gompertz, dprior = gompertz.dprior), start = theta.mif,
+ Nmcmc = 40000, Np = 100, max.fail = Inf,
+ proposal = mvn.diag.rw(c(r = 0.01, sigma = 0.01, tau = 0.01)))
+ }

Comparison with the analysis of Section 4.3 reinforces the observation of Bhadra (2010) that
PMCMC can require orders of magnitude more computation than iterated filtering. Iterated
filtering may have to be repeated multiple times while computing profile likelihood plots,
whereas one successful run of PMCMC is sufficient to obtain all required posterior inferences.
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Figure 3: Diagnostic plots for the PMCMC algorithm. The trace plots in the left column show
the evolution of 5 independent MCMC chains after a burn-in period of length 20000. Kernel
density estimates of the marginal posterior distributions are shown in the right column. The
effective sample size of the 5 MCMC chains combined is lowest for the r variable, being equal
to 250: the use of 40000 proposal steps in this case is a modest number. The density plots at
right show the estimated marginal posterior distributions. The vertical line corresponds to
the true value of each parameter.

However, in practice, multiple runs from a range of starting points is always good practice
since convergence cannot be reliably assessed on the basis of a single chain. To verify the
convergence of the approach or to compare the performance with other approaches, we can
use diagnostic plots produced by the plot methods (see Figure 3).

4.5. A second example: The Ricker model

In Section 4.6, we will illustrate probe matching (see Section 3.4) using a stochastic version
of the Ricker map (Ricker 1954). We switch models to allow direct comparison with Wood
(2010), whose synthetic likelihood computations are reproduced below. In particular, the
results of Section 4.6 demonstrate frequentist inference using synthetic likelihood and also
show that the full likelihood is both numerically tractable and reasonably well behaved,
contrary to the claim of Wood (2010). We will also take the opportunity to demonstrate
features of pomp that allow acceleration of model codes through the use of R’s facilities for
compiling and dynamically linking C code.
The Ricker model is another discrete-time model for the size of a population. The population
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size, Nt, at time t is postulated to obey

Nt+1 = r Nt exp(−Nt + et), et∼Normal
(
0, σ2

)
. (12)

In addition, we assume that measurements, Yt, of Nt are themselves noisy, according to

Yt∼Poisson(φNt), (13)

where φ is a scaling parameter. As before, we will need to implement the model’s state-
process simulator (rprocess). We have the option of writing these functions in R, as we did
with the Gompertz model. However, we can realize manyfold speed-ups by writing these in
C. In particular, pomp allows us to write snippets of C code that it assembles, compiles, and
dynamically links into a running R session. To begin the process, we will write snippets for
the rprocess, rmeasure, and dmeasure components.

R> ricker.sim <- "
+ e = rnorm(0, sigma);
+ N = r * N * exp(-N + e);
+ "
R> ricker.rmeas <- "
+ y = rpois(phi * N);
+ "
R> ricker.dmeas <- "
+ lik = dpois(y, phi * N, give_log);
+ "

Note that, in this implementation, both N and e are state variables. The logical flag give_log
requests the likelihood when FALSE, the log likelihood when TRUE. Notice that, in these snip-
pets, we never declare the variables; pomp will construct the appropriate declarations auto-
matically.
In a similar fashion, we can add transformations of the parameters to enforce constraints.

R> log.trans <- "
+ Tr = log(r);
+ Tsigma = log(sigma);
+ Tphi = log(phi);
+ TN_0 = log(N_0);"
R> exp.trans <- "
+ Tr = exp(r);
+ Tsigma = exp(sigma);
+ Tphi = exp(phi);
+ TN_0 = exp(N_0);"

Note that in the foregoing C snippets, the prefix T designates the transformed version of the
parameter. A full set of rules for using Csnippets, including illustrative examples, is given in
the package help system (?Csnippet).
Now we can construct a class ‘pomp’ object as before and fill it with simulated data:
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R> ricker <- pomp(data = data.frame(time = seq(0, 50, by = 1), y = NA),
+ rprocess = discrete.time.sim(step.fun = Csnippet(ricker.sim),
+ delta.t = 1), rmeasure = Csnippet(ricker.rmeas),
+ dmeasure = Csnippet(ricker.dmeas),
+ toEstimationScale = Csnippet(log.trans),
+ fromEstimationScale = Csnippet(exp.trans),
+ paramnames = c("r", "sigma", "phi", "N.0", "e.0"),
+ statenames = c("N", "e"), times = "time", t0 = 0,
+ params = c(r = exp(3.8), sigma = 0.3, phi = 10, N.0 = 7,
+ e.0 = 0))
R> ricker <- simulate(ricker, seed = 73691676L)

4.6. Feature-based synthetic likelihood maximization
In pomp, probes are simply functions that can be applied to an array of real or simulated data
to yield a scalar or vector quantity. Several functions that create useful probes are included
with the package, including those recommended by Wood (2010). In this illustration, we will
make use of these probes: probe.marginal, probe.acf, and probe.nlar. probe.marginal
regresses the data against a sample from a reference distribution; the probe’s values are those
of the regression coefficients. probe.acf computes the auto-correlation or auto-covariance of
the data at specified lags. probe.nlar fits a simple nonlinear (polynomial) autoregressive
model to the data; again, the coefficients of the fitted model are the probe’s values. We
construct a list of probes:

R> plist <- list(probe.marginal("y", ref = obs(ricker), transform = sqrt),
+ probe.acf("y", lags = c(0, 1, 2, 3, 4), transform = sqrt),
+ probe.nlar("y", lags = c(1, 1, 1, 2), powers = c(1, 2, 3, 1),
+ transform = sqrt))

Each element of plist is a function of a single argument. Each of these functions can be
applied to the data in ricker and to simulated data sets. Calling pomp’s function probe
results in the application of these functions to the data, and to each of some large number,
nsim, of simulated data sets, and finally to a comparison of the two. [Note that probe
functions may be vector-valued, so a single probe taking values in Rk formally corresponds
to a collection of k probe functions in the terminology of Section 3.4.] Here, we will apply
probe to the Ricker model at the true parameters and at a wild guess.

R> pb.truth <- probe(ricker, probes = plist, nsim = 1000, seed = 1066L)
R> guess <- c(r = 20, sigma = 1, phi = 20, N.0 = 7, e.0 = 0)
R> pb.guess <- probe(ricker, params = guess, probes = plist, nsim = 1000,
+ seed = 1066L)

Results summaries and diagnostic plots showing the model-data agreement and correlations
among the probes can be obtained by

R> summary(pb.truth)
R> summary(pb.guess)
R> plot(pb.truth)
R> plot(pb.guess)
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Figure 4: Results of plot on a class ‘probed.pomp’ object. Above the diagonal, the pairwise
scatterplots show the values of the probes on each of the 1000 data sets. The red lines
show the values of each of the probes on the data. The panels along the diagonal show the
distributions of the probes on the simulated data, together with their values on the data and
two-sided p values. The numbers below the diagonal are the Pearson correlations between
the corresponding pairs of probes.

An example of a diagnostic plot (using a smaller set of probes) is shown in Figure 4. Among
the quantities returned by summary is the synthetic likelihood (Algorithm 5). One can attempt
to identify parameters that maximize this quantity; this procedure is referred to in pomp as
“probe matching”. Let us now attempt to fit the Ricker model to the data using probe-
matching.

R> pm <- probe.match(pb.guess, est = c("r", "sigma", "phi"),
+ transform = TRUE, method = "Nelder-Mead", maxit = 2000,
+ seed = 1066L, reltol = 1e-08)
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r σ φ ˆ̀ s.e.(ˆ̀) ˆ̀S s.e.(ˆ̀S)
Guess 20.0 1.000 20.0 −230.8 0.08 −5.6 0.16
Truth 44.7 0.300 10.0 −139.0 0.03 17.7 0.03
MLE 45.0 0.186 10.2 −137.2 0.04 18.0 0.04

MSLE 42.1 0.337 11.3 −145.7 0.03 19.4 0.02

Table 4: Parameter estimation by means of maximum synthetic likelihood (Algorithm 5) vs.
by means of maximum likelihood via iterated filtering (Algorithm 3). The row labeled “guess”
contains the point at which both algorithms were initialized. That labeled “truth” contains the
true parameter value, i.e., that at which the data were generated. The rows labeled “MLE”
and “MSLE” show the estimates obtained using iterated filtering and maximum synthetic
likelihood, respectively. Parameters r, σ, and τ were estimated; all others were held at their
true values. The columns labeled ˆ̀and ˆ̀S are the Monte Carlo estimates of the log likelihood
and the log synthetic likelihood, respectively; their Monte Carlo standard errors are also
shown. While likelihood maximization results in an estimate for which both ˆ̀ and ˆ̀S exceed
their values at the truth, the value of ˆ̀at the MSLE is smaller than at the truth, an indication
of the relative statistical inefficiency of maximum synthetic likelihood.

This code runs optim’s Nelder-Mead optimizer from the starting parameters guess in an
attempt to maximize the synthetic likelihood based on the probes in plist. Both the starting
parameters and the list of probes are stored internally in pb.guess, which is why we need not
specify them explicitly here. While probe.match provides substantial flexibility in the choice
of the optimization algorithm, for situations requiring greater flexibility, pomp provides the
function probe.match.objfun, which constructs an objective function suitable for use with
arbitrary optimization routines.
To put the synthetic likelihood approach into context, let us compare the results of estimating
the Ricker model parameters using probe-matching and using iterated filtering (IF), which is
based on the likelihood. The following code runs 600 IF iterations starting at guess:

R> mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+ cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+ rw.sd = c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
R> mf <- continue(mf, Nmif = 500, max.fail = 20)

Table 4 compares parameters, Monte Carlo likelihoods (ˆ̀), and synthetic likelihoods (ˆ̀S, based
on the probes in plist) at each of (a) the guess, (b) the truth, (c) the MLE from mif, and
(d) the maximum synthetic likelihood estimate (MSLE) from probe.match. These results
demonstrate that it is possible, and indeed not difficult, to maximize the likelihood for this
model, contrary to the claim of Wood (2010). Since synthetic likelihood discards some of the
information in the data, it is not surprising that Table 4 also shows the statistical inefficiency
of the maximum synthetic likelihood relative to that of the likelihood.

4.7. Bayesian feature matching via ABC

Whereas the synthetic likelihood approach carries out many simulations for each likelihood
estimation, ABC (as described in Section 3.5) uses only one. Each iteration of ABC is
therefore much quicker, essentially corresponding to the cost of SMC with a single particle or
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Figure 5: Marginal posterior distributions using full information via pmcmc (solid line) and
partial information via abc (dashed line). Kernel density estimates are shown for the posterior
marginal densities of log10(r) (left panel), log10(σ) (middle panel), and log10(τ) (right panel).
The vertical lines indicate the true values of each parameter.

the synthetic likelihood approach with a single simulation. A consequence of this is that ABC
cannot determine a good relative scaling of the features within each likelihood evaluation and
this must be supplied in advance. One can imagine an adaptive version of ABC which modifies
the scaling during the course of the algorithm, but here we do a preliminary calculation to
accomplish this. We return to the Gompertz model to faciliate comparison between ABC and
PMCMC.

R> plist <- list(probe.mean(var = "Y", transform = sqrt),
+ probe.acf("Y", lags = c(0, 5, 10, 20)),
+ probe.marginal("Y", ref = obs(gompertz)))
R> psim <- probe(gompertz, probes = plist, nsim = 500)
R> scale.dat <- apply(psim$simvals, 2, sd)
R> abc1 <- foreach(i = 1:5, .combine = c) %dopar% {
+ abc(pomp(gompertz, dprior = gompertz.dprior), Nabc = 4e6,
+ probes = plist, epsilon = 2, scale = scale.dat,
+ proposal = mvn.diag.rw(c(r = 0.01, sigma = 0.01, tau = 0.01)))
+ }

The effective sample size of the ABC chains is lowest for the r parameter (as was the case
for PMCMC) and is 430, as compared to 250 for pmcmc in Section 4.4. The total computa-
tional effort allocated to abc here matches that for pmcmc since pmcmc used 100 particles for
each likelihood evaluation but is awarded 100 times fewer Metropolis-Hastings steps. In this
example, we conclude that abc mixes somewhat more rapidly (as measured by total com-
putational effort) than pmcmc. Figure 5 investigates the statistical efficiency of abc on this
example. We see that abc gives rise to somewhat broader posterior distributions than the
full-information posteriors from pmcmc. As in all numerical studies of this kind, one cannot
readily generalize from one particular example: Even for this specific model and dataset, the
conclusions might be sensitive to the algorithmic settings. However, one should be aware of
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