
JSS Journal of Statistical Software
May 2019, Volume 89, Issue 9. doi: 10.18637/jss.v089.i09

Bayesian, and Non-Bayesian, Cause-Specific
Competing-Risk Analysis for Parametric and

Nonparametric Survival Functions:
The R Package CFC

Alireza S. Mahani
Davidson Kempner Capital Management

Mansour T. A. Sharabiani
Imperial College London

Abstract

The R package CFC performs cause-specific, competing-risk survival analysis by com-
puting cumulative incidence functions from unadjusted, cause-specific survival functions.
A high-level API in CFC enables end-to-end survival and competing-risk analysis, using
a single-line function call, based on the parametric survival regression models in the sur-
vival package. A low-level API allows users to achieve more flexibility by supplying their
custom survival functions, perhaps in a Bayesian setting. Utility methods for summariz-
ing and plotting the output allow population-average cumulative incidence functions to be
calculated, visualized and compared to unadjusted survival curves. Numerical and compu-
tational optimization strategies are employed for efficient and reliable computation of the
coupled integrals involved. To address potential integrable singularities caused by infinite
cause-specific hazards, particularly near time-from-index of zero, integrals are transformed
to remove their dependency on hazard functions, making them solely functions of cause-
specific, unadjusted survival functions. This implicit variable transformation also provides
for easier extensibility of CFC to handle custom survival models since it only requires the
users to implement a maximum of one function per cause. The transformed integrals
are numerically calculated using a generalization of Simpson’s rule to handle the implicit
change of variable from time to survival, while a generalized trapezoidal rule is used as
reference for error calculation. An OpenMP-parallelized, efficient C++ implementation
– using packages Rcpp and RcppArmadillo – makes the application of CFC in Bayesian
settings practical, where a potentially large number of samples represent the posterior
distribution of cause-specific survival functions.

Keywords: Newton-Cotes, adaptive quadrature, Markov chain Monto Carlo.

https://doi.org/10.18637/jss.v089.i09

2 CFC: Cause-Specific Competing-Risk Survival Analysis in R

1. Introduction

Motivation: Consistent propagation and calculation of uncertainty using predictive poste-
rior distributions is a key advantage of Bayesian frameworks (Gelman and Hill 2006), par-
ticularly in survival analysis, where predicted entities such as survival probability can be
highly-nonlinear, time-dependent functions of estimated model parameters. In the absence
of high-performance software for Bayesian prediction, premature point-estimation of model
parameters can only produce approximate – sometimes grossly wrong – mean values for pre-
dicted entities (Figure 1, left panel). The R (R Core Team 2019) package CFC (Sharabiani and
Mahani 2019) seeks to address this void for Bayesian cause-specific competing-risk analysis.

Existing methods and tools for competing-risk procedure: In survival analysis with
multiple, mutually-exclusive end-points, competing-risk techniques must be used to properly
account for interaction among causes while estimating the expected percentage of population
likely to experience events of a particular cause. Several techniques exist for competing-
risk analysis, some of which have been implemented as open-source R packages. Among the
more established technique are the cause-specific framework (Prentice, Kalbfleisch, Peterson
Jr, Flournoy, Farewell, and Breslow 1978), sub-distribution hazard (Fine and Gray 1999;
available in cmprsk, Gray 2014), mixture models (Larson and Dinse 1985; available in NPM-
LEcmprsk, Chen, Chang, and Hsiung 2018), vertical modeling (Nicolaie, van Houwelingen,
and Putter 2010), and the method of pseudo-observations (Andersen, Klein, and Rosthøj
2003; available in pseudo, Pohar Perme and Gerster 2017). For an in-depth review and com-
parison of competing-risk methods, see Haller, Schmidt, and Ulm (2013). More recently,
machine learning techniques such as random forests (Breiman 2001) and gradient boosting
machines (Friedman 2001) have been extended to survival models (available via random-
ForestSRC, Ishwaran and Kogalur 2019, and gbm, Greenwell, Boehmke, Cunningham, and
GBM Developers 2019, respectively). The random forest survival implementation in random-
ForestSRC includes competing-risk analysis (Ishwaran, Gerds, Kogalur, Moore, Gange, and
Lau 2014).

Cause-specific competing-risk analysis: The cause-specific framework for competing-
risk analysis (CFC) is a two-step process. First, independent survival models are constructed
for each cause. In each cause-specific model, events due to alternative causes are treated
as censoring. To arrive at cause-specific cumulative incidence (CI) functions, however, the
population depletion due to competing risks must be taken into account, in order to avoid
over-estimating the cause-specific incidence probabilities (Figure 1, right panel). This leads
to a second step, where a set of coupled, first-order differential equations must be solved.
A key advantage of CFC is that, by separating the two steps, it allows for full flexibility
in using different survival models as input into the second step, including a combination of
parametric and nonparametric model. The only requirement for each cause-specific survival
model is the implementation of a function that returns the unadjusted survival probability
at any given time from index. While the first step is straightforward, applying the second
step – the calculation of cumulative incidence functions from cause-specific survival models –
is non-trivial due to numerical and computational challenges. These challenges are especially
pronounced in Bayesian settings involving a large number of Markov chain Monte Carlo

Journal of Statistical Software 3

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

non−Bayesian survival probability

B
ay

es
ia

n
su

rv
iv

al
 p

ro
ba

bi
lit

y

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Years post diagnosis of MGUS

In
ci

de
nc

e
P

ro
ba

bi
lit

y

Competing−Risk
Kaplan−Meier

Figure 1: Motivating Bayesian cause-specific competing-risk analysis. Left panel: Estimated
survival probability, based on a Bayesian Weibull regression, at 614 days from index, for
the ovarian data set, available in the R package survival (Therneau 2019). The x axis
corresponds to the “incorrect” (non-Bayesian) method of calculating the average of model
coefficients, followed by calculation of survival probability using the coefficient averages. The
y axis corresponds to the mean+/se values of the same survival probabilities, this time using
the “correct” (Bayesian) method of calculating the probabilities once for each sample, and
then averaging the probabilities. All survival probabilities are significantly over-estimated
by the non-Bayesian method. The underlying MCMC run consisted of 5000 iterations, the
first 2500 of which were discarded as burn-in. Right panel: Comparison of cumulative in-
cidence probability, with and without competing-risk correction, for the “pcm” (plasma cell
malignancy) event in the mgus1 data set, taken from the R package survival (Therneau 2019).
Compared to a naive Kaplan-Meier estimate, competing-risk analysis removes cases lost to
“death”, thus reducing the pool of available subjects for “pcm”, and therefore leading to a
smaller estimate for cumulative incidence probability for “pcm”.

(MCMC) samples representing the posterior distribution of time-dependent functions for each
subject. While a nonparametric version of the cause-specific framework is available in the
survival package (Therneau 2019) via function survfit, no reliable and modular open-source
software enables the application of CFC to arbitrary parametric models, Bayesian or non-
Bayesian, despite the popularity and intuitive appeal of this approach to competing-risk
analysis.

Our contribution: The R package CFC provides – to our knowledge – the first open-
source, general-purpose software for numerical calculation of cumulative incidence functions
from cause-specific (unadjusted) survival functions (hereafter referred to as survival func-
tions). The package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=CFC. Through a combination of algorithmic inno-
vations, performance optimization techniques, and software design choices, CFC provides both

https://CRAN.R-project.org/package=CFC

4 CFC: Cause-Specific Competing-Risk Survival Analysis in R

an easy-to-use API for performing competing-risk analysis of standard parametric survival
regression models (via integration with the survival package) as well as the machinery for
efficient and reliable application of CFC to arbitrary survival models, using both R and C++
interfaces. The C++ implementation and interface is based on the convenient framework
of Rcpp (Eddelbuettel and François 2011) and RcppArmadillo (Eddelbuettel and Sanderson
2014) packages. As such, CFC should appeal to practitioners as well as package developers.

Paper outline: The rest of this paper is organized as follows. In Section 2 we discuss the
challenges of – and solutions for – the numerical quadrature problem of Bayesian CFC. In
Section 3, we review the CFC package in some detail, including a description of its three
usage modes. Section 4 presents several examples illustrating these usage modes and other
features of CFC. Section 5 concludes with a summary of our work and pointers to potential
future research and development.

2. Bayesian CFC quadrature
This section provides the mathematical framework for CFC, discusses the shortcomings of
existing quadrature techniques for the numerical integration involved in Bayesian CFC, and
presents our alternative quadrature algorithm, the generalized Newton-Cotes framework.

2.1. Cause-specific competing-risk survival analysis

The following set of K coupled, first-order differential equations describe the time evolution
of cause-specific cumulative incidence functions, Fk(t):

dFk(t)
dt

=
(

1−
K∑
k′=1

Fk′(t)
)
λk(t), (1)

where λk(t) (≥ 0, ∀t > 0) refers to the kth (non-negative) cause-specific hazard function.
These equations can be decoupled and transformed into integrals. We do so by summing the
two sides of Equation 1 over all k:

K∑
k=1

dFk(t)
dt

=
(

1−
K∑
k′=1

Fk′(t)
)

K∑
k=1

λk(t), (2a)

=⇒ dE(t)
E(t) = −

∑
k

λk(t), (2b)

where we have defined the event-free probability function, E(t), as:

E(t) ≡ 1−
K∑
k=1

Fk(t), (3)

Solving for E(t) in Equation 2b, we obtain:

E(t) =
K∏
k=1

Sk(t), (4)

Journal of Statistical Software 5

where Sk(t) stands for the unadjusted survival function for cause k. They are defined as:

Sk(t) ≡ exp
(
−
∫ t

t′=0
λk(t′) dt′

)
. (5)

Since hazard functions are non-negative, we conclude that

0 ≤ Sk(t) ≤ 1, ∀ k = 1, . . . ,K , t ≥ 0, (6)

and also that Sk(0) = 1. These functions correspond to the naive, Kaplan-Meier approach
depicted in Figure 1 (left panel). Substituting back into Equation 1 and integrating the two
sides, we arrive at the following K, one-dimensional integral equations:

Fk(t) =
∫ t

t′=0

(
K∏
k′=1

Sk(t′)
)
λk(t′)dt′. (7)

The integrals of Equation 7 do not generally have closed-form solutions. For example, in a
Weibull survival model, we have

λk(t) = αk γk t
αk−1, (8a)

Sk(t) = exp(−γktαk), (8b)

which leads to the following expression for cumulative incidence functions with two competing
risks (K = 2):

F1(t) = −α1γ1

∫ t

0
uα1−1 e−(γ1uα1 +γ2uα2) du, (9)

and similarly for F2(t). In the absence of an exact solution, we must resolve to numerical
integration.
In most real-world problems, each of the K integrals of Equation 7 must be evaluated more
than once. For example, in regression settings each observation will have a distinct set of
cause-specific hazard, survival, and cumulative incidence functions that are dependent on the
value of the feature vector for that observation. Furthermore, in Bayesian settings where
posteriors are approximated by MCMC samples, each combination of observation and cause
will have as many integrals as samples. For example, in a competing-risk analysis with 3
causes, 1000 observations, and 5000 posterior samples, 3×1000×1000 = 3 million cumulative
incidence functions must be calculated. As a result, computational efficiency of the quadrature
algorithm is of prime importance in Bayesian CFC.

2.2. Shortcomings of current quadrature techniques for Bayesian CFC

Most modern techniques for one-dimensional, numerical integration are based on function
interpolation. Perhaps the most common set of techniques are Gaussian quadratures (Stroud
and Secrest 1966), which approximate an integral by a weighted sum of function values eval-
uated on a pre-specified, irregular grid, often yielding exact results for polynomials. A partic-
ular flavor called Gauss-Kronrod quadrature (Laurie 1997) allows function evaluations to be
re-used in successive, adaptive iterations. The QUADPACK library (Piessens, de Doncker-
Kapenga, Überhuber, and Kahaner 2012), ported to R via the integrate function in stats

6 CFC: Cause-Specific Competing-Risk Survival Analysis in R

package, is based on Gauss-Kronrod, and augmented by Wynn’s epsilon algorithm (Wynn
1966) to accelerate convergence for end-point singularities.
A direct application of this software to the Bayesian CFC quadrature problem, however, is
inefficient due to several reasons. Firstly, and most importantly, users often expect a dense
output for cumulative incidence functions, i.e., Fk(t)’s in Equation 7 must be evaluated at
multiple values of t. QUADPACK, on the other hand, is not designed to produce dense
output, and therefore would require as many calls as the number of outputs desired. This
can lead to an excessive number of function evaluations, which is particularly troubling in
time-consuming Bayesian problems. Secondly, there is a significant opportunity to share com-
putational work across the K integrals in CFC. This is due to the fact that the integrands
in Equation 7 are various multiplicative permutations of cause-specific hazard and survival
functions. Taking advantage of this opportunity, however, requires custom code that is de-
signed for the particular structure of the CFC problem. Finally, direct calculation of each
integral in Equation 7 is suboptimal from a usability perspective, since it requires the user to
supply two functions per cause: the hazard function, λk(t), and the survival function, Sk(t).
While the two functions are related by Equation 5, yet their conversion requires integration
or differentiation. Also, in nonparametric survival models, the survival function is usually
not differentiable (e.g., a piece-wise step function) and hence the hazard function is unavail-
able. In the best case, requiring both functions adds a burden to the user and increases the
possibility of mistakes. Numeric differentiation, e.g., using numDeriv (Gilbert and Varadhan
2016), is an option, but it is computationally expensive.
A second class of integration algorithms are quadrature by variable transformation (Press
2007, Chapter 4), better known as double-exponential (DE) or Tanh-Sinh methods (Takahasi
and Mori 1974). They combine a hyperbolic change-of-variable with a trapezoidal rule to
induce exponential convergence of the integral near end-point singularities. As such, they
are better suited to handle such singularities compared to Gauss-Kronrod techniques. DE
quadrature has recently been implemented in R via the package deformula (Okamura 2015).
For an empirical comparison of quadrature techniques, see Bailey, Jeyabalan, and Li (2005).
Of the three problems with QUADPACK discussed above, the last two are equally applicable
to DE methods. (The trapezoidal rule used in DE methods can produce cumulative integrals.)
We therefore develop a custom quadrature algorithm for Bayesian CFC that addresses the
shortcomings of existing techniques.

2.3. Generalized Newton-Cotes

We transform Equation 7 to an equivalent form that removes the hazard function, thereby
freeing it from potential singularities. To do so, we use the definition of Sk(t) in Equation 5
to get

dSk(t) = d

(
exp(−

∫ t

0
λk′(t′)dt′)

)
= −λk(t)Sk(t). (10)

Solving for λk(t), and inserting back into Equation 7, we obtain:

Fk(t) = −
∫ t

0

∏
k′ 6=k

Sk′(t′)

 dSk(t′), ∀ k = 1, . . . ,K. (11)

Thanks to the conditions described in Equation 6, the integrand is now bounded.

Journal of Statistical Software 7

The transformation from Equation 7 to Equation 11 is closely related to the DE method, with
two notable differences: First, while in DE we use a double-exponential change of variable such
as t = tanh(π2 sinh(u)), here we use a custom transformation, t = S−1

k (u). Secondly, rather
than applying the transformation explicitly – which would require the user to supply the
inverse survival functions – we leave it implicit. This allows us to handle cases where explicit
derivation of inverse survival functions is impossible; it also makes the software user-friendly.
Similar to the DE method, we apply Newton-Cotes techniques to the integrals of Equation 11.
However, in exchange for removing the singularity, the new form – with variable transforma-
tion left implicit – imposes limits such as inability to cheaply find interval midpoints on the
scale of the transformed variable, thus rendering the classical Newton-Cotes expressions in-
valid (with the exception of the trapezoidal rule). We have thus developed a generalized
Simpson’s rule that applies to integrals with an implicit change of variable, such as in Equa-
tion 11. Recall the standard Simpson’s rule which approximates the integral of f(t) in the
interval [a, b] via a quadratic approximation of the function:∫ b

a
f(t) dt ∼= Iss(f ; a, b) ≡ b− a

6

{
f(a) + 4f(a+ b

2) + f(b)
}
. (12)

In generalized Simpson, we have:∫ b

a
f(t) dg(t) ∼= Igs(f, g; a, b)

≡ g(b)− g(a)
6

f(a) + 4f(a+b
2) + f(b) + 2r(f(a)− f(b))− 3r2(f(a) + f(b))

1− r2 ,

r ≡
2g(a+b

2)− g(a)− g(b)
g(b)− g(a) .

(13a)

(13b)

The proof is given in Appendix A, which relies on a quadratic expansion of f in terms of
g over the interval [a, b]. Note that if g(t) is linear in t, then r = 0 and the generalized
equation in (13a) reduces to the standard form in Equation 12. Also, in the corner cases
where g(a) = g((a + b)/2) or g((a + b)/2)) = g(b) (leading to r2 = 1), the above equation
must be overridden in favor of a single trapezoidal step over the other half of the interval
[a, b]. The implementation in CFC contains this protective measure, which is particularly
useful for handling nonparametric survival functions.
While it is possible to use the inequalities of Equation 6 to derive firm upper bounds for the
integration error, such upper bounds are too pessimistic since they assume piece-wise constant
survival curves. Instead, we opt for a common approach in the adaptive quadrature literature,
i.e., using the difference between our method, and the output of a less accurate technique as
a proxy for integration error. In our case, we use the trapezoidal rule as reference, which is
easily generalized to the implicit variable transformation method:∫ b

a
f(t) dg(t) ∼= Igt(f, g; a, b) = g(b)− g(a)

2 (f(a) + f(b)). (14)

The advantage of using a generalized Newton-Cotes framework is that (1) it permits an
adaptive subdivision scheme which reuses all previous integrand evaluations (Press 2007,
Chapter 4), and (2) in the process, we obtain dense output for the integral, i.e., at all subdi-
vision boundaries. To provide dense output at arbitrary points requested by the user, we use

8 CFC: Cause-Specific Competing-Risk Survival Analysis in R

interpolation. Pseudo-code for the CFC quadrature algorithm is listed in the following. (For
simplicity, we focus on a single integration task, which is wrapped in a for loop, corresponding
to observations and/or Bayesian samples.)

Algorithm 1
Input: {Sk(.)}, k = 1, . . . ,K (cause-specific survival functions)
Input: tout (dense output time vector)
Input: Nmax (maximum number of adaptive subdivisions)
Input: ε (relative error tolerance for integration)
Output: {Ik}, k = 1, . . . ,K (cause-specific CI functions, each one evaluated at tout)
1. tmax ←max(tout)
2. t ←

[
0 tmax

]
(integration time grid)

3. Apply generalized Simpson and trapezoidal to t to initialize CI estimates and errors.
4. e ← Maximum integration error across all causes at tmax
5. N ← 1
6. while (e > ε) and (N < Nmax)
7. Identify time interval with maximum contribution towards integration error.
8. Split the the identified interval in half.
9. Update generalized Simpson and trapezoidal CI estimates and errors.
10. e ← Maximum integration error across all causes at tmax
11. N ←N + 1
12. Interpolate generalized Simpson CI estimates over t to produce {Ik} for tout.
13. return {Ik}

In implementing the above quadrature algorithm in CFC, we have used several performance
optimization strategies, which are discussed next.

2.4. Performance optimization strategies in CFC

Since a key target application of CFC is Bayesian survival models, performance is an impor-
tant consideration. We have adopted three performance optimization strategies in CFC for
executing the quadrature algorithm described in Section 2.3: (1) C++ implementation, (2)
work sharing, and (3) parallel execution. Below we discuss each strategy.

C++ implementation: This includes two interconnected but distinct concepts, (1) imple-
mentation of the CFC quadrature algorithm in C++, and (2) API definition for user-supplied
survival functions in C++. While it is possible to accept and call an R implementation of
survival functions inside the C++-based quadrature algorithm, the data marshalling overhead
of repeated calls from C++ to R can more than nullify the benefits of porting the quadrature
algorithm to C++ (Eddelbuettel 2013). In other words, if the survival function must be exe-
cuted in R, it is best for the quadrature algorithm to also run in R. We rely on the framework
provided by the Rcpp package (Eddelbuettel and François 2011) for our C++ implementa-
tion, which facilitates the development and maintenance of CFC and also encourages more
efficient C++ implementations of survival functions by users and package developers. Details
regarding the C++ components of CFC are provided in Section 3.

Journal of Statistical Software 9

Work sharing: In most cases, evaluating the integrand is where a significant fraction, if
not the majority, of time is spent in a quadrature algorithm. Therefore, minimizing the
number of such function evaluations can be a rewarding performance optimization technique.
In generalized Simpson (Equation 13a) and trapezoidal (Equation 14) steps applied to the
CFC problem, we need to evaluate two types of entities: (1) individual survival functions
(Sk’s), and (2) their leave-one-out products (

∏
k′ 6=k Sk′). We use two types of optimizations

to minimize unnecessary calculations: (1) calculation of Sk’s is shared across all causes, and
(2) the full product

∏
k Sk is calculated once, and divided by individual Sk terms to arrive at

leave-one-out terms.

Parallelization: Calculation of cumulative incidence functions for different observations
and/or samples is clearly an independent set of tasks, which can be executed in parallel. We
use OpenMP in C++, and doParallel (Revolution Analytics and Weston 2018) and foreach
(Revolution Analytics and Weston 2017, see also Kane, Emerson, and Weston 2013) packages
in R, for this task parallelization. As long as the span of the iterator, which is typically the
product of observation count and number of samples per observation (in Bayesian models), is
sufficiently large, this parallelization scales well with the number of threads used (up to the
physical/logical core count on the system). For an illustration of the impact of parallelization
on performance, see Section 4.3.

3. CFC implementation and features
This section introduces the CFC software and its components, including the three usage
modes for cause-specific competing-risk analysis. Examples illustrating each usage mode will
be provided in Section 4. As usual, package documentation is the ultimate reference for all
details.

3.1. Overview of CFC

CFC functionalities can be categorized into three groups: (1) core functionality, (2) utilities,
and (3) legacy code. The core functionality in CFC is numerical calculation of cause-specific,
competing-risk differential equations in Equation 1, using the implicit variable transforma-
tion in Equation 11, and based on the generalized Newton-Cotes method outlined in Equa-
tions 13a and 14. There are two implementations of Algorithm 1 in CFC: the R-based function
cscr.samples.R, and the C++-based function cscr_samples_Cpp. Both these functions are
private, and exposed through a common interface, cfc, which dispatches the right method
by inspecting the first argument. The cfc API provides the users and package developers
with the capability to perform cause-specific, competing-risk analysis using their custom-built
survival functions, as long as they conform to a pre-specified but flexible interface, which is
described in Section 3.2. These functions can be Bayesian or non-Bayesian, parametric or
nonparametric.
The utility methods in CFC, on the other hand, expose a convenient API for users to perform
end-to-end survival and competing-risk analysis with minimal effort. The trade-off is that the
set of survival functions available through this API is limited to (non-Bayesian) parametric
survival regression models of package survival. This still represents a core set of popular
models, and should address the needs of many practitioners. The functions in this API are

10 CFC: Cause-Specific Competing-Risk Survival Analysis in R

cfc.survreg, summary.cfc.survreg, plot.summary.cfc.survreg, cfc.survreg.survprob
and cfc.prepdata. The last two functions are described in Section 3.2, and all functions are
illustrated via examples in Section 4.
Legacy functions in CFC (cfc.tbasis and cfc.pbasis and their associated S3 methods)
apply a composite trapezoidal rule to user-supplied survival curves, i.e., evaluated at pre-
determined time points. Here the choice of time intervals is not optimized, and no error
analysis is performed. The use of legacy CFC is deprecated in favor of the new machinery
described in this paper. Interested readers can refer to package documentation for further
details on how to use the legacy code.

3.2. CFC usage modes

In order to achieve the dual objectives of user-friendliness and flexibility, CFC offers three
usage modes: (1) end-to-end survival and competing-risk analysis, using cfc.survreg, (2)
competing-risk analysis of user-supplied survival functions, written in R, and (3) competing-
risk analysis of user-supplied functions, written in C++. The last two usage modes are
exposed through a common interface, i.e., the public function cfc. We review each usage
mode below, with examples to follow in Section 4.

Parametric survival regression and competing-risk analysis: This is the most con-
venient usage mode, in which a one-line call to cfc.survreg performs both cause-specific
survival regression and competing-risk analysis. More specifically, cfc.survreg executes
three steps: (i) parsing the survival formula to create cause-specific status columns and for-
mulas; (ii) calling the survreg function from survival package (Therneau 2019) for each
cause; (iii) calling the internal CFC function, cscr.samples.R, to perform competing-risk
analysis. To perform the first step, we use the (public) utility function cfc.prepdata. To
perform the last step, the (unadjusted) survival function associated with the ‘survreg’ mod-
els is needed, which we have implemented in cfc.survreg.survprob. This survival function
is made public, so as to allow users to easily combine ‘survreg’ models with other types of
survival models. It contains a custom implementation of the survival functions needed by
cscr.samples.R, using the "dist" field of the returned object from survreg, along with the
definition of distributions made available via survreg.distributions. The implementation
is a verbatim translation of the definition of the location-scale family (Datta 2005). This us-
age mode trades off flexibility for user-friendliness, as it is restricted to the survival regression
models covered in the survival package, as well as user-defined survival distributions following
the conventions of that package. An example is provided in Section 4.1.

CFC for user-supplied survival functions implemented in R: If the f.list argu-
ment passed to cfc is a list of functions – implemented in R – then cfc dispatches to
cscr.samples.R. This is more flexible than using cfc.survreg since the user can sup-
ply any arbitrary survival function, as long as it conforms to the prototype expected by
cscr.samples.R. However, it requires the user to implement one or more survival functions.
These functions must follow this prototype:

func(t, args, n)

Journal of Statistical Software 11

where t is a vector of time-from-index (non-negative) values, args is a list of arguments
needed by the function, and n is an iterator that spans the observations and/or samples. It
is the responsibility of the function implementation to consistently interpret n, and map it
from one dimension to multiple dimensions, e.g., to obtain observation and sample indices.
Of course, we could have chosen to hide n inside args, but decided to make it explicit to draw
attention to its special meaning. In Section 4 we will see several example implementations of
survival functions conforming to the above prototype.

CFC for custom models – C++ mode: This usage mode offers the same functionality
as the previous one, but requires the user to supply the survival functions in C++. This often
leads to significant speedup; however, the implementation is also more involved as it requires
at least three functions per distinct cause-specific model: initializer, survival function, and
resource de-allocator. An example is provided in Section 4.3, illustrating the impact of tran-
sition from C++ to an R implementation (of survival functions) on performance. To facilitate
both package development and maintenance as well as survival-function implementation by
users, we have adopted the framework of Rcpp (for data exchange with R) and RcppArmadillo
(for linear algebra):

typedef arma::vec (*func)(arma::vec x, void* arg, int n);
typedef void* (*initfunc)(Rcpp::List arg);
typedef void (*freefunc)(void *arg);

Note the use of the void* pointer in function prototypes. This allows for a uniform API
across all survival functions, leaving the casting and interpretation of this pointer to each
implementation. See Example 3 in Section 4.3.

4. Using CFC
As discussed in Section 3.2, CFC can be used in three modes, which progressively become
more flexible but also require more significant programming effort. Examples 1–3 illustrate
how each mode can be used. The final example illustrates a key advantage of the CFC frame-
work, namely the logical separation of cause-specific survival analysis from the competing-risk
analysis, which in turn allows for combining survival models of different kinds in the same
competing-risk analysis.

4.1. Example 1: End-to-end competing-risk analysis

In our first example, we illustrate the easiest usage mode in CFC, i.e., the cfc.survreg
function. It first creates parametric survival regression models using the survreg function of
the survival package, and passes these models to cfc for competing-risk analysis.
We begin by setting up our environment, including a 70–30 split of our test data set, bmt,
into training and prediction sets:

R> library("CFC")
R> data("bmt", package = "CFC")
R> rel.tol <- 1e-3

12 CFC: Cause-Specific Competing-Risk Survival Analysis in R

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

time from index

cu
m

ul
at

iv
e

in
ci

de
nc

e

cause 1
cause 2

Figure 2: Cause-specific cumulative incidence functions for the Weibull survival regression
models built for the bmt data set.

R> seed.no <- 0
R> set.seed(seed.no)
R> idx.train <- sample(1:nrow(bmt), size = 0.7 * nrow(bmt))
R> idx.pred <- setdiff(1:nrow(bmt), idx.train)
R> nobs.train <- length(idx.train)
R> nobs.pred <- length(idx.pred)

(In real-world applications, rel.tol must be set to a smaller number for better accuracy.) A
one-line call to sfc.survreg is all we have to do:

R> out.weib <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,
+ bmt[idx.train,], bmt[idx.pred,], rel.tol = rel.tol)

The output can be summarized for any subset of observations, using the obs.idx parameter:

R> summ <- summary(out.weib, obs.idx = which(bmt$age[idx.pred] > 0))

and plotted:

R> plot(summ, which = 1)

to produce and visualize the sub-population-average cumulative incidence functions for each
cause (Figure 2).
It is instructive to visualize the impact of competing-risk adjustment on cumulative incidence
rates:

R> old.par <- par(mfrow = c(1, 2))
R> plot(summ, which = 2)
R> par(old.par)

Journal of Statistical Software 13

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

cause 1

time from index

cu
m

ul
at

iv
e

in
ci

de
nc

e

competing−risk adjustment
no adjustment

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

cause 2

time from index

cu
m

ul
at

iv
e

in
ci

de
nc

e

competing−risk adjustment
no adjustment

Figure 3: Comparison of adjusted and unadjusted cumulative incidence curves for Weibull
survival regression models built for the bmt data set.

We can see from Figure 3 that the competing-risk adjustment, using the CFC framework, has
a very significant corrective impact on the cumulative incidence probability for both causes.
Users can switch from Weibull to other distributions through the parameter dist. For exam-
ple, the following command switches the survival models from Weibull to exponential:

R> out.expo <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,
+ bmt[idx.train,], bmt[idx.pred,], dist = "exponential",
+ rel.tol = rel.tol)

We can even use different distributions for each cause, by passing a vector as the dist argu-
ment:

R> out.mix <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,
+ bmt[idx.train,], bmt[idx.pred,], dist = c("weibull", "exponential"),
+ rel.tol = rel.tol)

4.2. Example 2: Bayesian CFC in R
Utilizing the function cfc requires that cause-specific, unadjusted survival functions be avail-
able or implemented, in R or C++. This is in contrast to cfc.survreg which has encapsulated
the survival functions corresponding to the class of survival models in the survival package.
First, we use the utility function cfc.prepdata to prepare the bmt data set and set up
formulas for cause-specific survival analysis:

R> out.prep <- cfc.prepdata(Surv(time, cause) ~ platelet + age + tcell, bmt)
R> f1 <- out.prep$formula.list[[1]]
R> f2 <- out.prep$formula.list[[2]]

14 CFC: Cause-Specific Competing-Risk Survival Analysis in R

R> dat <- out.prep$dat
R> tmax <- out.prep$tmax

Next, we create cause-specific Bayesian Weibull survival regression models, using the BSGW
package (Mahani and Sharabiani 2016):

R> library("BSGW")
R> seed.no <- 0
R> set.seed(seed.no)
R> nsmp <- 10
R> reg1 <- bsgw(f1, dat[idx.train,], control = bsgw.control(iter = nsmp),
+ ordweib = TRUE, print.level = 0)
R> reg2 <- bsgw(f2, dat[idx.train,], control = bsgw.control(iter = nsmp),
+ ordweib = TRUE, print.level = 0)

(In real-world problems, nsmp must be set to a larger number.) To perform CFC, we must
take two interconnected steps: (1) implement the cause-specific survival functions for this
model, (2) prepare arguments feeding into these survival functions. In this example, since we
use the same model for both causes, we only need to implement one survival function:

R> survfunc <- function(t, args, n) {
+ nobs <- args$nobs
+ natt <- args$natt
+ nsmp <- args$nsmp
+ alpha <- args$alpha
+ beta <- args$beta
+ X <- args$X
+ idx.smp <- floor((n - 1) / nobs) + 1
+ idx.obs <- n - (idx.smp - 1) * nobs
+ return(exp(- t ^ alpha[idx.smp] * exp(sum(X[idx.obs,] *
+ beta[idx.smp,]))))
+ }
R> f.list <- list(survfunc, survfunc)
R> X.pred <- as.matrix(cbind(1, bmt[idx.pred,
+ c("platelet", "age", "tcell")]))
R> arg.1 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp, X = X.pred,
+ alpha = exp(reg1smpbetas), beta = reg1smpbeta)
R> arg.2 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp, X = X.pred,
+ alpha = exp(reg2smpbetas), beta = reg2smpbeta)
R> arg.list <- list(arg.1, arg.2)

The argument n is the single iterator that covers the joint space of observations (nsmp) and
samples (nobs). The function must therefore extract the sample and observation indices
(idx.smp and idx.ob, respectively) from n. The same convention must be used while inter-
preting the returned arrays from cfc.

R> rel.tol <- 1e-4
R> tout <- seq(from = 0.0, to = tmax, length.out = 10)

Journal of Statistical Software 15

R> t.R <- proc.time()[3]
R> out.cfc.R <- cfc(f.list, arg.list, nobs.pred * nsmp, tout,
+ rel.tol = rel.tol)
R> t.R <- proc.time()[3] - t.R
R> cat("t.R:", t.R, "sec\n")

t.R: 25.095 sec

Summarizing and plotting: One advantage of Bayesian techniques is their consistent
representation and treatment of uncertainty. It is, therefore, useful for CFC to enable users
to quantify and visualize the uncertainty associated with outputs produced by cfc. This can
be done by calling the summary method for objects returned by cfc.
In Bayesian CFC, the cumulative incidence and survival arrays returned have three dimen-
sions: (1) time, (2) cause, (3) n iterator (described above). In summarizing the arrays, we
should not reduce/collapse the first two dimensions. The last dimension is often a flattened
version of two dimensions: observations and MCMC samples. How this 2D space is mapped
to the 1D iterator is left to the users in their specification of the survival function. We have
similarly aimed for flexibility in designing the summary method for ‘cfc’ objects, where the
f.reduce argument is required from the user in order to determine how each sub-array of the
3D arrays returned by cfc must be processed/reduced, before being passed to the quantile
function to determine the median and credible bands for each combination of time and cause.
For the example provided in this section, a suitable reduction function can be defined as:

R> my.f.reduce <- function(x, nobs, nsmp) {
+ return(colMeans(array(x, dim = c(nobs, nsmp))))
+ }

This function calculates the population average (for each time, cause and MCMC sample). As
such, when supplied to the summary method for ‘cfc’ objects, it produces the credible bands
for population-average values for cause-specific cumulative incidence and survival probabil-
ities. The output of the summary function can be passed to the plot function to produce
Figure 4.

R> my.cfc.summ <- summary(out.cfc.R, f.reduce = my.f.reduce,
+ nobs = nobs.pred, nsmp = nsmp)
R> oldpar <- par(mfrow = c(2, 2))
R> plot(my.cfc.summ)
R> par(oldpar)

Parallelization: We saw that running CFC in R takes nearly 25 seconds on our test server.
(See Appendix B for session information.) This is for a small data set (nobs.pred = 123),
a handful of samples (nsmp = 10) and a lenient error tolerance (rel.tol = 1e-4). By ex-
trapolation, to perform CFC for a data set of size 1000, with 1000 samples, a somewhat more
realistic scenario, we would need nearly 4.5 hours. (Note that execution time is nearly inde-
pendent of the length of tout, since the latter only affects the last – interpolation – step, which
is computationally cheap.) An easy way to improve performance is by using multi-threaded
parallelization on a multicore machine. This can be done via the ncore parameter:

16 CFC: Cause-Specific Competing-Risk Survival Analysis in R

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

cause 1 − cumulative incidence

time from index

C
I

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

cause 2 − cumulative incidence

time from index
C

I

0 20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

cause 1 − survival

time from index

su
rv

iv
al

 p
ro

ba
bi

lit
y

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

cause 2 − survival

time from index

su
rv

iv
al

 p
ro

ba
bi

lit
y

Figure 4: Median and 95% credible bands for population-averaged cause-specific cumulative-
incidence and survival probabilities, corresponding to Example 2.

R> ncores <- 2
R> tout <- seq(from = 0.0, to = tmax, length.out = 10)
R> t.R.par <- proc.time()[3]
R> out.cfc.R.par <- cfc(f.list, arg.list, nobs.pred * nsmp, tout,
+ rel.tol = rel.tol, ncores = ncores)
R> t.R.par <- proc.time()[3] - t.R.par
R> cat("t.R.par:", t.R.par, "sec\n")

The speedup is close to linear, which is expected given the low amount of coordination needed
among threads:

R> cat("parallelization speedup - R:", t.R / t.R.par, "\n")

parallelization speedup - R: 1.916088

Journal of Statistical Software 17

A more powerful strategy to improve performance is by using the C++ interface of CFC,
which is illustrated next.

4.3. Example 3: High-performance Bayesian CFC (in C++)

The first step is to implement the data structure needed by the survival model. For Bayesian
Weibull regression, we have:

struct weib {
int nobs; // number of observations
int natt; // number of attributes
int nsmp; // number of MCMC samples
mat X; // nobs-by-natt
vec alpha; // nsmp
mat beta; // natt-by-nsmp

};

The initializer function is responsible for converting the incoming List from R to the weib
structure:

void* weib_init(List arg) {
weib* myweib = new weib;
myweib->nobs = arg[0];
myweib->natt = arg[1];
myweib->nsmp = arg[2];
myweib->X = mat(REAL(arg[3]), myweib->nobs, myweib->natt, true, true);
myweib->alpha = vec(REAL(arg[4]), myweib->nsmp, true, true);
myweib->beta = mat(REAL(arg[5]), myweib->natt, myweib->nsmp, true, true);
return (void*)myweib;

}

By implementing the data structure in terms of Armadillo classes ‘vec’ and ‘mat’, we isolate
the dependence on R data structures to the initializer, which allows for easier porting of
the survival model to other environments. We must also create an external pointer to the
initializer, which will be supplied to cfc. This can be accomplished by calling the following
function from R, as we will demonstrate later:

// [[Rcpp::export]]
XPtr<initfunc> weib_getPtr_init() {

XPtr<initfunc> p(new initfunc(&weib_init), true);
return p;

}

Recall that the initfunc function pointer has been typedef’ed before. Since the initializer
creates a new ‘weib’ data structure on the heap, it is best practice to release this memory
once we are finished. We do so by implementing a freefunc, as well as a companion function
for creating an external pointer to it:

18 CFC: Cause-Specific Competing-Risk Survival Analysis in R

void weib_free(void *arg) {
delete (weib*)arg;

}
// [[Rcpp::export]]
XPtr<freefunc> weib_getPtr_free() {

XPtr<freefunc> p(new freefunc(&weib_free), true);
return p;

}

Finally, the survival function itself must be implemented, which we do here by using RcppAr-
madillo linear algebra methods. Note there is a similar approach to the R implementation for
extracting the observation and sample indices (zero-based here) from the flat iterator n:

vec weib_sfunc(vec t, void *arg, int n) {
weib *argc = (weib*)arg;
int nsmp = argc->nsmp, nobs = argc->nobs, natt = argc->natt;
int idx_smp = n / nobs;
int idx_obs = n - idx_smp * nobs;
mat X = argc->X;
mat beta = argc->beta;
vec alpha = argc->alpha;
mat exbeta = exp(X.row(idx_obs) * beta.col(idx_smp));
return exp(- pow(t, alpha(idx_smp)) * exbeta(0,0));

}
// [[Rcpp::export]]
XPtr<func> weib_getPtr_func() {

XPtr<func> p(new func(&weib_sfunc), true);
return p;

}

We can compile the entire C++ code for this model by running Rcpp::sourceCpp, inside
an R session, against the source file (weib.cpp). We are now ready to apply cfc to this
C++ implementation. The call looks similar to the R version, except for the first parameter
f.list, which must now be a list of pointers to the survival function, the initializer function,
and the free function:

R> tout <- seq(from = 0.0, to = tmax, length.out = 10)
R> library("Rcpp")
R> Rcpp::sourceCpp("weib.cpp")
R> f.list.Cpp.1 <- list(weib_getPtr_func(), weib_getPtr_init(),
+ weib_getPtr_free())
R> f.list.Cpp <- list(f.list.Cpp.1, f.list.Cpp.1)
R> t.Cpp <- proc.time()[3]
R> out.cfc.Cpp <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,
+ rel.tol = rel.tol)
R> t.Cpp <- proc.time()[3] - t.Cpp
R> cat("t.Cpp:", t.Cpp, "sec\n")

Journal of Statistical Software 19

t.Cpp: 0.183 sec

We can verify that the C++ results are identical to the R results:

R> all.equal(out.cfc.R, out.cfc.Cpp)

[1] TRUE

Note the impressive speedup achieved by the C++ implementation:

R> cat("C++-vs-R speedup:", t.R / t.Cpp, "\n")

C++-vs-R speedup: 137.1311

This performance level makes it feasible to use more realistic parameters, e.g., nsmp = 1000:

R> nsmp <- 1000
R> reg1 <- bsgw(f1, dat[idx.train,], control = bsgw.control(iter = nsmp),
+ ordweib = TRUE, print.level = 0)
R> reg2 <- bsgw(f2, dat[idx.train,], control = bsgw.control(iter = nsmp),
+ ordweib = TRUE, print.level = 0)
R> arg.1 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp, X = X.pred,
+ alpha = exp(reg1smpbetas), beta = reg1smpbeta)
R> arg.2 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp, X = X.pred,
+ alpha = exp(reg2smpbetas), beta = reg2smpbeta)
R> arg.list <- list(arg.1, arg.2)
R> t.Cpp.1000 <- proc.time()[3]
R> out.cfc.Cpp.1000 <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,
+ rel.tol = rel.tol)
R> t.Cpp.1000 <- proc.time()[3] - t.Cpp.1000
R> cat("t.Cpp - 1000 samples", t.Cpp.1000, "sec\n")

t.Cpp - 1000 samples 37.016 sec

Further speedup can be achieved by multi-threading, using the ncores parameter:

R> ncores <- 2
R> t.Cpp.1000.par <- proc.time()[3]
R> out.cfc.Cpp.1000.par <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,
+ rel.tol = rel.tol, ncores = ncores)
R> t.Cpp.par.1000.par <- proc.time()[3] - t.Cpp.1000.par
R> cat("t.Cpp.par - 1000 samples:", t.Cpp.1000.par, "sec\n")

t.Cpp.par - 1000 samples: 19.605 sec

The speedup for nsmp = 1000 remains quite acceptable:

20 CFC: Cause-Specific Competing-Risk Survival Analysis in R

R> cat("parallelization speedup - C++:", t.Cpp.1000 / t.Cpp.1000.par, "\n")

parallelization speedup - C++: 1.88809

4.4. Example 4: Combining parametric and nonparametric survival models

The logical separation of survival models and competing-risk analysis in CFC offers the flex-
ibility to use entirely different types of models for different causes. We saw an example of
this in Section 4.1, where we used Weibull and exponential distributions in the cfc.survreg
function. It is even possible to combine parametric and nonparametric survival models in
CFC, as we illustrate next.
The random forest survival model in the randomForestSRC package produces discretized
survival curves. When survival curves for all causes are discrete, combining them does not
require integration, and the survfit function in survival package offers this functionality.
However, if at least one cause has a continuous survival function, we can use CFC to produce
continuous outputs. The key step is to write a wrapper function around the discrete survival
functions that uses interpolation to create a continuous interface.
As before, we begin by using the utility function cfc.prepdata to prepare the data for
cause-specific survival analysis:

R> prep <- cfc.prepdata(Surv(time, cause) ~ platelet + age + tcell, bmt)
R> f1 <- prep$formula.list[[1]]
R> f2 <- prep$formula.list[[2]]
R> dat <- prep$dat
R> tmax <- prep$tmax

We choose a parametric Weibull regression for the first cause, taking care to keep x for
prediction:

R> library("survival")
R> reg1 <- survreg(f1, dat, x = TRUE)

For the second cause, we build a random forest survival model. This is followed by implement-
ing a function to provide a continuous-output interface to the prediction function provided
by the package:

R> library("randomForestSRC")
R> reg2 <- rfsrc(f2, dat)
R> rfsrc.survfunc <- function(t, args, n) {
+ which.zero <- which(t < .Machine$double.eps)
+ ret <- approx(args$time.interest, args$survival[n,], t, rule = 2)$y
+ ret[which.zero] <- 1.0
+ return(ret)
+ }

Finally, we construct the function and argument lists for cfc and call the function:

Journal of Statistical Software 21

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

cause 1 − cumulative incidence

time from index

C
I

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

cause 2 − cumulative incidence

time from index

C
I

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

cause 1 − survival

time from index

su
rv

iv
al

 p
ro

ba
bi

lit
y

0 20 40 60 80 100

0.
75

0.
85

0.
95

cause 2 − survival

time from index

su
rv

iv
al

 p
ro

ba
bi

lit
y

Figure 5: Population-average, cause-specific cumulative incidence and survival functions cor-
responding to Example 4.

R> f.list <- list(cfc.survreg.survprob, rfsrc.survfunc)
R> arg.list <- list(reg1, reg2)
R> tout <- seq(0.0, tmax, length.out = 10)
R> cfc.out <- cfc(f.list, arg.list, nrow(bmt), tout, rel.tol = 1e-4)

This ‘cfc’ object can be summarized as before, but this time we will simply average across all
observations, i.e., there will be no samples remaining since the framework was not Bayesian.
See also Figure 5. Note that, in this case, our reduction function is not producing samples
but point estimates, and therefore quantile calculation is meaningless.

R> plot(summary(cfc.out, f.reduce = mean))

5. Discussion

Summary: Bayesian techniques offer many, well-recognized methodological advantages –
particularly in survival analysis – including a general estimation framework, consistent treat-
ment and propagation of uncertainty, validity for small (and large) samples, ability to incor-
porate prior information, ease of model comparison and validation, and natural handling of
missing data (Ibrahim, Chen, and Sinha 2005). Translating this broad appeal into widespread
adoption of Bayesian techniques is critically dependent on the availability of software for their

22 CFC: Cause-Specific Competing-Risk Survival Analysis in R

easy and efficient estimation and prediction. Most effort in developing high-performance
Bayesian software, however, has been focused on the estimation side, with research covering
areas such as efficient (Girolami and Calderhead 2011; Mahani, Hasan, Jiang, and Sharabiani
2016), self-tuning (Homan and Gelman 2014), and parallel (Mahani and Sharabiani 2015;
Gonzalez, Low, Gretton, and Guestrin 2011) MCMC sampling, among others. In contrast,
relatively little attention has been paid to providing techniques and tools for full Bayesian
prediction, leaving many practitioners with no choice but to use premature, point summaries
of model parameters to produce approximate, mean values for predicted entities (see, however,
Mahani and Sharabiani (2017)).
We presented the R package CFC for Bayesian, and non-Bayesian, cause-specific competing-
risk analysis of parametric and nonparametric survival models with an arbitrary number of
causes. Three usage modes available in CFC offer a combination of ease-of-use and extensibil-
ity: While a single-line call to cfc.survreg performs parametric survival regression followed
by competing-risk analysis, the core function cfc allows users to include other survival models,
including nonparametric ones, in cause-specific competing-risk analysis. The R interface can
be used for small data sets and/or non-Bayesian models, where the computational workload
is modest. It can also serve as a reference for implementing the C++ version of the sur-
vival functions in order to significantly improve performance for computationally-demanding
problems. The quadrature algorithm used in CFC can be considered an implicit variable
transformation method that circumvents potential end-point singularities, and also enhances
usability by removing the need to supply the cause-specific hazard functions. In addition to
the C++ API, other performance optimization techniques in CFC such as cross-cause work-
sharing and OpenMP parallelization have been combined to put a full Bayesian approach to
survival and competing-risk analysis within the reach of practitioners.

Potential future work: According to Equations 3 and 4, we must have:∑
k

∆Fk = −∆E = −∆
∏
k

Sk, (15)

where ∆ refers to the change in a quantity during an integration time step. However, the
generalized Simpson step (Equations 13a and 13b), when applied to all causes, does not
mathematically satisfy this condition. In other words, the sum of event-free probability and
all cumulative incidence functions does not mathematically add up to 1 after discrete time
evolutions. Similarly, the generalized trapezoidal rule of Equation 14, when applied to each
cause in isolation, does not satisfy this property in general (but it does for K = 2). It is
possible to extend the trapezoidal step to satisfy this property, but without an equivalent
extension of the Simpson rule, we would need to develop an alternative approach to error
analysis since the trapezoidal step cannot be used for both the main and reference methods.
Developing a coherent framework that satisfies Equation 15 and includes proper error analysis
is an interesting potential area of research.
In terms of software development, the current implementation of cfc.survreg is R based.
This is partially justified since the underlying models, from the survival package, are non-
Bayesian. Therefore, as long as data sizes are small, computational workloads in cfc.survreg
remain manageable without porting to C++. However, for large data sets this will be inade-
quate, and therefore a high-performance implementation is warranted to cover the emerging,
big-data use-cases.

Journal of Statistical Software 23

OpenMP parallelization of cfc provides an immediate and significant performance gain, but
there are other, more advanced opportunities for performance optimization. For example,
single-instruction, multiple-data (SIMD) parallelization has recently been successfully ap-
plied to Bayesian problems (Mahani and Sharabiani 2015). Given the increasing width of
vector registers in modern CPUs (Jeffers and Reinders 2013), taking advantage of SIMD par-
allelization offers an opportunity for meaningful performance improvements. A second area
of investigation, especially for large data sets with memory-bound performance ceilings, is
reducing data movement throughout the memory hierarchy. Techniques such as improving
data layout to permit unit-stride access, and NUMA-aware memory allocation to minimize
cross-socket data transfer over slower bus interconnects (Mahani and Sharabiani 2015) can
help minimize data movement and improve cache and memory bandwidth utilization.

References

Andersen PK, Klein JP, Rosthøj S (2003). “Generalised Linear Models for Correlated Pseudo-
Observations, with Applications to Multi-State Models.” Biometrika, 90(1), 15–27. doi:
10.1093/biomet/90.1.15.

Bailey DH, Jeyabalan K, Li XS (2005). “A Comparison of Three High-Precision Quadra-
ture Schemes.” Experimental Mathematics, 14(3), 317–329. doi:10.1080/10586458.2005.
10128931.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. doi:10.1023/a:
1010933404324.

Chen CH, Chang IS, Hsiung CA (2018). NPMLEcmprsk: Type-Specific Failure Rate and Haz-
ard Rate on Competing Risks Data. R package version 3.0, URL https://CRAN.R-project.
org/package=NPMLEcmprsk.

Datta GS (2005). “Location-Scale Family.” Encyclopedia of Biostatistics. doi:10.1002/
0470011815.b2a15078.

Eddelbuettel D (2013). “Calling R Functions from C++.” URL http://gallery.rcpp.org/
articles/r-function-from-c++/.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Fine JP, Gray RJ (1999). “A Proportional Hazards Model for the Subdistribution of a
Competing Risk.” Journal of the American Statistical Association, 94(446), 496–509. doi:
10.2307/2670170.

Friedman JH (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” The
Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.

https://doi.org/10.1093/biomet/90.1.15
https://doi.org/10.1093/biomet/90.1.15
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://CRAN.R-project.org/package=NPMLEcmprsk
https://CRAN.R-project.org/package=NPMLEcmprsk
https://doi.org/10.1002/0470011815.b2a15078
https://doi.org/10.1002/0470011815.b2a15078
http://gallery.rcpp.org/articles/r-function-from-c++/
http://gallery.rcpp.org/articles/r-function-from-c++/
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.2307/2670170
https://doi.org/10.2307/2670170
https://doi.org/10.1214/aos/1013203451

24 CFC: Cause-Specific Competing-Risk Survival Analysis in R

Gelman A, Hill J (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Gilbert P, Varadhan R (2016). numDeriv: Accurate Numerical Derivatives. R package version
2016.8-1, URL https://CRAN.R-project.org/package=numDeriv.

Girolami M, Calderhead B (2011). “Riemann Manifold Langevin and Hamiltonian Monte
Carlo Methods.” Journal of the Royal Statistical Society B, 73(2), 123–214. doi:10.1111/
j.1467-9868.2010.00765.x.

Gonzalez J, Low Y, Gretton A, Guestrin C (2011). “Parallel Gibbs Sampling: From Colored
Fields to Thin Junction Trees.” In International Conference on Artificial Intelligence and
Statistics, pp. 324–332.

Gray B (2014). cmprsk: Subdistribution Analysis of Competing Risks. R package version
2.2-7, URL https://CRAN.R-project.org/package=cmprsk.

Greenwell B, Boehmke B, Cunningham J, GBM Developers (2019). gbm: Generalized
Boosted Regression Models. R package version 2.1.5, URL https://CRAN.R-project.org/
package=gbm.

Haller B, Schmidt G, Ulm K (2013). “Applying Competing Risks Regression Models: An
Overview.” Lifetime Data Analysis, 19(1), 33–58. doi:10.1007/s10985-012-9230-8.

Homan MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15(1), 1593–1623.

Ibrahim JG, Chen MH, Sinha D (2005). Bayesian Survival Analysis. John Wiley & Sons.

Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM (2014). “Random
Survival Forests for Competing Risks.” Biostatistics, 15(4), 757–773. doi:10.1093/
biostatistics/kxu010.

Ishwaran H, Kogalur UB (2019). randomForestSRC: Fast Unified Random Forests for Sur-
vival, Regression, and Classification (RF-SRC). R package version 2.9.0, URL https:
//CRAN.R-project.org/package=randomForestSRC.

Jeffers J, Reinders J (2013). Intel Xeon Phi Coprocessor High-Performance Programming.
Newnes.

Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(14), 1–19. doi:10.18637/jss.v055.i14.

Larson MG, Dinse GE (1985). “A Mixture Model for the Regression Analysis of Competing
Risks Data.” Journal of the Royal Statistical Society C, 34(3), 201–211. doi:10.2307/
2347464.

Laurie D (1997). “Calculation of Gauss-Kronrod Quadrature Rules.” Mathematics of
Computation of the American Mathematical Society, 66(219), 1133–1145. doi:10.1090/
s0025-5718-97-00861-2.

Mahani AS, Hasan A, Jiang M, Sharabiani MTA (2016). “Stochastic Newton Sampler: The R
Package sns.” Journal of Statistical Software, 74(2), 1–33. doi:10.18637/jss.v074.c02.

https://CRAN.R-project.org/package=numDeriv
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://CRAN.R-project.org/package=cmprsk
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://doi.org/10.1007/s10985-012-9230-8
https://doi.org/10.1093/biostatistics/kxu010
https://doi.org/10.1093/biostatistics/kxu010
https://CRAN.R-project.org/package=randomForestSRC
https://CRAN.R-project.org/package=randomForestSRC
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.2307/2347464
https://doi.org/10.2307/2347464
https://doi.org/10.1090/s0025-5718-97-00861-2
https://doi.org/10.1090/s0025-5718-97-00861-2
https://doi.org/10.18637/jss.v074.c02

Journal of Statistical Software 25

Mahani AS, Sharabiani MT (2015). “SIMD Parallel MCMC Sampling with Applications
for Big-Data Bayesian Analytics.” Computational Statistics & Data Analysis, 88, 75–99.
doi:10.1016/j.csda.2015.02.010.

Mahani AS, Sharabiani MTA (2016). BSGW: Bayesian Survival Model with Lasso Shrink-
age Using Generalized Weibull Regression. R package version 0.9.2, URL https://CRAN.
R-project.org/package=BSGW.

Mahani AS, Sharabiani MTA (2017). “Multivariate-From-Univariate MCMC Sampler: The
R Package MfUSampler.” Journal of Statistical Software, 78(1), 1–22. doi:10.18637/jss.
v078.c01.

Nicolaie M, van Houwelingen HC, Putter H (2010). “Vertical Modeling: A Pattern Mixture
Approach for Competing Risks Modeling.” Statistics in Medicine, 29(11), 1190–1205. doi:
10.1002/sim.3844.

Okamura H (2015). deformula: Integration of One-Dimensional Functions with Double Expo-
nential Formulas. R package version 0.1.1, URL https://CRAN.R-project.org/package=
deformula.

Piessens R, de Doncker-Kapenga E, Überhuber CW, Kahaner DK (2012). QUADPACK: A
Subroutine Package for Automatic Integration, volume 1. Springer-Verlag.

Pohar Perme M, Gerster M (2017). pseudo: Pseudo-Observations. R package version 1.4.3,
URL https://CRAN.R-project.org/package=pseudo.

Prentice RL, Kalbfleisch JD, Peterson Jr AV, Flournoy N, Farewell VT, Breslow NE (1978).
“The Analysis of Failure Times in the Presence of Competing Risks.” Biometrics, 34(4),
541–554. doi:10.2307/2530374.

Press WH (2007). Numerical Recipes: The Art of Scientific Computing. 3rd edition. Cam-
bridge University Press.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Revolution Analytics, Weston S (2017). foreach: Provides Foreach Looping Construct for R.
R package version 1.4.4, URL https://CRAN.R-project.org/package=foreach.

Revolution Analytics, Weston S (2018). doParallel: Foreach Parallel Adaptor for the par-
allel Package. R package version 1.0.14, URL https://CRAN.R-project.org/package=
doParallel.

Sharabiani MTA, Mahani AS (2019). CFC: Cause-Specific Framework for Competing-Risk
Analysis. R package version 1.1.2, URL https://CRAN.R-project.org/package=CFC.

Stroud AH, Secrest D (1966). Gaussian Quadrature Formulas, volume 39. Prentice-Hall,
Englewood Cliffs.

Takahasi H, Mori M (1974). “Double Exponential Formulas for Numerical Integration.”
Publications of the Research Institute for Mathematical Sciences, 9(3), 721–741. doi:
10.2977/prims/1195192451.

https://doi.org/10.1016/j.csda.2015.02.010
https://CRAN.R-project.org/package=BSGW
https://CRAN.R-project.org/package=BSGW
https://doi.org/10.18637/jss.v078.c01
https://doi.org/10.18637/jss.v078.c01
https://doi.org/10.1002/sim.3844
https://doi.org/10.1002/sim.3844
https://CRAN.R-project.org/package=deformula
https://CRAN.R-project.org/package=deformula
https://CRAN.R-project.org/package=pseudo
https://doi.org/10.2307/2530374
https://www.R-project.org/
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=CFC
https://doi.org/10.2977/prims/1195192451
https://doi.org/10.2977/prims/1195192451

26 CFC: Cause-Specific Competing-Risk Survival Analysis in R

Therneau TM (2019). survival: Survival Analysis. R package version 2.44-1.1, URL https:
//CRAN.R-project.org/package=survival.

Wynn P (1966). “On the Convergence and Stability of the Epsilon Algorithm.” SIAM Journal
on Numerical Analysis, 3(1), 91–122. doi:10.1137/0703007.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1137/0703007

Journal of Statistical Software 27

A. Proof of the generalized Simpson rule
Our objective is to derive an approximation for

∫ b
a f(t) dg(t), using a second-order Taylor-

series expansion of f(t) in terms of g(t) over the interval [a, b]:

f(t) = fa + α (g(t)− ga) + 1
2β (g(t)− ga)2, (16)

where fa ≡ f(t = a) and similarly for fb, ga and gb. To find α and β, we require that
this quadratic function passes through (fa, ga), (fb, gb), and (fm, gm), where fm ≡ f(m =
(a+ b)/2), and similarly for gm. Th first of the three conditions, at t = a, is already satisfied
in Equation 16. The next two conditions lead to

fb = fa + α (gb − ga) + 1
2β (gb − ga)2, (17a)

fm = fa + α (gm − ga) + 1
2β (gm − ga)2. (17b)

Solving for α and β leads to:

α = (fm − fa)(gb − ga)2 − (fb − fa)(gm − ga)2

(gm − ga)(gb − gm)(gb − ga)
, (18a)

β = 2{(fb − fa)(gm − ga)− (fm − fa)(gb − ga)}
(gm − ga)(gb − gm)(gb − ga)

. (18b)

Integrating Equation 16 over [a, b] leads to the following approximation:

∫ b

a
f(t) dg(t) ∼= Igs(f, g; a, b) = fa(gb − ga) + 1

2α (gb − ga)2 + 1
6β (gb − ga)2. (19)

Substituting α and β from Equations 18a and 18b into Equation 19, while defining g1 ≡ gm−ga
and g2 ≡ gb − gm, and some algebraic manipulation, leads to:

Igs = g1 + g2
6 g1 g2

{
fa (2 g1 g2 − g2

2) + fm (g1 + g2)2 + fb (2 g1 g2 − g2
1)
}
. (20)

A second change of variable, using h ≡ g1+g2 = gb−ga and δ ≡ g1−g2 = 2gm−(ga+gb) allows
us to re-express the above in the following form, after some further algebraic manipulations:

Igs = 1
6

h

h2 − δ2

{
fa(h2 + 2hδ − 3δ2) + 4fmh2 + fb(h2 − 2hδ − 3δ2)

}
. (21)

A final symbol definition, r ≡ h/δ, readily leads to Equation 13a.

B. Setup
Below is the R session information used in producing the R output in Section 4.

R> sessionInfo()

28 CFC: Cause-Specific Competing-Risk Survival Analysis in R

R version 3.3.3 (2017-03-06)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Amazon Linux AMI 2017.03

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets base

other attached packages:
[1] randomForestSRC_2.4.2 Rcpp_0.12.11 CFC_1.1.0
[4] Hmisc_4.0-3 ggplot2_2.2.1 Formula_1.2-1
[7] survival_2.41-3 lattice_0.20-34 BSGW_0.9.2

loaded via a namespace (and not attached):
[1] compiler_3.3.3 MfUSampler_1.0.4
[3] RColorBrewer_1.1-2 plyr_1.8.4
[5] methods_3.3.3 base64enc_0.1-3
[7] iterators_1.0.8 tools_3.3.3
[9] rpart_4.1-10 digest_0.6.12

[11] tibble_1.3.3 gtable_0.2.0
[13] htmlTable_1.9 checkmate_1.8.2
[15] rlang_0.1.1 Matrix_1.2-8
[17] foreach_1.4.3 parallel_3.3.3
[19] RcppArmadillo_0.7.900.2.0 gridExtra_2.2.1
[21] coda_0.19-1 stringr_1.2.0
[23] cluster_2.0.5 knitr_1.16
[25] htmlwidgets_0.8 grid_3.3.3
[27] nnet_7.3-12 data.table_1.10.4
[29] HI_0.4 foreign_0.8-67
[31] latticeExtra_0.6-28 magrittr_1.5
[33] scales_0.4.1 backports_1.1.0
[35] codetools_0.2-15 htmltools_0.3.6
[37] ars_0.5 splines_3.3.3
[39] abind_1.4-5 colorspace_1.3-2
[41] stringi_1.1.5 acepack_1.4.1
[43] lazyeval_0.2.0 doParallel_1.0.10
[45] munsell_0.4.3

Journal of Statistical Software 29

Affiliation:
Alireza S. Mahani
Davidson Kempner Capital Management
520 Madison Ave, 30th Floor
New York, NY 10022, United States of America
E-mail: alireza.s.mahani@gmail.com

Mansour T. A. Sharabiani
School of Public Health
Imperial College London
323, Reynolds Building, Charing Cross Campus
London W6 8RP, United Kingdom
E-mail: mansour.taghavi-azar-sharabiani05@imperial.ac.uk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

May 2019, Volume 89, Issue 9 Submitted: 2015-12-21
doi:10.18637/jss.v089.i09 Accepted: 2018-03-17

mailto:alireza.s.mahani@gmail.com
mailto:mansour.taghavi-azar-sharabiani05@imperial.ac.uk
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i09

	Introduction
	Bayesian CFC quadrature
	Cause-specific competing-risk survival analysis
	Shortcomings of current quadrature techniques for Bayesian CFC
	Generalized Newton-Cotes
	Performance optimization strategies in CFC

	CFC implementation and features
	Overview of CFC
	CFC usage modes

	Using CFC
	Example 1: End-to-end competing-risk analysis
	Example 2: Bayesian CFC in R
	Example 3: High-performance Bayesian CFC (in C++)
	Example 4: Combining parametric and nonparametric survival models

	Discussion
	Proof of the generalized Simpson rule
	Setup

