Journal of Statistical Software

August 2020, Volume 94, Issue 12. doi: 10.18687/jss.v094.i12

PResiduals: An R Package for Residual Analysis
Using Probability-Scale Residuals

Qi Liu Bryan Shepherd Chun Li
Merck & CO., Inc. Vanderbilt University University of
Southern California

Abstract

We present the R package PResiduals for residual analysis using the probability-scale
residual. This residual is well defined for a wide variety of outcome types and models, in-
cluding some settings where other popular residuals are not applicable. It can be used for
model diagnostics, tests of conditional associations, and covariate-adjustment for Spear-
man’s rank correlation. These tests and measures of conditional association are applicable
to any orderable variable. They use order information but do not require assigning scores
to ordered categorical variables or transforming continuous variables, and therefore, can
achieve a good balance between robustness and efficiency. We illustrate the usage of the
PResiduals package with a publicly available dataset.
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1. Introduction

We recently proposed a new type of residual, the probability-scale residual (PSR), defined as
P(Y* <y) — P(Y* > y), where y is the observed value and Y* is a random variable from the
fitted distribution (Li and Shepherd 2012; Shepherd, Li, and Liu 2016). This residual is on
the probability scale ranging from —1 to 1. It is well defined for a wide variety of outcome
types and models, including some settings where other popular residuals are not applicable.
Under properly-specified models, the PSR has expectation 0, and it can, therefore, be used
for model diagnostics. In addition, PSRs can be used to test for conditional associations (Li
and Shepherd 2010) and to construct covariate-adjusted Spearman’s rank correlation (Liu, Li,
Wanga, and Shepherd 2018). These methods are applicable to any orderable variable. They
use order information but do not require assigning scores to ordered categorical variables
or transforming continuous outcomes, and therefore, can achieve a good balance between
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robustness and efficiency. The R (R Core Team 2020) package, PResiduals (Dupont, Horner,
Li, Liu, and Shepherd 2020), has been developed to facilitate residual analyses using PSRs.
PResiduals is available from the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=PResiduals. The purpose of this paper is to provide an
introduction to the PResiduals package. We organize this paper as follows. In Section 2,
we provide a brief review of PSRs and related methods. In Section 3, we illustrate the main
functions in PResiduals with examples. Section 4 contains a summary.

2. Review of methods

2.1. PSRs

A residual can be viewed as a contrast between the observed value and its fitted distribution.
For example, the commonly used observed-minus-expected residual (OMER) can be written
as y — 9§ = E(y — Y™), where y is the observed value, Y* is a random variable from the
fitted distribution F*, and the contrast function is the difference. The PSR can be written
similarly with a more general contrast function sign(y,Y™), where sign(a,b) is —1, 0, and 1
for a < b, a = b, and a > b. Specifically, r(y, F*) = E[sign(y,Y™*)] = P(Y* < y) — P(Y* >
y) = F*(y—) + F*(y) — 1, where F"*(y—) = limy, F*(t). The PSR was originally proposed
for ordered categorical variables where the difference between categories is not well defined
(Li and Shepherd 2010, 2012). Later, it was extended to other types of orderable variables,
including continuous, discrete, and censored outcomes (Shepherd et al. 2016).

With continuous outcomes, the PSR is 2F*(y) — 1. If the model is properly specified, as
n — +oo, F* — F where F is the true distribution of Y, then r(Y, F*) — 2F(Y) — 1. Note
that F(Y) is the probability integral transformation and it is uniformly distributed from 0
to 1. Therefore, if the PSR is from the properly-specified model, it is a re-scaling of the
probability integral transformation and it is approximately uniformly distributed from —1
to 1 with expectation 0 and constant variance 1/3. A quantile-quantile (QQ) plot of PSRs
versus the theoretical quantiles of the uniform distribution can be used to assess the overall
model fit. In addition, PSRs can also be used in residual-by-predictor plots to detect lack of
fit for specific predictors.

With discrete outcomes, the PSR is 2F*(y) — f*(y) — 1, where f* is the probability mass
function of the fitted distribution. In the extreme case where Y is binary, the PSR reduces
to y — P(Y* = 1), which is the OMER or unscaled Pearson residual. Although the PSR still
has expectation 0 under the properly-specified model, it is not uniformly distributed due to
the discreteness. Therefore, residual-by-predictor plots still provide information for the fit of
specific predictors, but QQ-plots with PSRs are generally not useful.

With right censored outcomes, we denote T' as the time to event and C as the time to
censoring. Rather than directly observing 7" we only observe Y = min(7',C) and A = I(T <
(). The above formula for the PSR can only be applied to non-censored observations. If
censored, the failure time is unknown but it occurs after the censoring time Y. Therefore, we
define the PSR as its conditional expectation given that T' > Y, i.e., E[r(T*, F*) | T* > Y] =
F*(Y). Formally, the PSR for censored outcomes is defined in terms of y and 4, the observed
values of Y and A, as r(y, F*,d§) = F*(y) — §[1 — F*(y—)]. Note that with this definition,
the PSR for censored observations is always non-negative. But under the properly-specified
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model and T' L C, it still has expectation 0. Therefore, the PSR can be used for model
diagnostics for censored outcomes.

The PSR has many attributes that make it useful in practice. Since the PSR does not require
calculation of a fitted mean or full specification of a fitted distribution, it is especially useful
for models where expectations cannot be computed or that are not fully parametric. For
example, it is the natural residual for ordered categorical outcomes and cumulative probability
models, where other commonly used residuals are not available or cannot be easily derived.
As illustrated below, there are also benefits to having a residual that is well defined with a
common scale for a wide variety of outcome types and models. In addition to those already
mentioned, the PSR has some connections with other residuals. For example, the quantile
residuals (Dunn and Smyth 1996) of continuous outcomes can be viewed as a normalized
version of PSRs, and normalized PSRs for censored outcomes extend the concept of quantile
residuals to time-to-event data (Shepherd et al. 2016). Residuals have been developed for
discrete data that jitter the outcome, thereby making residuals behave more like those for
continuous data (Dunn and Smyth 1996); a jittered residual for ordinal regression models
based on an implied latent variable distribution was recently proposed and compared to the
probability-scale residual, and shown to perform favorably for some diagnostics (Liu and
Zhang 2018). For a more detailed discussion of comparisons and connections between PSRs
and other commonly used residuals, such as observed-minus-expected residuals (OMER) for
continuous outcomes, Pearson and deviance residuals for discrete outcomes, and martingale,
Cox-Snell, and deviance residuals for censored outcomes, we refer readers to our earlier paper
(Shepherd et al. 2016).

2.2. Test of residual correlation with PSRs

The PSR was initially independently proposed as a component of test statistics involving
ordinal variables (Wang, Ye, and Zhang 2006; Li and Shepherd 2010). Specifically, the PSR
was used for testing the conditional association between two ordered categorical variables X
and Y while adjusting for covariates Z, referred to as COBOT (conditional ordinal by ordinal
tests) in Li and Shepherd (2010). Traditional regression approaches treat the ordinal predictor
as either categorical or numerical, whereas the former ignores the order information and the
latter often makes linear assumptions. The basic idea of COBOT is to obtain conditional
distributions of X and Y from models of X on Z and of Y on Z, and then to determine
whether these conditional distributions are independent.

Three test statistics were proposed based on this idea. The first test statistic (T'1) compares
the observed joint distribution between X and Y with its expected distribution under the
null of conditional independence. If X and Y are independent conditional on Z, their joint
distribution given Z is expected to follow the product of the conditional distributions of X
and Y given Z. Therefore, we test for conditional independence by computing Goodman
and Kruskal’s gamma for the observed and expected joint distributions and taking their
difference. The second test statistic (T2) is based on PSRs. Specifically, T2 takes PSRs from
models of X on Z and of Y on Z and tests the null of no residual correlation. The third
test statistic (T3) evaluates the concordance-discordance of data drawn from the joint fitted
distribution of X and Y under conditional independence with those drawn from the empirical
joint distributions, which can be written as the covariance of PSRs. p values for all three test
statistics are computed based on large sample theory using M-estimation procedures. More
details of these test statistics are given in Li and Shepherd (2010).
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2.3. Covariate-adjusted Spearman’s rank correlation with PSRs

When there are no covariates, the PSR is a linear transformation of ranks, and the correlation
of PSRs is simply Spearman’s rank correlation (Li and Shepherd 2012; Shepherd et al. 2016).
Formally, the population parameter of Spearman’s rank correlation can be expressed as the
correlation of PSRs. With covariates, the PSR can be viewed as a linear transformation of ad-
justed ranks. This motivates us to use PSRs to construct covariate-adjusted rank correlations
(Liu et al. 2018).

There are generally two types of covariate-adjusted correlations. One is partial correlation,
i.e., removing the effect of covariates and summarizing the relationship with a single number.
The other is conditional correlation, i.e., assessing the correlation at specific levels of the
covariates. We have proposed estimators for both partial and conditional Spearman’s rank
correlations: our partial estimator is the correlation of PSRs and our conditional estimator
is the conditional correlation of PSRs (Liu et al. 2018).

To obtain those estimators, we first need to fit models of X on Z and of Y on Z, and then com-
pute PSRs from both models. Although the PSR is well defined and can be easily computed
from many parametric or nonparametric models, to maintain the spirit of Spearman’s rank
correlation and to achieve a good balance between robustness and efficiency we favor fitting
rank-based semiparametric models of X on Z and Y on Z. Specifically, we advocate fitting
cumulative probability models. This class of models was originally developed for discrete
ordinal data (McCullagh 1980; Agresti 2010), but can be applied to continuous data (Sall
1991; Harrell 2015; Liu, Shepherd, Li, and Harrell 2017). Since the model fit only uses the
order information of X and Y, using PSRs from this type of model preserves the rank-based
nature of Spearman’s rank correlation.

After obtaining PSRs from models of X on Z and of Y on Z, our partial Spearman’s rank
correlation estimator can be obtained simply as the correlation of PSRs. Note that this pro-
cedure is analogous to the partial Pearson’s correlation, which is computed as the correlation
of OMERs from linear regression models. M-estimation techniques can be used to obtain
its standard error. Since the correlation coefficient is bounded between —1 and 1, Fisher’s
transformation can be used to obtain better coverage to its confidence interval. Technical
details are found in Liu et al. (2018).

To obtain the conditional estimator for Spearman’s rank correlation, we need to model the
conditional correlation between PSRs. If Z is a categorical variable with sufficient numbers in
each category, we can do a stratified analysis, i.e., compute the correlation of PSRs within each
level of Z. If Z is continuous, smoothing is needed and can be achieved nonparametrically or
parametrically. We have described a nonparametric approach based on kernel weighting and
a parametric approach using linear regression in Liu et al. (2018).

3. Analysis with the PResiduals package

3.1. Wage data

Throughout this section, we use a publicly available dataset, the Wage data, to illustrate the
usage of key functions in the PResiduals package. This dataset can be obtained from the
R package ISLR (James, Witten, Hastie, and Tibshirani 2017). It contains annual wage (in
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Variable Description

year Year that wage information was recorded

age Age of worker

maritl A factor with levels 1. Never Married 2. Married 3. Widowed 4. Divorced
and 5. Separated indicating marital status

race A factor with levels 1. White 2. Black 3. Asian and 4. Other

education A factor with levels 1. < HS Grad 2. HS Grad 3. Some College 4. College
Grad and 5. Advanced Degree indicating education level

region Region of the country (mid-atlantic only)

jobclass A factor with levels 1. Industrial and 2. Information indicating type of job

health A factor with levels 1. < Good and 2. > Very Good indicating health level
of worker

health_ins A factor with levels 1. Yes and 2. No indicating whether worker has health
insurance

logwage Log of worker’s wage

wage Worker’s raw wage

Table 1: Variables in Wage dataset.

thousands of dollars) and other information for 3,000 male workers in the mid-Atlantic region
of the United States from 2003 to 2009. Table 1 summarizes the description of the dataset
and its variables. With this dataset, we can build regression models for wage and study its
relationship with other variables.

R> data("Wage", package = "ISLR")

3.2. Calculation of PSRs

We first illustrate how to obtain PSRs from various models. The function presid() is im-
plemented to compute PSRs. Its usage is very similar to the function residuals() from
the stats package (R Core Team 2020). Specifically, it takes a model object and returns a
numerical vector containing PSRs in the order of original observations in the dataset. Cur-
rently supported model objects include those returned by 1m and glm (Poisson, binomial,
and gaussian families) in the stats package (R Core Team 2020); polr and glm.nb in the
MASS package (Venables and Ripley 2002; Ripley 2020); ols, Glm, 1lrm, orm, psm, and cph
in the rms package (Harrell Jr 2020); and survreg (Weibull, exponential, gaussian, logistic,
and lognormal distributions) and coxph in the survival package (Therneau and Grambsch
2000; Therneau 2020). Hence, using the function presid(), we can easily obtain PSRs from
proportional odds models (more generally cumulative probability models), linear regression
models, generalized linear regression models (such as Poisson and negative binomial models),
parametric survival models, and Cox proportional hazards models. We now illustrate the
calculation of PSRs from some of these models and their application in model diagnostics
with the Wage data.

We start with ordinal regression models for ordered categorical variables. The PSR is a
natural residual for the ordered categorical outcome as it does not require assigning distance
scores to categories (Li and Shepherd 2012). Specifically, we model the ordered categorical
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variable education, which has 5 levels, with a proportional odds model. We include age,
race, jobclass, maritl (marital status), health (health status), and year (calender year) as
covariates; in addition, a transformation of age using restricted cubic splines was considered
to account for a potential nonlinear relationship. Note that we use the rcs() function from
the rms package to perform the restricted cubic splines transformation throughout the paper,
but other alternative smoothing functions such as ns() and bs() from the splines package
(R Core Team 2020) could perform similarly (examples not shown). PSRs can be obtained
as functions of regression coefficients directly. In R, proportional odds models can be fitted
using the function polr() from the MASS package or the function orm() from the rms
package. The following chunk of code illustrates the usage of these two functions along with
presid(). When using orm(), we need to set the arguments x = TRUE and y = TRUE so that
the expanded design matrix and the values of the response variable are returned; this is a
convention of the rms package. In this specific example, the PSRs obtained using these two
functions are slightly different at the sixth digit after the decimal. This is because polr ()
and orm() use different fitting procedures and yield slightly different regression coefficients.

R> library("PResiduals")

R> library("MASS")

R> library("rms")

R> po.polr <- polr(education ~ rcs(age, 5) + race + jobclass + maritl +
+ health + year, data = Wage)

R> PSR.po.polr <- presid(po.polr)

R> po.orm <- orm(education ~ rcs(age, 5) + race + jobclass + maritl +

+ health + year, data = Wage, x = TRUE, y = TRUE)

R> PSR.po.orm <- presid(po.orm)

R> summary (cbind (PSR.po.polr, PSR.po.orm))

PSR.po.polr PSR.po.orm

Min. :-0.9882886  Min. :-0.988289
1st Qu.:-0.4510896  1st Qu.:-0.451093
Median :-0.0072629 Median :-0.007264

Mean : 0.0000001 Mean : 0.000000
3rd Qu.: 0.5012186 3rd Qu.: 0.501223
Max. : 0.9716579 Max. : 0.971659

R> max(abs(PSR.po.polr - PSR.po.orm))
[1] 1.33206e-05

Figure 1 shows the application of PSRs in residual-by-predictor plots. Specifically, in the
left panel of Figure 1, we include both linear and nonlinear terms by transforming age using
restricted cubic splines with 5 knots, whereas in the right panel, we only include the linear
term. The smoothed curve shows a nonlinear relationship between PSRs and age when only
including the linear term, suggesting a better fit when both linear and nonlinear terms are
included. This is also supported by smaller AIC and BIC for the model that includes both
linear and nonlinear terms. Next, we consider linear regression models (specifically, normal
linear regression models and least squares models). For normal linear regression models,



Journal of Statistical Software 7

(a) include both linear and nonlinear terms (b) only include the linear term
o o
- -]
0 n
o] o
(9] [%]
x o_| [0
”n o n
o o
To) n
o o—
I [
o o
— i
| T T T T T T T ! T T T T T T T
20 30 40 50 60 70 80 20 30 40 50 60 70 80

age age

Figure 1: Residual-by-predictor plots with PSRs from proportional odds models. (a): PSRs
are from the model including both linear and nonlinear terms. (b): PSRs are from the model
only including the linear term.

PSRs can be obtained by assuming normality for the error distribution. For example, the
PSR for observed value y; can be computed as 2®[(y; — 9;)/6] — 1, where g; is the fitted
value, & is the standard deviation of the observed-minus-expected residuals (OMERs), and
®() is the cumulative distribution function (CDF) of the standard normal distribution. This
is the default in presid() for linear model objects (returned by 1m, ols and Glm). But
the normality assumption may not be necessary since it is well known that least squares
models are fairly robust to nonnormal errors as long as they are not highly skewed. In some
application, we may be willing to only assume homoscedasticity instead of normality. In that
case, PSRs can be obtained by empirically ranking OMERs. Specifically, if we denote the
OMER for observation ¢ as €; = y; —;, the corresponding empirical PSR would be ?:1 I(¢ <
€&)/n — > j—1 1(& > &)/n (Shepherd et al. 2016). This can be obtained with presid() by
setting the argument emp = TRUE. In the Wage example, consider a linear regression model of
logwage (log transformed wage) on education, age, race, jobclass, maritl, health, and
year, where we apply the log transformation to wage due to its skewed distribution. The
following chunk of code illustrates how to use presid () to obtain PSRs from linear regression
models under different assumptions.

R> 1m.mod <- 1m(logwage ~ education + rcs(age, 5) + race + jobclass +

+ maritl + health + year, data = Wage)

R> PSR.1m.normal <- presid(lm.mod)

R> PSR.1m.emp <- presid(lm.mod, emp = TRUE)

R> OMER.1m <- residuals(lm.mod)

R> pit.trans <- pnorm(Wage$logwage, mean = lm.mod$fitted.values,

+ sd = summary(1m.mod)$sigma)

R> gresid <- gnorm(pnorm(Wage$logwage, mean = lm.mod$fitted.values,

+ sd = summary(1m.mod)$sigma))

R> summary(cbind (OMER.1m, PSR.lm.normal, PSR.lm.emp, pit.trans, qresid))
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linear regression models. (a): PSRs assuming normality are com-

pared with OMERs. (b): PSRs assuming normality are compared with probability integral
transformation. (c): PSRs assuming normality are compared with quantile residuals. (d):
empirical PSRs are compared with PSRs assuming normality. (e): QQ-plot with PSRs under
the assumption of normality. (f): QQ-plot with OMERs.

OMER.1m
Min. :=1.7070
1st Qu.:-0.1551

Median : 0.0138

Mean : 0.0000

3rd Qu.: 0.1657

Max. : 1.1556
gresid

Min. :=5.95505

1st Qu.:-0.54097

Median : 0.04816
Mean 0.00000
3rd Qu.: 0.57802
Max. : 4.03135

PSR.1m.normal PSR.1m.emp pit.trans

Min. :=1.00000 Min. :=-0.9997 Min. :0.0000
1st Qu.:-0.41148 1st Qu.:-0.4998 1st Qu.:0.2943
Median : 0.03841 Median : 0.0000 Median :0.5192
Mean 0.01264  Mean : 0.0000 Mean :0.5063
3rd Qu.: 0.43675 3rd Qu.: 0.4998 3rd Qu.:0.7184
Max. : 0.99994  Max. : 0.9997 Max. :1.0000

Figure 2 plots the PSRs from the log-transformed linear model of wages under different

assumptions and their

relationships with OMERs, the probability integral transformation,

and quantile residuals. As shown in Figure 2 (a)—(c), for linear regression models, PSRs
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(assuming normality) can be written as one-to-one functions of OMERs, the probability
integral transformation, and quantile residuals. Since the PSRs of continuous responses are
approximately uniformly distributed over (—1,1) under properly-specified models, the QQ-
plot of the empirical quantiles of the PSRs versus theoretical quantiles of uniform(—1, 1)
can be used to assess the overall model fit (Shepherd et al. 2016). A QQ-plot of PSRs
from linear regression assuming normality is also plotted in Figure 2, suggesting the normal
linear assumption for logwage may not be ideal. A similar conclusion can be reached using
OMERs. Note, the PSR under the assumption of homoscedasticity is obtained by empirically
ranking the OMERSs; therefore, it is uniformly distributed by construction and its QQ-plot
does not provide useful information about the model fit. However, this empirical PSR can
still be used in residual-by-predictor plots to detect lack of fit for specific predictors. For
example, in Figure 3, we compare the residual-by-predictor plots using the empirical PSRs
from linear regression models including both linear and nonlinear terms for age (transformed
using restricted cubic splines) and not including nonlinear terms. Again, the smoothed curves
show a clear nonlinear pattern, suggesting lack of fit when only including the linear term. A
similar conclusion (although perhaps less striking in this example) can be obtained with
OMERs.

Although the log transformation is commonly used for right-skewed data, it may not be
optimal. Different transformations may give conflicting results. One option is to fit a semi-
parametric transformation model. One such semiparametric transformation model, which
can be viewed as a natural extension of ordinal cumulative probability models to continuous
responses, can be fit using the orm() function in the rms package (Harrell Jr 2020). The
PSR is the natural residual for this type of model, since conditional cumulative probabilities,
instead of conditional means, are modeled (Sall 1991; Harrell 2015; Liu et al. 2017).We now
illustrate its usage and the calculation of PSRs with presid() using the Wage data. Again,
we need to set the arguments x = TRUE and y = TRUE when calling orm().

R> cpm.probit <- orm(wage ~ education + rcs(age, 5) + race + jobclass +
+ maritl + health + year, data = Wage, x = TRUE, y = TRUE,

+ family = probit)

R> cpm.cloglog <- update(cpm.probit, family = cloglog)

R> PSR.cpm.probit <- presid(cpm.probit)

R> PSR.cpm.cloglog <- presid(cpm.cloglog)

R> summary(cbind (PSR.cpm.probit, PSR.cpm.cloglog))

PSR.cpm.probit PSR.cpm.cloglog
Min. :-0.99998  Min. :-1.00000
1st Qu.:-0.47360 1st Qu.:-0.42772

Median : 0.03304 Median : 0.03212
Mean : 0.01123 Mean : 0.00906
3rd Qu.: 0.48780 3rd Qu.: 0.45051
Max. : 0.99994  Max. : 0.99945

PSRs from cumulative probability models can also be used in QQ-plots and residual-by-
predictor plots to assess model fit. Figure 4 shows QQ-plots of PSRs from cumulative proba-
bility models with the probit link and with the cloglog link, suggesting better model fit with
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Figure 3: Residual-by-predictor plots using PSRs and OMERs from linear regression models.
(a): PSRs are from the model including both linear and nonlinear terms. (b): PSRs are from
the model only including the linear term. (c¢): OMERs are from the model including both
linear and nonlinear terms. (d): OMERs are from the model only including the linear term.

the probit link. The residual-by-predictor plots in Figure 5 show a similar nonlinear relation-
ship between wage and age as seen in the linear regression models. Similar conclusions can
be obtained from QQ-plots and residual-by-predictor plots with OMERs (results not shown),
although OMERs for cumulative probability models are not available for all observations and
their computation is less straightforward. We refer readers to the paper of Liu et al. (2017)
for the technical details.

To illustrate PSRs for censored outcomes with the Wage data, we artificially create a censoring
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the cloglog link function.
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Figure 5: Residual-by-predictor plots using PSRs from cumulative probability models with
the probit link function. (a): PSRs are from the model including both linear and nonlinear
terms. (b): PSRs are from the model only including the linear term.

indicator § with the probability of being censored equal to 0.2. If § = 0, we assume that the
worker was not willing to share their exact wage and only reported a lower bound, i.e., the
true wage is higher than the reported wage; whereas for workers with 6 = 1, we assume that
they reported the exact value of their wages. We create this artificially censored dataset
to illustrate the use of the PSR with right-censored data while maintaining the flow of the
manuscript and allowing readers to easily compare and contrast PSRs with and without
censoring. An additional illustration to a real dataset is provided in Appendix A.

R> set.seed(1)
R> Wage$delta <- sample(c(0, 1), size = dim(Wage)[1], replace =
+ prob = c(0.2, 0.8))

TRUE,

Survival models can be used to model right censored data. We first illustrate how to ob-
tain PSRs from parametric survival models. Specifically, we use the survreg() function in
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the survival package (Therneau 2020) to fit three parametric survival models, assuming the
response distribution is Weibull, logistic, or Gaussian.

R> library("survival")

R> psm.1 <- survreg(Surv(wage, delta) ~ education + rcs(age, 5) + race +
+ jobclass + maritl + health + year, dist = "weibull", data = Wage)
R> psm.2 <- update(psm.1, dist = "logistic")

R> psm.3 <- update(psm.1, dist = "gaussian")

R> PSR.psm.1 <- presid(psm.1)

R> PSR.psm.2 <- presid(psm.2)

R> PSR.psm.3 <- presid(psm.3)

R> summary(cbind(PSR.psm.1, PSR.psm.2, PSR.psm.3))

PSR.psm.1  PSR.psm.2 PSR.psm.3
Min. 01 Min. :=-0.99570 Min. :=0.99899
1st Qu.:1 1st Qu.:-0.45755 1st Qu.:-0.44846
Median :1 Median : 0.03148 Median :-0.04532
Mean 01 Mean : 0.00000 Mean :-0.03946
3rd Qu.:1 3rd Qu.: 0.41572 3rd Qu.: 0.32982
Max. 01 Max. : 0.99997 Max. : 1.00000

PSRs for censored outcomes are generally not uniformly distributed even when the model
is properly specified. To assess the overall model fit, we have considered a modified version
of the PSR, referred to as a Cox-Snell-like PSR (Shepherd et al. 2016). This residual is
simply the PSR evaluated at the observed value (ignoring censoring). It can be written as a
one-to-one transformation of the Cox-Snell residual. Similar to the Cox-Snell residual which
corresponds to a censored exponential(1) distribution, this modified PSR corresponds to a
censored uniform distribution from —1 to 1 under the properly-specified model. By comparing
its Kaplan—Meier estimate with the uniform distribution, we can assess the goodness of fit.
The following chunk of code shows the calculation of Cox-Snell-like PSRs. Note that this
modified version of the PSR generally does not have expectation 0. Figure 6 shows QQ-
plots of Cox-Snell-like PSRs based on the Kaplan—Meier estimates, suggesting better model
fit when assuming the censored outcomes follow a logistic distribution. For the purpose of
comparison, QQ-plots with Cox-Snell residuals are also provided in Figure 6.

R> PSR.CS.psm.1 <- presid(psm.1, type = "Cox-Snell-like")
R> PSR.CS.psm.2 <- presid(psm.2, type "Cox-Snell-like")
R> PSR.CS.psm.3 <- presid(psm.3, type = "Cox-Snell-like")
R> summary(cbind (PSR.CS.psm.1, PSR.CS.psm.2, PSR.CS.psm.3))

PSR.CS.psm.1 PSR.CS.psm.2 PSR.CS.psm.3
Min. 01 Min. :-0.9957 Min. :=0.9990
1st Qu.:1 1st Qu.:-0.5487 1st Qu.:-0.5258
Median :1 Median :-0.1731 Median :-0.2106
Mean 01 Mean :-0.1133 Mean :-0.1572
3rd Qu.:1 3rd Qu.: 0.2728 3rd Qu.: 0.1567
Max. 01 Max. : 1.0000 Max. : 1.0000
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Figure 6: QQ-plots of Cox-Snell-like PSRs and the Cox-Snell residuals from parametric sur-
vival models with different distribution functions: (a) assuming Weilbull distribution, (b)
assuming logistic distribution, and (c) assuming normal distribution.

The original PSR for censored data has expectation 0 under properly-specified models and
independent censoring; therefore, it can be used in residual-by-predictor plots (Shepherd
et al. 2016). Figure 7 plots PSRs from parametric survival models assuming the logistic
distribution with and without the nonlinear terms for age, again suggesting a better fit when
including the nonlinear terms. For the purpose of illustration, we highlight the PSRs of
censored observations, showing that they are always non-negative. Similar conclusions can
be obtained from the residual-by-predictor plots with martingale residuals (Figure 7), whose
signs are opposite those of PSRs (Shepherd et al. 2016). However, due to their symmetric
range, trends are often detected more easily with PSRs. This is not always the case, however;
Appendix A contains an example where the martingale residuals are fairly symmetric and
provide similar information to the PSR.

We can also fit semiparametric survival models, e.g., the widely used proportional hazards
model, for the censored wage data. The PSR and the Cox-Snell-like PSR can be obtained
using the following chunk of code. Figure 8 shows the QQ-plot of Cox-Snell-like PSRs and
residual-by-predictor plots using PSRs from Cox proportional hazards models. For the pur-
pose of comparison, the QQ-plot of Cox-Snell residuals and residual-by-predictor plots with
martingale residuals are also provided in Figure 8. The results are generally similar to those
in the parametric survival models.

R> coxph.1 <- coxph(Surv(wage, delta) ~ education + rcs(age, 5) + race +
+ jobclass + maritl + health + year, data = Wage)

13
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Figure 7: Residual-by-predictor plots using PSRs and martingale residuals from parametric
survival models assuming the logistic distribution. (a): PSRs and martingale residuals are
from the model including both linear and nonlinear terms. (b): PSRs and martingale residuals
are from the model only including the linear term.

R> PSR.coxph <- presid(coxph.1)
R> PSR.CS.coxph <- presid(coxph.1, type = "Cox-Snell-like")

PSRs can also be computed for other types of data and models, for example, Poisson or
negative binomial models for count data. The usage of the presid() function for these
models is similar to what we described above. We refer readers to the manual and the help
file of presid () for more details and examples.
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Figure 8: PSRs compared with Cox-Snell residuals and martingale residuals for Cox propor-
tional hazards models. (a): QQ-plots using Cox-Snell-like PSRs and Cox-Snell residuals. (b):
residual-by-predictor plots using PSRs and martingale residuals from the model including
both linear and nonlinear terms. (c): residual-by-predictor plots using PSRs and martingale
residuals from the model only including the linear term.

3.3. Tests of conditional association

In the previous section, we described the calculation of PSRs using the function presid() and
illustrated their usage in model diagnostics. In this section, we focus on inference. Specifically,
we describe how to use the PResiduals package (Dupont et al. 2020) to perform tests of
conditional association.

Assume that we want to examine the association between wage and education while adjusting
for a few potential confounders, such as age, race, jobclass, maritl, health, and year.
One may consider fitting the linear regression or cumulative probability models we described
earlier and then examining the regression coefficient for education. In this example, both the
linear regression model and the cumulative probability model suggest significant associations
between wage and education after adjusting for other covariates (results not shown).

However, in both regression models, the ordinal predictor education is coded as a categorical
variable and the order information is ignored. To use the order information, we may consider
assigning scores, e.g., the approximate years of education to different education levels, but
that would force an assumption of linearity. COBOT provides a way to test for conditional
associations while accounting for the ordinal nature of ordered categorical predictors. The
COBOT approach has been implemented in the PResiduals package with the cobot () func-

15
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tion. To illustrate its usage with the Wage data, we create an ordered categorical variable
for wage, referred to as wage.level, by discretizing wage into five categories. Note, this
is simply for the purpose of illustration and we do not recommend categorizing continuous
variables in real data analyses (Royston, Altman, and Sauerbrei 2006); we demonstrate below
how to do the analysis leaving wage as a continuous variable. The cobot () function takes a
formula object in the form of X | Y ~ Z, where X and Y are the ordinal variables whose
relationship we are interested in, and Z designates the covariates we want to adjust for. Note
that Z could be multidimensional covariates with transformations. By default, cobot () fits
proportional odds models for both X on Z and Y on Z. Cumulative probability models with
other link functions can be specified with the arguments link.x and link.y. The cobot ()
function reports three test statistics proposed in Li and Shepherd (2010) and their standard
errors, p values, and confidence intervals. The second statistic, T2, is the correlation of PSRs.
Fisher’s transformation is used by default to compute p values and confidence intervals for T2.
In this example, we find a strong positive association between education and the discretized
wage with highly significant p values and tight confidence intervals away from zero.

R> Wage$wage.level <- cut(Wage$wage,
+ breaks = c(0, quantile(Wage$wage, c(0.2, 0.4, 0.6, 0.8)), Inf))
R> summary(Wage$wage.level)

(0,81.3] (81.3,97.5] (97.5,114] (114,135] (135, Inf]
661 548 635 558 598

R> cobot(wage.level | education ~ rcs(age, 5) + race + jobclass + maritl +
+ health + year, data = Wage)

est stderr p lower CI

Gamma (Obs) - Gamma(Exp) 0.3873366 0.015024858 1.497331e-146 0.3574999
Correlation of Residuals 0.4455342 0.015584921 4.729171e-134 0.4144760
Covariance of Residuals 0.1367667 0.004861128 3.680273e-174 0.1272267

upper CI
Gamma (Obs) - Gamma(Exp) 0.4163833
Correlation of Residuals 0.4755558
Covariance of Residuals 0.1462814
Confidence Interval: 95
Number of Observations: 3000

Since PSRs are well defined for a wide variety of outcomes, the COBOT approach based on
PSRs can be extended to other types of X and Y as long as they are orderable. For example, in
the PResiduals package, we have implemented cocobot () for an ordinal X and a continuous
Y, countbot () for an ordinal X and a count variable Y, and a wrapper function megabot ()
for any orderable X and Y. The usage of megabot () is very similar to cobot () and is illus-
trated in the following chunk of code. Flexible modeling choices are available for both X on
Z and Y on Z, and can be specified with the arguments fit.x and fit.y. Currently sup-
ported fitting procedures include ordinal (ordinal cumulative probability models fitted with
polr()), 1m (linear regression models assuming normality), 1m.emp (linear regression models
assuming homoscedasticity), orm (continuous or discrete cumulative probability models fitted
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with orm()), poisson (Poisson models for count data), and nb (negative binomial models
for count data). If cumulative probability models are used (with either polr() or orm()),
the default link function is the logit function and other link functions can be specified with
arguments link.x and link.y. We give a few examples, using PSRs for education obtained
from ordinal cumulative probability models fitted with either polr() or orm() and PSRs for
wage obtained from either linear regression models or cumulative probability models. Note
that when cumulative probability models are used for both models of X on Z and of Y on
Z, the test results only use rank information of X and Y and are therefore invariant to any
monotonic transformations of X or Y. Results are very similar across different models.

R> megabot (logwage | education ~ rcs(age, 5) + race + jobclass + maritl +
+ health + year, data = Wage, fit.x = "lm.emp", fit.y = "ordinal")

est stderr p lower CI upper CI
cor PSRs 0.4403039 0.01585574 1.412076e-127 0.4087066 0.4708471
Confidence Interval: 95
Number of Observations: 3000
Fisher Transform: TRUE

R> megabot (logwage | education ~ rcs(age, 5) + race + jobclass + maritl +
+ health + year, data = Wage, fit.x = "lm.emp", fit.y = "ordinal",
+ link.y = "cloglog")

est stderr p lower CI upper CI
cor PSRs 0.4409901 0.01562993 1.67254e-131 0.4098487 0.4711046
Confidence Interval: 95
Number of Observations: 3000
Fisher Transform: TRUE

R> megabot (wage | education ~ rcs(age, 5) + race + jobclass + maritl +
+ health + year, data = Wage, fit.x = "orm", fit.y = "orm")

est stderr p lower CI upper CI
cor PSRs 0.4428448 0.01564295 5.103498e-132 0.4116738 0.4729808
Confidence Interval: 95
Number of Observations: 3000
Fisher Transform: TRUE

3.4. Covariate-adjusted Spearman’s rank correlation with PSRs

As discussed in Section 2, PSRs can be used to construct partial and conditional Spear-
man’s rank correlation adjusting for covariates (Liu et al. 2018). The test statistics in our
tests for conditional association implemented in megabot () are actually partial Spearman’s
correlations.

We have implemented the function partial_Spearman() to obtain the partial Spearman’s
correlation where cumulative probability models are set as the default modeling method for
both discrete and continuous ordinal X and Y (fitted with orm()). The following chunk of
code illustrates its usage with different link functions in the example of wage and education.
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R> partial_Spearman(wage | education ~ rcs(age, 5) + race + jobclass +
+ maritl + health + year, data = Wage, link.x = "logit",
+ link.y = "logit")

est stderr p lower CI upper CI
partial Spearman 0.4428448 0.01564295 5.103498e-132 0.4116738 0.4729808
Fisher Transform: TRUE
Confidence Interval: 95
Number of Observations: 3000

R> partial_Spearman(wage | education ~ rcs(age, 5) + race + jobclass +
+ maritl + health + year, data = Wage, link.x = "probit',
+ link.y = "probit")

est stderr p lower CI upper CI
partial Spearman 0.4448799 0.0156437 8.34341e-133 0.4137038 0.4750138
Fisher Transform: TRUE
Confidence Interval: 95
Number of Observations: 3000

R> partial_Spearman(wage | education ~ rcs(age, 5) + race + jobclass +
+ maritl + health + year, data = Wage, link.x = "cloglog",
+ link.y = "cloglog")

est stderr p 1lower CI upper CI
partial Spearman 0.4580628 0.01555897 2.233473e-139 0.4270347 0.4880135
Fisher Transform: TRUE
Confidence Interval: 95
Number of Observations: 3000

The result with the logit link function shows that after adjusting for other covariates, the
partial Spearman’s rank correlation between wage and education is 0.44 with 95% confidence
interval (CI) (0.41, 0.47). This is lower than the unadjusted Spearman’s rank correlation 0.50
(95% CI: 0.47, 0.53), suggesting that part of the association between wage and education can
be explained by their association with other covariates. Note that the point estimates and
their confidence intervals are very similar with different link functions. (We did not report
the result with the loglog link function because the cumulative probability model did not
converge.) This is consistent with our simulations in Liu et al. (2018) where we found that
the partial Spearman’s rank correlation using PSRs from orm() is robust to link function
misspecification.

It may be useful to examine the correlation of PSRs as a function of a single covariate. For ex-
ample, we may be interested in whether Spearman’s correlation varies for different job classes
or ages while still adjusting for other covariates. The function conditional_Spearman ()
can be used to obtain the partial Spearman’s correlation conditional on a specific covariate,
denoted as Z;. The usage of conditional_Spearman() is very similar to megabot () and
partial_Spearman(). It takes a formula object in the form of X | Y ~ Z to specify the
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models of X on Z and of Y on Z. The fitting procedures can be specified with arguments
fit.x and fit.y with the default as cumulative probability models with the logit link func-
tion. The covariate Z; is specified by the argument conditional.by. Different methods
have been implemented to model the conditional correlation of PSRs and can be specified
using the argument conditional .method. For categorical covariates such as jobclass, the
conditional correlation of PSRs can be obtained by stratification, that is, we compute the
correlation of PSRs within each category of jobclass. This can be achieved by setting
conditional.method = "stratification". For example,

R> conditional_Spearman(education | wage ~ rcs(age, 5) + race +
+ jobclass + maritl + health + year, conditional.by = "jobclass",
+ conditional.method = "stratification", data = Wage)

Partial Spearman's correlation conditional by: jobclass
Conditional method: stratification
Number of levels of jobclass : 2

jobclass est stderr p lower.CI upper.CI
1 1. Industrial 0.4079285 0.02287611 4.085476e-56 0.3621315 0.4517609
2 2. Information 0.4782682 0.02107400 5.666486e-81 0.4359197 0.5185035
Fisher Transform: TRUE
Confidence Interval: 95Y%
Number of Observations: 3000

If the stratification method is used, conditional_Spearman() reports the point estimates,
standard error estimates, p value, and 95% confidence intervals for each category. In this
example, after adjusting for other factors, Spearman’s rank correlation between wage and
education is higher in the information job class than that in the industrial class: 0.48 (95%
CI: 0.44, 0.52) vs. 0.41 (95% CI: 0.36, 0.45).

For continuous variables such as age, two options are available for conditional.method: one
is 1m, which fits linear regression models for XiesYies on 27, szes on 71, and Yr%b on Z1 and
then estimates the conditional correlation of PSRs using the fitted values, and the other is
kernel, which estimates the conditional correlation of PSRs nonparametrically with kernel
smoothing, allowing the user to input bandwidth parameters. Details are in Liu et al. (2018).
These features are implemented in conditional_Spearman(). The results can be printed

(showing the first few observations by default) and plotted directly using plot ().

R> conditional.lm <- conditional_Spearman(wage | education ~

+ rcs(age, 5) + race + jobclass + maritl + health + year,
+ conditional.by = "age", conditional.method = "lm",
+ conditional.formula = " ~ rcs(age, 5)", data = Wage)

R> conditional.lm

Partial Spearman's correlation conditional by: age
Conditional method: 1m
Conditional Formula: ~ rcs(age, 5)

age est stderr p lower.CI upper.CI
1 18 -0.0595070 0.11620834 6.094477e-01 -0.2804321 0.1674055
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24 0.2014775 0.05041056 1.012077e-04 0.1009438 0.2979382
45 0.4983515 0.02531541 2.447729e-59 0.4471233 0.5463211
43 0.4958329 0.02878779 4.819363e-46 0.4373494 0.5501400
50 0.4982091 0.02759435 3.273183e-50 0.4422148 0.5503349
54 0.4767692 0.03082396 1.144778e-38 0.4141486 0.5348978

D O W N

Fisher Transform: TRUE
Confidence Interval: 95Y%
Number of Observations: 3000

R> conditional.kernel <- conditional_Spearman(wage | education ~

+ rcs(age, 5) + race + jobclass + maritl + health + year,
+ conditional.by = "age", conditional.method = "kermel",
+ kernel.bandwidth = "silverman", data = Wage)

R> conditional.kernel

Partial Spearman's correlation conditional by: age
Conditional method: kernel

kernel function: normal

kernel bandwidth: 2.467

age est
[1,] 18 0.01784734
[2,] 24 0.24475183
[3,] 45 0.50106153
[4,] 43 0.49954376
[5,1] 50 0.50399806
[6,] 54 0.49989385

Fisher Transform: TRUE
Confidence Interval: 95
Number of Observations: 3000

For the 1m methods, conditional_Spearman() reports standard error estimates and point-
wise confidence intervals, obtained by M-estimation methods with Fisher’s transformation.
For the kernel methods, only the point estimates are returned. Figure 9 shows that results
from the two methods are similar, both suggesting that after adjusting for other factors,
Spearman’s rank correlation between wage and education is weaker among those who are
younger (< 30 years).

4. Summary

The PResiduals package provides user-friendly functions for residual analysis with probability-
scale residuals. The probability-scale residual is applicable across a wide variety of data types
and models, and thus allows comparison of different models on the same scale. The PSR can
also be used to construct conditional tests of association and to compute covariate-adjusted
Spearman rank correlations. This paper illustrates its usage with examples. We hope users
find it useful for model diagnostics and for assessing covariate-adjusted associations.
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(a) parametrical method: linear regression (b) nonparametrical method: kernel smoothing
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Figure 9: The age-specific conditional Spearman’s rank correlation between wage and educa-

tion: (a) modeled parametrically using linear regression models, (b) modeled nonparametri-
cally using kernel smoothing.
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A. Additional examples

We provide additional examples of residual analysis with PSRs for time-to-event outcomes us-
ing the GBSG2 dataset in the R package TH.data (Hothorn 2019). The GBSG2 dataset contains
the recurrence-free survival time of 686 women from German Breast Cancer Study Group
(GBSG) study, along with other covariate information summarized in Table 2 (Schumacher
et al. 1994).

Similarly as in Section 3.2, we build parametric survival models (assuming the response dis-
tribution is Weilbull, logistic, or Gaussian) and the semiparametric Cox proportional hazards
models for the recurrence-free survival time. Specifically, we include horTh, age, menostat,
tsize, tgrade, pnodes, progrec and estrec as covariates; in addition, with transformations
of age, tsize, pnodes, and progrec using restricted cubic splines to account for potential
nonlinear relationships. The following chunk of code shows the calculation of PSRs and Cox-
Snell-like PSRs for parametric and semiparametric survival models with the GBSG2 dataset.

R> library("PResiduals")

R> data("GBSG2", package = "TH.data")

R> psm.1 <- survreg(Surv(time, cens) ~ horTh + rcs(age) + menostat +
+ rcs(tsize) + tgrade + rcs(pnodes) + rcs(progrec) + estrec,
+ dist = "weibull", data = GBSG2)

R> psm.2 <- update(psm.1, dist "logistic")

R> psm.3 <- update(psm.1, dist = "gaussian")

R> PSR.psm.1 <- presid(psm.1)

R> PSR.psm.2 <- presid(psm.2)

R> PSR.psm.3 <- presid(psm.3)

R> summary(cbind (PSR.psm.1, PSR.psm.2, PSR.psm.3))

PSR.psm.1 PSR.psm.2 PSR.psm.3
Min. :0.4302  Min. :=0.9700 Min. :-0.98509
1st Qu.:1.0000 1st Qu.:-0.4623 1st Qu.:-0.49117
Median :1.0000 Median : 0.1002 Median : 0.09344
Mean :0.9992 Mean : 0.0000 Mean :-0.01329
3rd Qu.:1.0000 3rd Qu.: 0.3732 3rd Qu.: 0.37257
Max. :1.0000 Max. : 0.9359 Max. : 0.93506

R> PSR.CS.psm.1 <- presid(psm.1, type = "Cox-Snell-like")
R> PSR.CS.psm.2 <- presid(psm.2, type = "Cox-Snell-like")
R> PSR.CS.psm.3 <- presid(psm.3, type = "Cox-Snell-like")
R> summary(cbind(PSR.CS.psm.1, PSR.CS.psm.2, PSR.CS.psm.3))

PSR.CS.psm.1 PSR.CS.psm.2 PSR.CS.psm.3
Min. :-0.1396  Min. :-0.99621 Min. :=0.99956
1st Qu.: 1.0000 1st Qu.:-0.76743 1st Qu.:-0.77002
Median : 1.0000 Median :-0.49445 Median :-0.50150
Mean : 0.9983 Mean :-0.37211 Mean :-0.38799
3rd Qu.: 1.0000 3rd Qu.:-0.05407 3rd Qu.:-0.07789
Max. : 1.0000 Max. : 0.91641 Max. : 0.92175
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Variable  Description

horTh Hormonal therapy, a factor at two levels no and yes
age Age of the patients in years

menostat Menopausal status, a factor at two levels pre and post
tsize Tumor size (in mm)

tgrade Tumor grade, a ordered factor at levels I < IT < III
pnodes Number of positive nodes

progrec  Progesterone receptor (in fmol)

estrec Estrogen receptor (in fmol)

time Recurrence free survival time (in days)

cens censoring indicator (0: censored, 1: event)

Table 2: Variables in GBSG2 dataset.
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Figure 10: QQ-plots of Cox-Snell-like PSRs and the Cox-Snell residuals from parametric
survival models with different distribution functions for the GBSG2 dataset: (a) assuming
Weilbull distribution, (b) assuming logistic distribution, and (c¢) assuming normal distribution.

R> coxph.1 <- coxph(Surv(time, cens) ~ horTh + rcs(age) + menostat +

+ rcs(tsize) + tgrade + rcs(pnodes) + rcs(progrec) + estrec, data = GBSG2)
R> PSR.coxph <- presid(coxph.1)

R> PSR.CS.coxph <- presid(coxph.1, type = "Cox-Snell-like")

Figures 10 and 11 show QQ-plots of Cox-Snell-like PSRs from the parametric survival models
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(a) include both linear and nonlinear terms (b) only include the linear term
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Figure 11: Residual-by-predictor plots using PSRs and martingale residuals from parametric
survival models assuming the logistic distribution for the GBSG2 dataset. (a): PSRs and
martingale residuals are from the model including both linear and nonlinear terms. (b):
PSRs and martingale residuals are from the model only including the linear term.

with different distribution functions and the residual-by-predictor plots using PSRs for the
parametric survival models assuming the logistic distribution, respectively. Figure 12 shows
the QQ-plot of Cox-Snell-like PSRs and residual-by-predictor plots using PSRs from Cox
proportional hazards models. For the purpose of comparison, the QQ plots of Cox-Snell
residuals and residual-by-predictor plots with martingale residuals are also provided. In
this specific real survival data example, although the advantages of using PSRs are not as
illustrative as in the Wage example in Section 3.2, e.g., non-linear effects are less apparent,
the QQ-plots do not readily distinguish between parametric survival models, and the range of
the martingale residual is more symmetric, the performance of PSRs is generally comparable
with Cox-snell residuals and martingale residuals.
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Figure 12: PSRs compared with Cox-Snell residuals and martingale residuals for Cox propor-
tional hazards models for the GBSG2 dataset. (a): QQ-plots using Cox-Snell-like PSRs and

Cox-Snell residuals. (b):

residual-by-predictor plots using PSRs and martingale residuals

from the model including both linear and nonlinear terms. (c): residual-by-predictor plots
using PSRs and martingale residuals from the model only including the linear term.
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