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Abstract

Count and proportion data may present overdispersion, i.e., greater variability than
expected by the Poisson and binomial models, respectively. Different extended generalized
linear models that allow for overdispersion may be used to analyze this type of data, such
as models that use a generalized variance function, random-effects models, zero-inflated
models and compound distribution models. Assessing goodness-of-fit and verifying as-
sumptions of these models is not an easy task and the use of half-normal plots with a
simulated envelope is a possible solution for this problem. These plots are a useful indica-
tor of goodness-of-fit that may be used with any generalized linear model and extensions.
For GLIM users, functions that generated these plots were widely used, however, in the
open-source software R, these functions were not yet available on the Comprehensive R
Archive Network (CRAN). We describe a new package in R, hnp, that may be used to
generate the half-normal plot with a simulated envelope for residuals from different types
of models. The function hnp() can be used together with a range of different model fitting
packages in R that extend the basic generalized linear model fitting in glm() and is writ-
ten so that it is relatively easy to extend it to new model classes and different diagnostics.
We illustrate its use on a range of examples, including continuous and discrete responses,
and show how it can be used to inform model selection and diagnose overdispersion.

Keywords: goodness-of-fit, generalized linear models, mixed models, R.

1. Introduction

An important step of statistical modeling of any sort is to perform diagnostic analyses to
assess goodness-of-fit. Several problems arise when model assumptions are not met such
as misleading estimates, standard errors and p values and/or wrong conclusions about the
process being studied. Among the reasons for a poorly-fitted model, the most common ones
are
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• measurement error of observed and/or explanatory variables (including typos);

• incomplete or inadequate linear predictor to describe the systematic structure of the
data;

• incorrect specification of the error distribution or link function;

• unmodelled overdispersion;

• combination of one or more of the above.

When fitting linear models under the normality assumption, goodness-of-fit can be checked
using formal tests, such as the Shapiro-Wilk test for residual normality (Shapiro and Wilk
1965), or the Bartlett test for variance homogeneity (Bartlett 1937). However, these tests may
fail under many circumstances, such as small sample sizes, and usually graphical techniques
provide a better assessment for model goodness-of-fit. These techniques include plotting
different types of residuals or influence measures (e.g., leverage and Cook’s distance). Several
types of residuals may be used (e.g., standardized residuals, studentized residuals, deletion
residuals, Pearson residuals, deviance residuals, etc.). However, for other types of model,
diagnostic checking may be problematic. Useful diagnostic-checking plots include

• residuals vs. explanatory variables – indicates whether higher-order terms should be
included in the linear predictor or the need for transformation of the response and/or
explanatory variables (for quantitative explanatory variables);

• residuals vs. explanatory variables not included in the model – a systematic relationship
indicates that the explanatory variables should be included in the linear predictor;

• added-variable plot – detects the relationship of the response variable with an explana-
tory variable not included in the model allowing for the effects of other variables;

• residuals vs. fitted values – may reveal variance heterogeneity and/or outliers;

• (half-)normal plot of residuals – detects outliers and indicates whether the error distri-
bution was specified appropriately.

Under a normally distributed error assumption, when a model fits the data well, it is expected
that studentized residuals follow a t distribution on the residual degrees of freedom, which
for large samples converges to the standard normal distribution. In this case, the half-normal
plot of these residuals should show a straight 45◦ line. However, it is hard to interpret whether
points are sufficiently aligned or if the inevitable irregularities are caused by something other
than random fluctuations. Another difficulty posed by these plots is that the ordering of
the observations may induce dependence. For generalized linear models, this plot may have
several forms depending on the variance and link functions and response variable distribution.
Atkinson (1985) proposes the addition of a simulated envelope so that interpretation is more
straightforward. For a well-fitted model the envelope is such that model diagnostics are
likely to fall within it. The purpose is not to provide a region for acceptance or rejection of
observations but to serve as a guide of what to expect under a well-fitted model. These plots
are also useful for detecting possible outliers, overdispersion, and if the link function and/or
error distribution were properly specified (Demétrio, Hinde, and Moral 2014).
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When fitting generalized linear models, or different types of extended models (e.g., zero-
inflated models and mixed models), half-normal plots with simulated envelopes are useful
to assess goodness-of-fit, especially when analyzing overdispersed data. Demétrio and Hinde
(1997) wrote GLIM4 macros (Francis, Green, and Payne 1993) to produce these plots for
different overdispersion models. We developed the R (R Core Team 2017) package hnp (Moral,
Hinde, and Demétrio 2017) that provides functions for generating half-normal plots with
a simulated envelope for a range of generalized linear models and extensions. The scope
of the hnp() function can be easily extended to include different diagnostics and models
by the user-specification of appropriate simulation, model fitting, and diagnostic extraction
codes. Package hnp is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=hnp.

2. Generalized linear models and overdispersion
The generalized linear models (GLMs) framework of statistical modeling, formulated by
Nelder and Wedderburn (1972), provides a unified theory for the application of normal, bino-
mial, Poisson, gamma and inverse Gaussian regression models and brings together methods
for the analysis of count, proportion, continuous measurement and time to event data, that
until then were studied separately. As well as building on the standard normal regression
model, this theory also generalizes the ideas of analysis of variance through the analysis of
deviance.
For random variables Y1, . . . , Yn, with probability function (pf) (Yi discrete) or probabil-
ity density function (pdf) (Yi continuous) f(yi; θi), where θi is associated with explanatory
variables x1, . . . , xp, statistical modeling will typically be based on a random sample of n ob-
servations (yi; xi),xi = (xi1, . . . , xip)>. A GLM is defined in terms of three basic components.
The first component, called the random component, is represented by the random variables
Y1, . . . , Yn following a distribution which belongs to the exponential family of distributions
and differs only in terms of a parameter θi. Writing the exponential family in canonical form,
the pf or pdf is given by:

f(yi; θi, φ) = exp{φ−1[yiθi − b(θi)] + c(yi;φ)}, (1)

where b(·) and c(·) are known functions, φ > 0 is a known dispersion parameter and θi is
called the canonical parameter. The normal, Poisson, binomial, gamma, inverse Gaussian
and negative binomial distributions (with suitable definitions of dispersion parameters) all
belong to the exponential family and can be expressed in the canonical form (1). For this
family of distributions we have that E(Yi) = µi = b′(θi) and VAR(Yi) = φb′′(θi) = φVi, where
Vi = V (µi) = dµi/dθi is called variance function and depends only on the mean µi.
Writing X = (x1, . . . ,xn)> as the design (model) matrix and β = (β1, . . . , βp)> as the vec-
tor of unknown parameters, the second component is a linear predictor η = Xβ, called the
systematic component. Finally, the third component, the link function g(·), which is a mono-
tonic and differentiable function, links the random and systematic components by relating
the mean to the linear predictor through ηi = g(µi).
Nelder and Wedderburn (1972) proposed the scaled deviance as an overall discrepancy quan-
tity to measure the fit of a GLM . This is given by

Sp = 2(l̂n − l̂p), (2)

https://CRAN.R-project.org/package=hnp
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where l̂p and l̂n are the maximum of the log-likelihood functions for the current and saturated
models, respectively, and the saturated model is one whose fit reproduces the observed data
and typically has n parameters. These maximized likelihoods may be written as

l̂n = φ−1
n∑
i=1

[yiθ̃i − b(θ̃i)] +
n∑
i=1

c(yi, φ)

and
l̂p = φ−1

n∑
i=1

[yiθ̂i − b(θ̂i)] +
n∑
i=1

c(yi, φ),

where θ̃ and θ̂ are the maximum likelihood estimates of the canonical parameter for the
saturated and current models, respectively, hence we may also write the scaled deviance as

Sp = 2φ−1
n∑
i=1

[yi(θ̃i − θ̂i) + b(θ̂i)− b(θ̃i)]. (3)

Another important overall discrepancy measure of a fitted model is the generalized Pearson
statistic X2

p , given by

X2
p =

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
. (4)

For the true model and a known dispersion parameter φ both the scaled deviance and the
scaled generalized Pearson statistic follow, asymptotically, a χ2 distribution with n−p degrees
of freedom, although Jørgensen (2002) recommends the use of the scaled X2

p statistic as
convergence to the reference distributions is more rapidly achieved as the sample size n
increases. For further details on GLM theory, see McCullagh and Nelder (1989). When φ is
unknown, there is no formal goodness-of-fit test available based on Sp or scaled X2

p and in
this case X2

p is often used to estimate φ (Jørgensen 2002).
To analyze count and proportion data the Poisson and binomial models are, respectively,
reasonable first choices. For these distributions the dispersion parameter is fixed and equal to
1. For a well-fitted model it is expected that the residual deviance and the generalized Pearson
statistic should be approximately equal to the residual degrees of freedom, the expected value
of the χ2 reference distribution. When this does not happen, the model may not fit the data
well (for various reasons, such as a misspecified linear predictor or link function, outliers,
etc.), or simply, the variation in the data may be larger than is predicted by these models, a
phenomenon often referred to as overdispersion, see Hinde and Demétrio (1998). There are
different causes of overdispersion and failure to take it into account may result in misleading
inferences. For a more thorough discussion, see Demétrio et al. (2014).
These basic models can be extended to incorporate overdispersion in several ways. A relatively
simple extension involves the specification of a more general variance function. For example, to
analyze count data, suppose that Yi ∼ P(µi), then the Poisson model assumes that E(Yi) = µi
and that VAR(Yi) = µi. Then, a simple extension is to take VAR(Yi) = φµi and use a quasi-
likelihood approach to estimate φ > 1, as the variance is greater than expected under the
Poisson model. This specification of the variance function is called constant overdispersion.
This may be generalized further by taking

VAR(Yi) = µi(1 + φµδi ). (5)
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For φ = 0, this is simply the variance function of the standard Poisson model; for δ = 0
it gives the constant overdispersion case; while if δ = 1 we get the same type of quadratic
variance function as for the negative binomial type-II model.
A similar approach may also be adopted for proportion data. Suppose that Yi ∼ B(mi, πi),
then the standard binomial model assumes that E(Yi) = miπi and VAR(Yi) = miπi(1 − πi).
If we now take an extended variance function

VAR(Yi) = miπi(1− πi){1 + φ(mi − 1)δ1 [πi(1− πi)]δ2}, (6)

for φ = 0, the expression is the same as for the standard binomial model; for δ1 = δ2 = 0, we
obtain the constant overdispersion variance function; while if δ1 = 1 and δ2 = 0, this is the
same form of variance function as the beta-binomial model.
Another way to model overdispersion consists in adding an observation-level random effect in
the linear predictor, i.e.,

η = Xβ + σz,
where z = (z1, z1, . . . , zn)> is the vector of random effects, and typically we assume that
Zi ∼ N(0, 1). For count data, this leads to the Poisson-normal model. For proportion data,
when the logit link is used, this results in the binomial-logit-normal model. This approach
is closely related to the ideas in two-stage models where the basic parameter of interest is
assumed to be an individual level random variable. This leads to negative binomial models
for count data (by assuming the Poisson mean to have a gamma distribution) and the beta-
binomial model for counted proportions (by assuming the binomial probability to have a beta
distribution). Further details on overdispersion models for count and proportion data may
be found in Hinde and Demétrio (1998) and Demétrio et al. (2014).

3. Half-normal plots with simulated envelopes
This relatively easy technique consists in plotting the ordered absolute values of a model
diagnostic versus the expected order statistics of a half-normal distribution, which can be
approximated as

Φ−1
(
i+ n− 1

8
2n+ 1

2

)
, (7)

where i is the ith order statistic, 1 ≤ i ≤ n and n is the sample size, as in McCullagh
and Nelder (1989, p. 407), following the results from Blom (1958) and Royston (1982). For
a normal plot we use the ordered values versus the expected order statistics of a normal
distribution, approximated as

Φ−1
(
i− 3

8
n+ 1

4

)
. (8)

These order statistics are easily obtained using the R function qnorm, e.g., for n = 7 the
expected order statistics of the half-normal distribution are

R> i <- 1:7
R> n <- 7
R> qnorm((i + n - 1/8) / (2 * n + 1/2))
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[1] 0.1082554 0.2847156 0.4705935 0.6744898 0.9114298 1.2155984 1.7157550

Obtaining the simulated envelope for a half-normal plot is simple and consists of

1. fitting a model;

2. extracting model diagnostics and calculating sorted absolute values;

3. simulating 99 (or more) response variables using the same model matrix, error distri-
bution and parameter estimates;

4. fitting the same model to each simulated response variable and extracting the same
model diagnostics, and again sorting the absolute values;

5. computing the desired percentiles (e.g., 2.5 and 97.5) of the simulated diagnostic values
at each value of the expected order statistic and using these to form the envelope.

3.1. Implemented model classes
Function hnp() handles many different model classes and more will be implemented as time
goes by. So far, a range of generalized linear models and extensions are included:

• models for continuous data – Gaussian (lm, aov and glm functions), gamma (glm func-
tion), and inverse Gaussian (glm function) models;

• models for count data – Poisson and quasi-Poisson (glm function), negative binomial
type-II (glm.nb function in package MASS, Venables and Ripley 2002; or aodml function
in package aods3, Lesnoff and Lancelot 2013), and hurdle Poisson and negative binomial
(hurdle function in package pscl, Zeileis, Kleiber, and Jackman 2008) models;

• models for proportion data – binomial and quasi-binomial (glm function), beta-binomial
(vglm function in package VGAM, Yee 2010; aodml function in package aods3, gamlss
function in package gamlss, Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby
2007; glmmadmb function in package glmmADMB, Skaug, Fournier, Bolker, Magnusson,
and Nielsen 2014), and multinomial (multinom function in package nnet, Venables and
Ripley 2002) models;

• models for zero-inflated data – zero-inflated Poisson and negative binomial (zeroinfl
function in package pscl), zero-inflated binomial (vglm function in package VGAM,
gamlss function in package gamlss, glmmadmb function in package glmmADMB), and
zero-inflated beta-binomial (gamlss function in package gamlss, glmmadmb function in
package glmmADMB) models;

• mixed models – Gaussian (lmer function in package lme4, Bates, Mächler, Bolker, and
Walker 2015; Doran, Bates, Bliese, and Dowling 2007), Poisson-normal and binomial-
normal (glmer function in package lme4) models.

3.2. Simulation procedures
For most of the implemented model classes, the simulation procedures are already imple-
mented in the R base packages or in the packages being used to fit the models, such as the
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rbinom, rpois, rmultinom, rgamma and rnorm functions for binomial, Poisson, multinomial,
gamma and normal models. Package mgcv’s (Wood 2006) function rig was used for inverse
Gaussian models; package gamlss’s (Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby
2007) functions rBB, rZIBI and rZIBB were used for beta-binomial, zero-inflated binomial
and zero-inflated beta-binomial models fitted using gamlss; package VGAM’s (Yee 2010)
functions rbetabinom and rzibinom were used for beta-binomial and zero-inflated binomial
models fitted using vglm; package lme4’s (Bates et al. 2015; Doran et al. 2007) function
simulate was used for generalized linear mixed models fitted using lmer and glmer; package
MASS’s (Venables and Ripley 2002) function rnegbin for negative binomial models.
For the quasi-binomial model the random samples were simulated using rbinom and then
multiplied by φ (summary(model)$dispersion) and the residuals were then scaled by 1/

√
φ.

For the quasi-Poisson model, the function rnbinom was adapted with the size argument set
to µ/(φ − 1). New functions were written for zero-inflated binomial and zero-inflated beta-
binomial models fitted with glmmADMB (Skaug et al. 2014) and for zero-inflated and hurdle
Poisson and negative binomial models fitted with pscl (Zeileis et al. 2008). The simulation
procedures are all accessible in the code of package hnp.

3.3. New class implementation

To produce the half-normal plot with a simulated envelope, three procedures are required:
(i) one to extract a diagnostic measure from the fitted model, (ii) one to simulate response
variables using information from the model (error distribution, model matrix and fitted pa-
rameters), and finally (iii) one to refit the same model to the simulated data. The hnp function
firstly recognizes the model class of the fitted object. If this class is not yet implemented, it
returns an error. However, users may opt to supply their own diagnostic extraction, simula-
tion and model fitting functions so that the half-normal plot is produced, see Section 4 for a
practical guide.

4. Examples
Package hnp provides a range of examples drawn from Demétrio et al. (2014) and two of them
will be discussed below for overdispersed proportion and count data. An example on orange
tree embryogenesis (Tomaz, Mendes, Filho, Demétrio, Jansakul, and Rodriguez 1997) will
be used to discuss new class implementation and an example on leukemia recurrence times
(Miller 1997) will be used to discuss the survival analysis models implementation.

4.1. Overdispersed proportion data

A major pest of stored maize in Brazil is Sitophilus zeamais. In an experiment to assess the
insecticide action of organic extracts of Annona mucosa (Annonaceae), Petri dishes containing
10g of corn were treated with extracts prepared with different parts of the plant (seeds, leaves
and branches) at a concentration of 1500mg/kg or just water (control), using a completely
randomized design with 10 replicates. Then 20 Sitophilus zeamais adults were placed in each
Petri dish and, after 60 days, the numbers of damaged and undamaged corn grains were
counted, see Ribeiro et al. (2013).
We begin by fitting a standard binomial model, i.e., Yij ∼ B(mij , πij), to the data using the
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logit link with the following linear predictor:

log
(

πij
1− πij

)
= β0 + ei, (9)

where β0 is the intercept and ei is the effect of the ith extract, i = 1, . . . , 4. We can fit this
model in R and produce a simple analysis of deviance table using glm() and anova():

R> library("hnp")
R> data("corn", package = "hnp")
R> fit1_b <- glm(cbind(y, m - y) ~ extract, family = binomial, data = corn)
R> anova(fit1_b, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(y, m - y)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 39 801.96
extract 3 636.04 36 165.92 < 2.2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The residual deviance is much larger than the number of residual degrees of freedom, indi-
cating that the model does not fit the data well. We can easily check this by producing the
half-normal plot with simulation envelope, see Figure 1(a) and it is clear that this is not a
good model fit.

R> set.seed(1234)
R> hnp(fit1_b, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(a) Binomial model", pch = 4)

By default the deviance residuals have been used. Users may change colors, sizes or point
character symbols freely using the same arguments passed to plot() and par(). We now
turn into fitting overdispersion models, and begin by considering a quasi-likelihood approach:

R> fit2_b <- glm(cbind(y, m - y) ~ extract, family = quasibinomial,
+ data = corn)
R> summary(fit2_b)$dispersion

[1] 4.409755

R> hnp(fit2_b, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(b) Quasi-binomial model", pch = 4)
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(c) Beta−binomial model
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Figure 1: Half-normal plots with simulated envelopes for the deviance residuals from (a)
the binomial model, (b) the quasi-binomial model, (c) the beta-binomial model, and (d) the
binomial-logit-normal model, fitted to the corn data.

We observe that the estimated dispersion parameter is φ̂ = 4.41 and the half-normal plot
indicates that this model fit was satisfactory with most of the deviance residuals lying within
the simulated envelope, see Figure 1(b). We may also easily fit other overdispersion models,
such as the beta-binomial model using the same linear predictor (9) or the binomial-logit-
normal model in which a random effect is included in the linear predictor:

log
(

πij
1− πij

)
= β0 + ei + σZij , (10)

where Zij ∼ N(0, σ2). To fit these models, we make use of the packages aods3 (Lesnoff and
Lancelot 2013) and lme4 (Bates et al. 2015; Doran et al. 2007):

R> library("aods3")
R> fit3_b <- aodml(cbind(y, m - y) ~ extract, family = "bb", data = corn)
R> hnp(fit3_b, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(c) Beta-binomial model", pch = 4)
R> library("lme4")
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R> x <- factor(seq_len(nrow(corn)))
R> fit4_b <- glmer(cbind(y, m - y) ~ extract + (1 | x),
+ family = binomial, data = corn)
R> hnp(fit4_b, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(d) Binomial-logit-normal model", pch = 4)

Both resulting half-normal plots with simulation envelopes show that these are also satisfac-
tory models for this data set, see Figures 1(c) and 1(d).
The three overdispersion models seem to fit the data equally well, which is not a surprise
because the binomial sample sizes do not vary much (from 32 to 39) and when they are equal
the beta-binomial and binomial-logit-normal variance functions both reduce to the constant
overdispersion form, which may be a reasonable choice for this case, see Ribeiro et al. (2013).

4.2. Overdispersed count data

For the same experiment described in the previous Section we now turn to focus on the
number of emerged insects (progeny) after 60 days, see Ribeiro et al. (2013). We begin by
fitting a standard Poisson model, i.e., Yij ∼ P(µij), using a log link with the following linear
predictor:

log(µij) = β0 + ei, (11)

where β0 is the intercept and ei is the effect of the ith extract, i = 1, . . . , 4. We can fit this
model in R and produce a simple analysis of deviance as before, using glm() and anova():

R> data("progeny", package = "hnp")
R> fit1_p <- glm(y ~ extract, family = poisson, data = progeny)
R> anova(fit1_p, test = "Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 39 534.44
extract 3 444.68 36 89.77 < 2.2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The residual deviance is again much larger than the number of residual degrees of freedom,
indicating that the model does not fit the data well. This is confirmed by the half-normal
plot with simulated envelope, see Figure 2(a):



Journal of Statistical Software 11

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) Poisson model

Half−normal scores

D
ev

ia
nc

e 
re

si
du

al
s

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b) Quasi−Poisson model
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(c) Negative binomial model
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Figure 2: Half-normal plots with simulated envelopes for the deviance residuals from (a) the
Poisson model, (b) the quasi-Poisson model, (c) the negative binomial type-II model, and (d)
the Poisson-normal model, fitted to the progeny data.

R> hnp(fit1_p, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(a) Poisson model", pch = 4)

We now fit overdispersion models, and begin with a constant overdispersion quasi-Poisson
model:

R> fit2_p <- glm(y ~ extract, family = quasipoisson, data = progeny)
R> summary(fit2_p)$dispersion

[1] 2.365385

R> hnp(fit2_p, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(b) Quasi-Poisson model", pch = 4)

We observe that the estimated dispersion parameter is φ̂ = 2.37 and the half-normal plot
indicates that this model fit was satisfactory with most of the deviance residuals lying within
the simulated envelope, see Figure 2(b). We now make use of package MASS to fit the
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negative binomial type-II model using the same linear predictor (11) and lme4 to fit the
Poisson-normal model with a random effect in the linear predictor:

log(µij) = β0 + ei + σZij , (12)

where Zij ∼ N(0, σ2).

R> library("MASS")
R> fit3_p <- glm.nb(y ~ extract, data = progeny)
R> hnp(fit3_p, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(c) Negative binomial model", pch = 4)
R> library("lme4")
R> x <- factor(seq_len(nrow(progeny)))
R> fit4_p <- glmer(y ~ extract + (1 | x), family = poisson, data = progeny)
R> hnp(fit4_p, xlab = "Half-normal scores", ylab = "Deviance residuals",
+ main = "(d) Poisson-normal model", pch = 4)

Both half-normal plots with simulation envelopes show that these are also satisfactory models
for this data set, see Figures 2(c) and 2(d), although there is perhaps some suggestion that
the Poisson-normal model seems to capture the bulk of the variability better than the others.

4.3. Implementing new model classes

Negative binomial type-I model using package gamlss
We now turn to a data set on a tissue-culture experiment using the orange variety Caipira.
To study the effect of six sugars (maltose, glucose, galactose, lactose, sucrose and glycerol)
on the stimulation of somatic embryos from callus cultures, the number of embryos after ap-
proximately four weeks was observed. The experiment was set up in a completely randomized
block design with five blocks and the six sugars at dose levels of 18, 37, 75, 110 and 150 µM
for the first five and 6, 12, 24, 36 and 50 µM for glycerol, see Tomaz et al. (1997). The
main interest was in the dose-response relationship and the data shows high variability. In
their analysis, Tomaz et al. (1997) used a quasi-Poisson model. An alternative is the negative
binomial type-I model (Jansakul and Hinde 2004), which has the same variance function as
the quasi-Poisson, that is, it is also a constant overdispersion model (see (5), with δ = 0).
However, as the negative binomial type-I is a fully specified probability model (albeit not
in the exponential family) it is possible to obtain standard maximum likelihood parameter
estimates.
For sugars lactose and galactose there seems to be a quadratic relationship when we look at
the scatter plot, see Figure (4), which justifies the use of the following linear predictor:

log(µijk) = β0 + bj + β1k
di + β2k

d2
i , (13)

where β0 is the intercept, bj is the effect of the jth block, j = 1, . . . , 5, di is the ith dose,
i = 1, . . . , 5, and β1k

and β2k
are the linear and quadratic dose effects for the kth sugar,

k = 1, . . . , 6. Package gamlss allows for simple implementation of the negative binomial
type-I model using family = NBII()1:

1Note that in package gamlss (as of version 4.3-8) families NBI() and NBII() correspond to the negative
binomial type-II and type-I models, respectively, i.e., the types are switched.
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R> data("orange", package = "hnp")
R> library("gamlss")
R> fit_nbI <- gamlss(embryos ~ block + poly(dose, 2) * sugar,
+ family = NBII(), data = orange)

GAMLSS-RS iteration 1: Global Deviance = 1381.312
GAMLSS-RS iteration 2: Global Deviance = 1289.437
GAMLSS-RS iteration 3: Global Deviance = 1271.898
GAMLSS-RS iteration 4: Global Deviance = 1267.792
GAMLSS-RS iteration 5: Global Deviance = 1267.293
GAMLSS-RS iteration 6: Global Deviance = 1267.23
GAMLSS-RS iteration 7: Global Deviance = 1267.222
GAMLSS-RS iteration 8: Global Deviance = 1267.222

The hnp function does not handle ‘gamlss’ objects with negative binomial type-I family.
Attempting to use it yields an error. In order to use it we must pass three helper functions
to hnp. The first function, passed to argument diagfun, must extract the desired model
diagnostics. In this case, we will use the z-scores (see Rigby and Stasinopoulos 2005, for
further details), which are the default standardized residuals computed from the function
resid on a ‘gamlss’ object:

R> d.fun <- function(obj) resid(obj)

The second function, passed to argument simfun, is used to simulate random samples using
the same model matrix and distribution used as when fitting the model to the original data:

R> s.fun <- function(n, obj) rNBII(n, obj$mu.fv, obj$sigma.fv)

A final function, passed to argument fitfun, is used to refit the simulated data using the
same model as fitted to the original data:

R> f.fun <- function(y.)
+ gamlss(y. ~ block + poly(dose, 2) * sugar, family = NBII(),
+ data = orange)

By setting newclass = TRUE we can now pass the three helper functions and the data set to
the hnp function to produce the half-normal plot with simulated envelope:

R> hnp(fit_nbI, newclass = TRUE, diagfun = d.fun, simfun = s.fun,
+ fitfun = f.fun, xlab = "Half-normal scores", ylab = "z-scores",
+ main = "", pch = 4, cex = 1, cex.lab = .8, cex.axis = .8)

As expected, this model also fits the data well, see Figure 3.
The fitted mean curves are easily obtained using the predict function and are displayed with
the raw data in Figure 4:

R> fit_pred <- gamlss(embryos ~ poly(dose, 2) * sugar, family = NBII(),
+ data = orange)
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Figure 3: Half-normal plot with simulated envelope for the z-scores from the negative binomial
type-I model fitted to the orange data using gamlss.

R> orange.pred <- rbind(expand.grid(sugar = levels(orange$sugar)[-6],
+ dose = 18:150), expand.grid(sugar = "Glycerol", dose = 6:50))
R> orange.pred$pred <- predict(fit_pred, newdata = orange.pred,
+ type = "response")
R> library("latticeExtra")
R> trellis.par.set(strip.background = list(col = "lightgrey"))
R> xyplot(embryos ~ dose | sugar, scales = list(relation = "free"),
+ layout = c(3, 2), data = orange, col = 1, xlab = "Dose levels",
+ ylab = "Number of embryos") +
+ as.layer(xyplot(pred ~ dose | sugar, type = "l", col = 1,
+ data = orange.pred))

Exponential and Weibull models using package survival
In a clinical trial to assess the efficacy of maintenance chemotherapy for acute myelogenous
leukemia (AML), after reaching a state of remission through treatment with chemotherapy, 23
patients were randomized into two groups. The first group continued receiving maintenance
chemotherapy and the second did not. The observed outcome was the time (in weeks) until
relapse and it was right-censored (Miller 1997). The AML data set is available as object
leukemia in package survival (Therneau 2017):

R> library("survival")
R> data("leukemia", package = "survival")

Two widely used models in survival analysis are the exponential and the Weibull models.
They are both easily fitted to data using the function survreg from the package survival.
We proceed by fitting the exponential and Weibull models to the AML data including the
treatment factor in the linear predictor:
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Figure 4: Number of embryos produced by oranges of the Caipira variety treated with six sug-
ars at five different concentrations and fitted dose-response curves from the negative binomial
type-I model.

R> fit_exp <- survreg(Surv(time, status) ~ x - 1, dist = "exponential",
+ data = leukemia)
R> fit_weib <- survreg(Surv(time, status) ~ x - 1, dist = "weibull",
+ data = leukemia)

We now must provide the three helper functions for hnp in the same way as in the previous
section, albeit with slight differences. The resid function for ‘survreg’ objects can be used
to compute the deviance residuals for survival analysis models. The three helper functions
may be written as:

R> d.fun <- function(obj) resid(obj, type = "deviance")
R> s.fun.exp <- function(n, obj) rexp(n, rate = 1 / predict(obj))
R> s.fun.weib <- function(n, obj)
+ rweibull(n, shape = 1 / obj$scale, scale = predict(obj))
R> f.fun.exp <- function(y.) {
+ leukemia$censoring <- c(sample(leukemia$status[1:11]),
+ sample(leukemia$status[12:23]))
+ return(survreg(Surv(y., censoring) ~ x - 1, dist = "exponential",
+ data = leukemia))
+ }
R> f.fun.weib <- function(y.) {
+ leukemia$censoring <- c(sample(leukemia$status[1:11]),
+ sample(leukemia$status[12:23]))
+ return(survreg(Surv(y., censoring) ~ x - 1, dist = "weibull",
+ data = leukemia))
+ }
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Figure 5: Half-normal plot with simulated envelope for the deviance residuals from (a) the
exponential model and (b) the Weibull model fitted to the AML data.

R> hnp(fit_exp, newclass = TRUE, diagfun = d.fun, simfun = s.fun.exp,
+ fitfun = f.fun.exp, pch = 4, cex = 1, main = "(a) Exponential model",
+ xlab = "Half-normal scores", ylab = "Deviance residuals")
R> hnp(fit_weib, newclass = TRUE, diagfun = d.fun, simfun = s.fun.weib,
+ fitfun = f.fun.weib, pch = 4, cex = 1, main = "(b) Weibull model",
+ xlab = "Half-normal scores", ylab = "Deviance residuals")

We observe that both models seem to fit the data reasonably well, see Figure 5. This is as
we might expect as the Weibull scale parameter is not significantly different from 1, which
corresponds to the exponential distribution.

Weibull model using function optim to maximize the likelihood

Now suppose that we want to fit a model that has not yet been implemented in any R
function. It is also possible to produce the half-normal plots with simulation envelopes if a
fitting function is written for this new type of model. For sake of simplicity, here we show
how this can be done by programming an estimation procedure for the Weibull model and
using the AML data set. For parametric survival analysis models, the log-likelihood function
can be written as

l(θ; y) =
n∑
i=1

δi log{f(yi; θ)}+ (1− δi) log{S(yi; θ)},

where θ is the vector of parameters, yi is the time for the ith individual, i = 1, . . . , n, f(·) is
the probability density function, S(·) = 1−F (·) is the survival function and δi is the censoring
indicator (for observation i, δi = 1 if not censored and δi = 0 if censored). The log-likelihood
function under non-informative censoring for the Weibull model may be written in R as below,
with param the vector of parameters, y the data vector, cens the censoring indicator vector
and X a generic model matrix:
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R> loglik.weibull <- function(params, y, cens, X) {
+ shape <- exp(params[1])
+ mu <- exp(X %*% params[-1])
+ llik <- cens * dweibull(y, shape, mu, log = TRUE) +
+ (1 - cens) * pweibull(y, shape, mu, lower.tail = FALSE, log = TRUE)
+ return(- sum(llik))
+ }

Parameter estimates are easily obtained through optim and are comparable to the estimates
obtained through survreg:

R> weibull.fit <- optim(log(c(1, 60, 24)), loglik.weibull,
+ y = leukemia$time, cens = leukemia$status,
+ X = model.matrix(~ x - 1, leukemia))
R> round(exp(weibull.fit$par), 2)

[1] 1.26 60.90 24.05

R> round(as.numeric(with(fit_weib, c(1 / scale, exp(coefficients)))), 2)

[1] 1.26 60.89 24.04

To use the hnp function to obtain the half-normal plot with simulated envelope, we must first
write a function for fitting the model. To make the later writing of hnp’s helper functions
easier, we can include the calculation of a vector of residuals in the fitting function. In this
case we will use the modified Cox-Snell residuals, defined as

r̂csi = − log Ŝ(yi) + 1− δi,

where Ŝ(·) is the estimated survival function and yi is the observation or censoring time. The
following code may be used to implement these functions and fit the model:

R> cox.snell <- function(params, y, X, cens) {
+ shape <- params[1]
+ mu <- X %*% params[-1]
+ cs <- - pweibull(y, shape, mu, lower.tail = FALSE, log = TRUE)
+ return(cs + 1 - cens)
+ }
R> fit.model <- function(fmla, cens, init, data) {
+ resp <- with(data, eval(fmla[[2]]))
+ X <- model.matrix(fmla, data)
+ fit <- optim(init, loglik.weibull, y = resp, cens = cens, X = X)
+ result <- list(pars = exp(fit$par), resid = cox.snell(
+ params = exp(fit$par), y = resp, X = X, cens = cens))
+ return(result)
+ }
R> fit_weib.lik <- fit.model(fmla = time ~ x - 1, cens = leukemia$status,
+ init = log(c(1, 60, 24)), data = leukemia)
R> fit_weib.lik
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$pars
[1] 1.264268 60.899983 24.046215

$resid
[1] 0.08916287 0.14193473 1.14193473 0.21417391 0.29198102 1.37442192
[7] 0.42584008 0.47859201 1.68213340 0.74012510 4.41810086 0.13730057

[13] 0.13730057 0.24873372 0.24873372 0.41529928 1.59747151 0.94531324
[19] 1.15774844 1.32270784 1.49209119 2.08510851 2.20846458

Now we may write the helper functions for hnp as

R> d.fun <- function(obj) obj$resid
R> s.fun <- function(n, obj) {
+ params <- obj$pars
+ rweibull(n, shape = params[1], scale = rep(params[2:3], each = 15))
+ }
R> f.fun <- function(y.) {
+ censoring <- c(sample(leukemia$status[1:11]),
+ sample(leukemia$status[12:23]))
+ leukemia$new.response <- y.
+ return(fit.model(new.response ~ x - 1, cens = censoring,
+ init = log(fit_weib.lik$pars), data = leukemia))
+ }

And produce the half-normal plot:

R> hnp(fit_weib.lik, newclass = TRUE, diagfun = d.fun, simfun = s.fun,
+ fitfun = f.fun, main = "", pch = 4, cex = 1, cex.lab = .8,
+ cex.axis = .8, xlab = "Half-normal scores",
+ ylab = "Modified Cox-Snell residuals")

As expected, the model fits the data, see Figure 6. As we are using a different type of residuals,
the shape of the envelope is different than for the Weibull model fitted using survreg. Indeed,
for a well-fitting model the Cox-Snell residuals should follow an exponential distribution with
unit mean, rather than the normal distribution for the deviance residuals.

5. Discussion
Half-normal plots with simulation envelopes are a useful tool to assess goodness-of-fit for a
range of different models, such as classical linear models, generalized linear models, models
for overdispersed and zero-inflated data, survival analysis models, as well as mixed models.
The key point lies in the simulation procedures which sometimes may be problematic due to
model complexity. The hnp package allows for implementation of any model for which it is
possible to write diagnostic extraction, simulation and fitting codes. This may also be useful
for didactic purposes and in simulation studies.
There are other packages that provide a (half-)normal plot with simulated envelope for a
few model classes. For example, package ssym’s function envelope produces a normal plot
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Figure 6: Half-normal plot with simulated envelope for the modified Cox-Snell residuals from
the Weibull model fitted to the AML data.

with simulated envelope for semi-parametric log-symmetric regression models (Vanegas and
Paula 2015). Package pgam also includes an envelope function to produce normal plots with
simulated envelopes for Poisson-gamma additive models fitted using the roughness penalty
approach (Junger and Leon 2012). Package betareg includes a plot method (argument
which = 5) that produces a half-normal plot with simulated envelope for residuals of a beta
regression model (Cribari-Neto and Zeileis 2010). Also, package car provides a function,
qqPlot, whose method for ‘lm’ objects generates a normal plot with simulated envelope for
studentized residuals of a linear regression (Fox and Weisberg 2011).
In the hnp function, by default the half-normal distribution is used to plot the diagnostic
quantities against its expected order statistics (the normal distribution may be used by set-
ting halfnormal = FALSE). However there is no reason to do so other than several types of
residuals are shown to follow the normal distribution and so we would expect them to form
a straight line in the plot. Again the aim in producing a simulation envelope is to reduce
subjective bias as to the departure of points from a straight line (when the diagnostic quantity
distribution is expected to be normal) and to provide the expected shape of the plot when
the distribution is not expected to be normal. Depending upon model complexity the simu-
lation and especially the fitting procedures may be time consuming. Therefore, considerable
time may be spent to produce a simulation envelope with the default 99 simulations when
one fitting procedure already takes a long time. So, sometimes it may be wiser to use just
19 simulations (sim = 19) and form the envelope from the minimum and maximum values
obtained in the simulations (conf = 1), as proposed by Atkinson (1985), so that there is a
chance of approximately 1 in 20 that the observed value of the diagnostic quantity is the most
extreme and lies outside of the envelope.
Throughout this paper we have used different types of residuals in the examples, but for
generalized linear models mainly deviance residuals, which are shown to have important
asymptotic properties and be suitable for diagnostic analyses (McCullagh and Nelder 1989).
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For mixed models, the question of which type of residuals should be used for goodness-of-fit
assessment is still an active area of research (Nobre and da Motta Singer 2007). However, any
type of model diagnostic may be used because they are simply being compared with what we
might expect if the model were true, as given by the repeated sequences of “data simulation –
model re-fitting – diagnostic extraction”. It is important to point out that every time this plot
is produced the envelope bands change slightly, hence it sometimes may be useful to produce
several half-normal plots and observe how many points lie outside of the bands as well as their
position. Of course, not only are we not ruling out the use of other goodness-of-fit assessment
techniques, but also we encourage that different tools are used to ensure that the model fits
the data well so that no misleading inference is made. The hnp package merely provides a,
hopefully, useful and flexible tool to help in this assessment.
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