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Abstract

This paper describes the R package EpiILMCT, which allows users to study the spread
of infectious disease using continuous time individual level models (ILMs). The pack-
age provides tools for simulation from continuous time ILMs that are based on either
spatial demographic, contact network, or a combination of both of them, and for the
graphical summarization of epidemics. Model fitting is carried out within a Bayesian
Markov Chain Monte Carlo framework. The continuous time ILMs can be implemented
within either susceptible-infected-removed (SIR) or susceptible-infected-notified-removed
(SINR) compartmental frameworks. As infectious disease data is often partially ob-
served, data uncertainties in the form of missing infection times – and in some situations
missing removal times – are accounted for using data augmentation techniques. The pack-
age is illustrated using both simulated and an experimental data set on the spread of the
tomato spotted wilt virus disease.

Keywords: EpiILMCT, infectious disease, individual level modeling, spatial models, contact
networks, R.

1. Introduction
Innovative mathematical and mechanistic approaches to the modeling of infectious diseases are
continuing to emerge in the literature. These can be used to understand the spread of disease
through a population – whether homogeneous or heterogeneous – and enable researchers to
construct predictive models to develop control strategies to disrupt disease transmission. For
example, Deardon et al. (2010) introduced a class of discrete time individual-level models
(ILMs) which incorporate population heterogeneities by modeling the transmission of disease
given various individual-level risk factors. The general framework of ILMs have already
been successfully applied to a broad range of epidemic data, e.g., the 2001 UK foot-and-
mouth outbreak (Deardon et al. 2010; Deeth and Deardon 2016; Malik, Deardon, and Kwong
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2016), tomato spotted wilt virus (TSWV) disease (Pokharel and Deardon 2014, 2016), the
spread of 1-18-4 genotype of the porcine reproductive and respiratory syndrome in Ontario
swine herds (Kwong, Poljak, Deardon, and Dewey 2013), and influenza transmission within
households in Hong Kong during 2008 to 2009 and 2009 to 2010 (Malik, Deardon, Kwong,
and Cowling 2014). Equivalent continuous time ILMs which capture the complex interactions
between susceptible and infected individuals through spatial and contact networks can also be
considered. The inference and fitting of such models is generally considered within a Bayesian
framework using Markov chain Monte Carlo (MCMC).
However, infectious disease epidemiologists have previously found it difficult to apply these
individual-level models to real life problems. This is due to a dearth of readily available
software products. The applicability of the aforesaid continuous time ILMs is implemented
in an R (R Core Team 2021) package, EpiILMCT (Almutiry, Deardon, and Warriyar K
V 2021) and is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=EpiILMCT. In this article, we describe the package Epi-
ILMCT which allows users to simulate and fit epidemic data using distance- and/or network-
based models (Bifolchi, Deardon, and Feng 2013; Deardon et al. 2010; Jewell, Kypraios, Neal,
and Roberts 2009), and can also incorporate risk factors associated with both susceptible
and infectious individuals. EpiILMCT also uses data augmentation techniques to carry out
inference when the infection and/or removal times are unknown or censored, as is usually the
case. To the extent of our knowledge, this feature is not available in any existing R packages
that permit epidemic data analysis and modeling. Tools for the graphical summarization of
epidemic data sets and outcomes are also provided. The statistical inferences made in Epi-
ILMCT are set in a Bayesian framework and are carried out using MCMC. The main aim
here is to provide a fast implementation of continuous time ILMs under different epidemic
modeling frameworks. Because of the computationally intensive nature of MCMC for such
models, we have coded functions, including the MCMC algorithm, in Fortran to speed up
computation.
There are several R packages that permit a range of different modeling tools that allow
for fitting spatial-temporal epidemic data. For example, the packages splancs (Rowlingson
and Diggle 2021), and lgcp (Taylor, Davies, Rowlingson, and Diggle 2013, 2015) provides
methods for analyzing epidemic data as spatial and space-time point patterns. Also, the
package surveillance (Meyer, Held, and Höhle 2017) implements a spatio-temporal point
process model for epidemic data through the function twinstim. Other packages fit a range
of autocorrelation regression spatio-temporal models, e.g., CARBayesST (Lee, Rushworth,
and Napier 2018), spdep (Bivand, Hauke, and Kossowski 2013; Bivand and Piras 2015), and
spTimer (Bakar and Sahu 2020, 2015). Further packages are mentioned in the CRAN Task
View “Handling and Analyzing Spatio-Temporal Data” (Pebesma 2021). The R Epidemics
Consortium (2018) provides further useful resources for disease outbreak analysis related R
software packages.
However, in each case, the functionality (e.g., models available) of the packages above is quite
different to that of EpiILMCT. The models of the EpiILMCT package are “mechanistic” in
that they attempt to more directly model the mechanisms of transmission between individuals.
Specifically, they take into account the spatial interactions between individuals with differing
disease status (e.g., susceptible, infected, notified, removed) at continuous time points of the
epidemic process. Those spatial interactions between susceptible and infectious individuals
are incorporated as distance-based effects on the infectivity rate of individuals through an
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infection kernel function (power-law or Cauchy). The infectivity rates can also depend upon
various susceptibility and transmissibility covariates at the individual level. Additionally, and
of key importance, none of the aforementioned packages account for uncertainty in the event
times using the Bayesian data augmentation MCMC method.

There are several R packages that provide for the visualization, simulation and modeling the
spread of epidemics through networks. The package EpiModel (Jenness, Goodreau, and Mor-
ris 2018) allows epidemic simulation from mathematical models of infectious disease through
stochastic contact networks based on exponential-family random graph models (ERGMs).
Some packages assume observed contact network or networks when fitting the specified model;
for example, ergm (Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris 2021; Hunter,
Handcock, Butts, Goodreau, and Morris 2008), Bergm (Caimo and Friel 2014), and hergm
(Schweinberger, Handcock, and Luna 2021). Those packages implement Bayesian methods
for fitting exponential-family transmission network models to observed contact network data.

A recently developed package, epinet (Groendyke and Welch 2018), allows users to infer
transmission networks from time-series epidemic data by modeling the contact network using
a generalization of the ERGMs. This package makes use of time-series epidemic data as the
input assuming unknown contact network in their functionality, and producing parameter
estimates of the epidemic model as well as the contact and transmission networks. The
transmission model can contain various covariates that captures important features (summary
statistics) of the contact network as well as epidemic transmission.

However, once again these packages have different approaches to that implemented in Epi-
ILMCT. We focus here on incorporating a contact network as a covariate in the implemented
ILMs in EpiILMCT. The response in the ILMs is the event (e.g., infection) time, rather than
the transmission network (the transmission network can be inferred later via posterior pre-
dictive simulation, of course, but we do not address this here). This is different to epinet,
for example, which models the transmission network directly. The EpiILMCT package allows
for any user pre-specified contact networks, including various special cases such as spatial or
random unweighted (binary) (un)directed contact networks or weighted contact networks.

As both spatio-temporal and contact network-based mechanisms can be key to understanding
the dynamics of infectious disease spread, the ILMs in EpiILMCT allow for the incorporation
of both contact network and distance-based effects jointly in the infectivity rate of individuals.
None of the aforementioned packages have this feature in their functionalities.

The use of individual level data in more mechanistic epidemic models has been implemented
in only a few other R packages. The most established of these is surveillance (Salmon,
Schumacher, and Höhle 2016; Meyer et al. 2017), a package for temporal and spatio-temporal
disease modeling. It provides tools for outbreak detection in routinely collected surveillance
data, as well as a range of models for infectious disease data. The most closely related model
in surveillance to those of EpiILMCT is the additive endemic-epidemic multivariate temporal
point process model. These models are implemented in the twinSIR function for modeling the
susceptible-infectious-recovered (SIR) event history of a fixed population in continuous time
using individual level data. However, not only is the underlying model framework different
to that considered in the EpiILMCT package, but the twinSIR function does not allow for
uncertainty in event times to be taken into account via data augmentation techniques. The
function does not allow for only the epidemic terms of the model to be considered, as can
be done in EpiILMCT; both endemic (e.g., seasonal) and epidemic terms must be included
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in the analysis. In addition, the distance kernel used in the epidemic part of the twinSIR
function is represented by a linear combination of non-negative basis functions and is thus
different from the distance kernels used in the EpiILMCT package.
The EpiILM package (Warriyar K V, Almutiry, and Deardon 2020) that has recently been
made available in R, provides similar utility to EpiILMCT, but for discrete-time ILMs. The
models it contains provide options to include susceptible individual covariate information,
as well as a choice to describe population heterogeneity. However, the package is limited
to discrete-time distance-based or network-based infection kernels and requires known event
histories (i.e., there is no data augmentation feature).
As stated previously, inference for the models of EpiILMCT is carried out in a Bayesian
MCMC framework. Although there are packages available in R to implement MCMC algo-
rithms such as MCMCpack (Martin, Quinn, and Park 2011) and adaptMCMC (Scheidegger
2021), all are based on the random walk Metropolis-Hastings (M-H) algorithm. The data aug-
mented MCMC algorithm used in the EpiILMCT package to fit various models uses random
walk and independence sampler (within Gibbs) steps within a M-H algorithm. The inde-
pendence sampler algorithm in our package appears to be essential for updating the missing
data efficiently (event times and infectious periods), given that the authors have not found
it possible to achieve well-mixing MCMC chains if purely random walk M-H algorithms are
used (even if tuned adaptedly).
Our main purpose of developing this package is to make the use of continuous time ILMs
available to epidemiologists and statisticians, through R, one of the most commonly used sta-
tistical software packages. Overall, EpiILMCT offers greatly increased flexibility for analyzing
complex disease data. The remainder of this paper is laid out as follows. In the next section,
we describe the general continuous individual-level model implemented in EpiILMCT. We
also discuss the different infection kernel functions implemented in the package. Sections 3
and 4 discuss the functions contained within the package and the underlying Bayesian infer-
ence, respectively. Section 5 illustrates the application of EpiILMCT to simulated and real
data, while Section 6 concludes the paper with a short summary of the software package and
its implications.

2. Model

The EpiILMCT package allows for the implementation of continuous time equivalents, and
extensions, of the discrete-time individual-level models (ILMs) of Deardon et al. (2010).
The compartmental frameworks considered are the susceptible-infectious-removed (SIR) and
susceptible-infectious-notified-removed (SINR). In both frameworks, each individual is as-
sumed to be in one of these states at any point in time, t ∈ R+. In the SIR framework,
infected individuals transition between states, susceptible to infectious and from infectious to
removed. Individuals are assumed to be in the susceptible (S) state until they become infected
at which point they become immediately infectious (I), then being able to transmit the dis-
ease for the duration of their infectious periods before entering the removed (R) state. In the
SINR framework, infectious individuals are assumed to move from the infectious state (I)
to a notified (N ) state. The latter represents a state in which individuals have been identified
as having the disease, and may be subjected to various restrictions (e.g., government-imposed
movement constraints in the 2001 UK FMD outbreak). The N -state infectivity rate is often
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assumed to be lower than that of I-state. As infectious individuals enter the R-state, they
are removed from the infectious population (e.g., because of recovery and acquired immunity,
death or quarantine) and from thereon play no role in transmitting the disease.
A full epidemic history consists of all transition event times for all individuals, and defines
the state of all n individuals at each point in time. For example for the SINR framework,
S(t), I(t), N (t) and R(t) at time t for t ∈ [0, tobs] are defined by all infection, notification and
removal times. Here, tobs is the maximum removal time i.e., the time that the last notified
individual enters the removed state. We assume that each susceptible individual j at time t
has an infectivity rate1 with a given infectious individual i:

λij(t) =
{
λ−ij(t) i ∈ I(t), j ∈ S(t)
λ+
ij(t) i ∈ N (t), j ∈ S(t) ,

where
λ−ij(t) = ΩS(j)ΩT (i)κ(i, j)

λ+
ij(t) = γΩS(j)ΩT (i)κ(i, j), γ > 0,

where ΩS(j) and ΩT (i) are the susceptibility and transmissibility functions, respectively.
They are defined as:

ΩS(j) = SXφ
.j and ΩT (i) = TZξ.i, φ, ξ > 0,

where S and T are the (coefficient) parameter vectors of the susceptibility and transmissibility
covariates with sizes equal to the number of susceptibility (pS) and transmissibility (pT )
covariates, respectively; Xφ

.j and Zξ.i are the jth and ith columns of the susceptibility and
transmissibility risk factor matrices Xφ ∈ R+

pS×n and Zξ ∈ R+
pT×n, respectively; and φ and ξ

are vectors of the power parameters of the susceptibility and transmissibility functions with
sizes equal to pS and pT , respectively. Note that, Xφ and Zξ are constrained to be positive.
These power parameters allow for non-linearity between the susceptibility and transmissibility
risk factors and the infection rate (Deardon et al. 2010). The notification effect parameter
γ is used to measure the risk of infection after notification that can be reduced or increased
depending on the disease type. For example, the transmissibility has been observed to increase
after symptoms in SARS (Pitzer, Leung, and Lipsitch 2007), whereas, it can be lower for the
2001 UK FMD (Jewell et al. 2009). The latter stated this effect parameter in their general
model as a control measure parameter that accounts only the reduction in the risk of infection.
In the case of γ = 1, notification has no effect on infectivity.
So, the total rate of infectivity of each susceptible individual j at time t is given by:

λj(t) =

 ∑
i∈N−(t)

λ−ij(t) +
∑

i∈N+(t)
λ+
ij(t)

+ ε(j, t), (1)

where N−(t) is the set of infectious individuals at time t who have been infected but have not
reached the notified state; and N+(t) is the corresponding set for notified individuals (Jewell
et al. 2009).

1Note that, technically the infectivity rates are conditioned upon the past epidemic history, so might be
written λij(t|Ht) where Ht is the epidemic history up to time t. However, for the sake of brevity and simplicity
we have dropped the conditioning from the notation.
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Model Kernel type Kernel function

Distance-based ILMs Power-law κ(i, j) = d−β
ij , β > 0

Cauchy κ(i, j) = β
d2

ij
+β2 , β > 0

Network-based ILMs Unweighted, undirected κ(i, j) = cij , cij = 0 or 1
Weighted κ(i, j) = wij , wij ∈ [0,∞)

Power-law κ(i, j) = d−β1
ij + β2cij

Combined distance and κ(i, j) = d−β1
ij + β2wij

network-based ILMs Cauchy κ(i, j) = β1
(d2

ij
+β2

1 ) + β2cij

κ(i, j) = β1
(d2

ij
+β2

1 ) + β2wij , β1, β2 > 0

Table 1: Types of kernel functions that are applied in the EpiILMCT package for fitting
continuous time ILMs.

The nomenclature is the same for the SIR framework, but without the N (t) state, there
is not need to compartmentalize infectious individuals into pre- and post-notification sets.
Therefore, the total rate of infectivity of each susceptible individual j at time t is given by:

λj(t) =

 ∑
i∈I(t)

λ−ij(t)

+ ε(j, t), (2)

where I(t) is the set of infectious individuals at time t (i.e., they have been infected, but not
yet removed).
The infectivity rate λj(t) also contains a spark function that is denoted by ε(j, t) which allows
for random infections otherwise unexplained by the model. This might represent, for example,
the infection of a susceptible individual from a source outside of the observed population. In
this model, we fix the spark term ε(j, t) such that ε(j, t) = ε; ε ≥ 0.
The infection kernel κ(i, j) represents shared risk factors between pairs of infected and suscep-
tible individuals. In the EpiILMCT package we consider three kernel types: distance-based,
network-based, and combined distance and network-based. Two sub-types of distance-based
kernel are also considered: Cauchy and power-law. The infection kernel functions are given in
Table 1. In the distance-based ILMs, the kernel function is based on the distances dij between
individuals generally, but not always, spatial Euclidean distance. In the network-based ILMs,
the kernel function is based on the connections between individuals in a contact network that
are represented by binary connections cij = 0 or 1, or weighted connections wij ∈ [0,∞). In
the combined ILMs the kernel consists of a linear function of both.

2.1. Likelihood function

We label the m infected individuals i = 1, 2, . . . ,m with corresponding infection (Ii) and
removal (Ri) times such that I1 ≤ I2 ≤ · · · ≤ Im. The N − m individuals who remain
uninfected after tobs are labeled i = m + 1,m + 2, . . . , N with Ii = Ri = ∞. We then
denote infection and removal time vectors for the population as I = {I1, . . . , Im} and R =
{R1, . . . , Rm}, respectively. We assume that infectious periods follow a gamma distribution
with a fixed shape δa and rate δb, δ = (δa, δb) (Jewell et al. 2009). The likelihood function can
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be divided into two independent components: the infectious and the removed components. As
we assumed earlier that each susceptible individual j has a total infectivity rate λj(Ij) (their
total specific infectious pressure) at the time of being infected (Ij) from infectious individuals
i ∈ I(Ij), the infectious component under the SIR continuous time ILMs can be written as:

L1 =
m∏
j=2

ε+
∑

i:Ii<Ij≤Ri
λ−ij(Ij)

× exp

−
∫ tobs

I1

 ∑
i∈S(u)

ε+
∑
i∈I(u)

∑
j∈S(u)

λ−ij(u− Ii)

 du


where the product term represents the total specific infectious pressure that each infected
individual receives from infectious individuals at the time of being infected, and the exponen-
tial integral represents the total person-to-person infectious pressure during the course of the
epidemic.
The removed component then contains the contribution of the infectious periods to the
likelihood function via their densities. As the infectious period of an infected individual i
(Di = Ri − Ii) is independent of others, the removed component is simply:

L2 =
m∏
i=1

f(Di; δ)

The likelihood function of the general SIR continuous time ILMs can then be formed by
combining the infectious and removal parts given as follows:

L(I,R|θ) = L1 × L2

=
m∏
j=2

ε+
∑

i:Ii<Ij≤Ri
λ−ij(Ij)

 exp

−
m∑
i=1

 N∑
j=1

((Ri ∧ Ij)− (Ii ∧ Ij))λ−ij(Ij)


× exp

(
−ε

N∑
i=1

[(tobs ∧ Ii)− I1]
)

m∏
i=1

f(Di; δ), δ > 0,

where the wedge symbol ∧ denotes the minimum operator; θ is the vector of unknown parame-
ters; f(·; δ) indicates the density of the infectious period distribution; and Di is the infectious
period of infected individual i defined as Di = Ri − Ii. The integral in Equation 3, which
represents the total person-to-person infectious pressure through the course of the epidemic,
can be written as the double sum in the lower equation (Britton and O’Neill 2002; Jewell et al.
2009). The integral is transformed by discretizing it into a sum over the successive events of
the epidemic and is substituted by the double sum. The likelihood function of the general
SINR continuous time ILMs can be formed in a very similar manner (see Appendix A).

3. Contents of the EpiILMCT package
The EpiILMCT package can be used to simulate and graphically summarize epidemics, and,
for a given model, carry out Bayesian inference and calculate the log-likelihood. Most of
the main package functions are written in Fortran 95 (called from within the R wrapper),
since they are computationally intensive tasks. The functions contained in the package are
reviewed in Table 2.
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Function Usage

contactnet Generates undirected unweighted (binary) contact network ma-
trices from spatial (powerlaw, or Cauchy), or random, network
models.

plot.contactnet Provides plot of a contact network of class ‘contactnet’.
datagen Generates epidemics from distance/network-based individual

level models.
as.epidat Generates objects of class ‘datagen’ that contain the individual

event history of an epidemic along with other individual level
information.

plot.datagen Provides different plots summarizing an epidemic of class
‘datagen’.

epictmcmc Runs a Bayesian data augmented MCMC algorithm for fitting
specified models (SIR or SINR).

print.epictmcmc Prints the contents of ‘epictmcmc’ object to the console.
summary.epictmcmc Summary method for ‘epictmcmc’ objects.
plot.epictmcmc Plots the output of ‘epictmcmc’ object.
loglikelihoodepiILM Calculates the log likelihood for a given compartmental frame-

work and kernel type of the continuous time ILMs.

Table 2: Description of functions and their usages in the EpiILMCT package.

3.1. Contact network

Various types of contact network can be considered. First, we consider unweighted (binary)
contact networks which can be directed or undirected. In an undirected unweighted contact
network, each pair of individuals share the same symmetric connection such that cij = cji
for i 6= j; i, j = 1, . . . , N ; and each network is defined by

(N
2
)
elements where cij = 1 if

a connection exists between individuals i and j, and 0 otherwise. In a directed unweighted
contact network, it is not necessary for individuals to share the same symmetrical relationship
so that cij 6= cji for i 6= j; i, j = 1, . . . , N . This leads to a non-symmetric contact network
matrix. Weighted contact networks can also be considered in the EpiILMCT package in which
the connections between individuals are not described as present or absent but are weighted
according to their strength. These too can be directed or undirected.
A function (contactnet) is included to generate undirected unweighted contact networks.
It can simulate both spatial networks where connections are more likely to occur between
individuals closer in space (“spatial contact networks”), as well as random contact networks.
The function contactnet has three available options ("powerlaw", "Cauchy", and "random")
for the network model, where the first two options simulate spatial contact networks in which
the probability of connections between individuals are based on required XY coordinate input.
The inclusion of the two options "powerlaw" and "Cauchy" in the argument type is to allow
the user to choose between two commonly assumed spatial forms to describe the underlying
population. For example, the power-law network model is taken from Bifolchi et al. (2013)
who use this network to test how well purely spatial power-law ILMs can approximate disease
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spread through networks. The Cauchy model was used by Jewell et al. (2009) to model the
2001 UK foot-and-mouth outbreak in Cumbria; they found this kernel the most appropriate
for predicting transmission of those tested.
We now describe the three model options in detail. First, in the power-law contact network
model of Bifolchi et al. (2013) the probability of a connection between individual i and j is
given by:

p(cij = 1) = 1− e−ν(d−β
ij ), ν, β > 0,

where dij is the Euclidean distance between individuals i and j; β is the spatial parameter;
and ν is the scale parameter.
Under the Cauchy contact network model, as used in Jewell et al. (2009), the probability of
a connection between individual i and j is given by:

p(cij = 1) = 1− e−β/(d2
ij+β

2), β > 0,

where dij is the Euclidean distance between individuals i and j; and β is the spatial parameter.
Finally, under the random contact network model, the probability of a connection is simply
generated from a Bernoulli distribution with probability equal to β.
Let us now consider some examples. To create the above undirected unweighted contact
networks, the function requires the network model to be specified ("powerlaw", "Cauchy",
or "random") via the type argument. If "powerlaw" or "Cauchy" are selected, the XY
coordinates of individuals (location) have to be specified through the argument location.
The function contactnet produces a list which includes the contact network matrix in a
class, ‘contactnet’.
To obtain a plot of the contact network, we introduce an S3 plot method for ‘contactnet’
objects, which uses as its input an object of the class ‘contactnet’. The plot method for
‘contactnet’ objects uses code internal to EpiILMCT for the layout when plotting power-law
or Cauchy network models, but depends on the package igraph (Csardi and Nepusz 2006)
when plotting random network model.
The following code generates the three types of contact networks for a population of 50
individuals, with a uniformly distributed spatial layout for the spatial network models.

R> library("EpiILMCT")
R> set.seed(12345)
R> loc <- cbind(runif(50, 0, 10), runif(50, 0, 10))
R> net1 <- contactnet(type = "powerlaw", location = loc, beta = 1.5,
+ nu = 0.5)
R> net2 <- contactnet(type = "Cauchy", location = loc, beta = 0.5)
R> net3 <- contactnet(type = "random", num.id = 50, beta = 0.08)
R> par(mfrow = c(2, 2))
R> plot(net1)
R> plot(net2)
R> plot(net3, xlab = "(random)", vertex.color = "red", vertex.size = 20,
+ edge.color = "black", vertex.label.cex = 0.5,
+ vertex.label.color = "black")
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Figure 1: Examples of the three undirected unweighted (binary) contact network models
generated for the same population. Red dots represent nodes with size corresponding to their
degree (number of edges).

A realization of the three networks for a given population is shown in Figure 1. Note the
underlying spatial layout of the nodes is the same for both spatial network models.

3.2. Epidemic simulation

The function datagen allows the user to generate epidemics from the continuous time ILMs
under the SIR or SINR compartmental frameworks. Which framework is to be used is
specified through the type argument. Each infected individual in a simulated epidemic has
an infection life history defined by their time of infection and the length of time spent in the
infectious state. We assume the conditional intensity functions stay constant between events,
such that the time to the next infection, given that the last infection occurred at time t,
follows Wj ∼ Exp(λj(t)). Here, Wj represents the “waiting time” for susceptible individual j
becoming infected.
Under the SIR framework, and using the chosen distribution of the infectious period, an
epidemic is simulated starting with a randomly chosen initial infected individual k at time
I1 = 0, or with initial infected individual(s) specified via the argument initialepi. This
argument requires a vector or matrix containing the id number(s), removal time(s), infectious
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period(s) and infection time(s) of the infected individual(s). At time Is, the waiting time
until infection for susceptible individual j is then drawn from Wj ∼ Exp(λj(Is)).
The individual with the minimum W is taken as the next infected individual and assigned
an infection time Is+1 = Is + min(W ); an infection period Dj (generated from f(Dj ; δ)); and
a removal time Rs+1 = Is+1 + Dj . The process is repeated until no infectives remain in the
population or Is+1 > tmax, where tmax is the time at which the epidemic simulation is set to
end. tmax can be then specified via the argument tmax.
Under the SINR framework, each infected individual is considered to have an incubation
period comprising the time from infection to notification, and a delay period comprising the
time from notification to removal. Together the incubation and delay periods constitute the
infectious period. An epidemic is simulated in the same manner described above for the
SIR framework, except that the infection period is replaced by incubation and delay periods
D(inc) and D(delay) (generated from f(D(inc)

j ; δ(inc)) and f(D(delay)
j ; δ(delay)), respectively); and

notification and removal times are assigned as Ns+1 = Is+1 + D(inc)
j and Rs+1 = Ns+1 +

D(delay)
j , respectively.

In this function, the infectious, incubation and delay periods are assumed to follow either
exponential or gamma distributions. These distributions can be specified through the delta
argument. Under the SIR framework, delta is a vector containing the shape and rate
parameters of a gamma distribution, whereas under the SINR framework it is a 2×2 matrix
where each row represents the parameters of the incubation and delay period distributions.
Note that – as is often done – an exponential distribution can be assigned to any of these
distributions by setting the shape parameter equal to one.
The epidemic data structure output of the datagen function is used throughout the Epi-
ILMCT package. Under an SIR ILM, it returns a matrix with four columns representing:
the id numbers of the individuals, removal times, infectious periods, and infection times. Un-
der an SINR ILM, it returns a matrix with six columns: the id numbers of the individuals,
removal times, delay periods, notification times, incubation periods, and infection times. Un-
infected individuals are assigned infinity values (Inf) for both their removal and infection
times. Epidemic data from other modeling packages can be extracted and modified to be
used in EpiILMCT. For example, we show how this can be done using the individual level
models from the surveillance package in Appendix B.
The choice of the kernel function κ(i, j) is specified using the kerneltype argument. This
takes one of three options: "distance" for distance-based, "network" for network-based, or
"both" for distance and network-based. The appropriate kernel matrix must also be provided
via the kernelmatrix argument. If "distance" is chosen as the kerneltype, the user must
choose a spatial kernel ("powerlaw" or "Cauchy") through the distancekernel argument.
The distance matrix can be obtained from XY coordinate data using the dist function from
the stats package (R Core Team 2021). Otherwise the distance matrix can be specified by the
user. Other arguments in the datagen function require the data and coefficient parameters
for the susceptibility and transmissibility risk factors as explained in Section 2.
We define an object of class ‘datagen’ to take a list of values needed for the use of other
functions, such as, the plot method for ‘datagen’ objects and epictmcmc. This list contains:
type, kerneltype, epidat (event times), location (XY coordinates of individuals), and
network (contact network matrix). In the case of setting the kerneltype to "distance",
a NULL value will be assigned to the network option. The package has also a separate
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function as.epidat that generates an object of class ‘datagen’ for a given epidemic data
set (Appendix B contains a brief example of using this function).
The package also contains an S3 plot method for ‘datagen’ objects, which illustrates disease
spread through the epidemic timeline. This function can be used for either distance-based
or network-based ILMs. The first input of this function has to be of class ‘datagen’. If the
plottype argument is set to "history", the function produces epidemic curves of infection
and removal times. Example plots are shown in Figure 3. Conversely, setting this argument to
"propagation" produces plots of the epidemic propagation over time. With the latter option,
exactly which plots are output varies by kernel. With the network kernel, the function plots
all the connections between individuals and overlays these with the epidemic pathway direc-
tion over time. This path direction consists of directed edges from all infectious individuals
connected to a given newly infected individual i with infection time Ii (one per plot). Thus,
this produces directed networks showing possible pathways of the disease propagation. With
the distance kernel, the function plots the spatial epidemic dispersion over time. It shows the
changes in the individual status that related to the chosen compartmental framework. To
avoid displaying too many plots, the time.index argument allows user to obtain propagation
plots at specific infection time points rather than at every infection time.

4. Bayesian inference

Prior distributions of the model parameters are selected from one of three options: gamma,
positive half normal or uniform distribution. Then, Metropolis-Hastings MCMC is performed
to estimate the joint posterior of the model parameters and latent variables (the latter if
various event times are assumed unknown). This is achieved using the function epictmcmc.
The parameters of the susceptibility and transmissibility functions, infection kernel and spark
term (collectively denoted θ) are updated using the random-walk proposals. The user is
required to tune the proposal variances to achieve good mixing properties. Thus, the user must
provide a vector of initial values, a prior distribution ("gamma", "uniform", or "halfnormal"),
the prior parameters, and the variance of the normal proposal distribution for each parameter
as shown in Figure 2. In case of running multiple MCMC chains, the user should provide a
vector of initial values of the model parameters. Note that, setting the variance of the normal
proposal distribution to zero fixes a parameter at its initial value. This option allows the
user to fix such a parameter in the model while updating others (i.e., conditioning on the
parameters).
Using the datatype argument, the epictmcmc function allows for three scenarios in terms
of event time uncertainty: "known epidemic" can be used to model a fully observed epi-
demic with known infection and removal times; "known removal" can be used to model a
partially observed epidemic where the infection times are unknown; and "unknown removal"
can be used to model a partially observed epidemic where removal and infection times are
unknown. The latter option is only available for the SINR continuous time ILMs where no-
tification times are assumed correctly known. When the datatype argument is set to "known
epidemic", the infectious periods are fixed by default.
When infection times are unknown, the rate(s) of the infectious, incubation and/or delay
period distributions are assigned gamma prior distributions with shape a and rate b. Thus,
the rate parameters have conditional distributions with a standard form following the gamma
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Figure 2: A diagram of the input structure for the arguments control.sus, control.trans,
kernel.par, spark.par, gamma.par and delta in the function epictmcmc.

distribution. For the SIR continuous time ILMs, this is as follows:

δ|θ, I,R ∼ Γ(m+ aδ,M + bδ),

where δ is the rate of the infectious period distribution; M =
∑m
i=1 (Ri − Ii); and aδ and bδ

are the prior parameters of the infectious period rate. For the SINR continuous time ILMs,
the distribution of the incubation rate and delay parameters are as follows:

δ(inc)|θ, I,N ,R ∼ Γ(m+ aδ(inc) ,Minc + bδ(inc)),

where δ(inc) is the rate of the incubation period distribution; Minc =
∑m
i=1 (Ni − Ii); and

aδ(inc) and bδ(inc) are the prior parameters of incubation period rate; and

δ(delay)|θ, I,N ,R ∼ Γ(m+ aδ(delay) ,Mdelay + bδ(delay)),

where δ(delay) is the rate of the delay period distribution; Mdelay =
∑m
i=1 (Ri −Ni); and

aδ(delay) and bδ(delay) are the prior parameters of delay period rate.
A Gibbs update (i.e., sampling from the conditional posterior distribution) is used for the
infectious period rate (for the SIR continuous time ILMs) or the incubation and/or delay
period rates (for the SINR continuous time ILMs). The required information for each
period distribution are entered via the delta argument. We assume each period type follows
a gamma distribution with fixed shape and unknown rate. Thus, to update the rate parameter
of each period we specify delta, a list containing a vector of the fixed shape value(s), a vector
(matrix) of the initial values of the rate(s), and a vector (matrix) for the parameters of the
prior distribution of the rate parameter(s). In the case of incubation and delay periods being
estimated, the input of the initial values is a 2×nchains matrix, and the prior parameters is
a 2× 2 matrix where each row contains the required information for each period rate.
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An independence sampler is then used to update the infection times/infectious periods (for
the SIR continuous time ILMs), or the infection times/incubation periods and/or the re-
moval times/delay periods (for the SINR continuous time ILMs). For the SIR continuous
time ILMs, the ith infection time Ii is updated by generating an infectious period D∗i from
a gamma proposal distribution such that D∗i ∼ Γ(a, b). Then, the new infection time is the
difference between the observed removal time and the new infectious period of the ith indi-
vidual. The same procedure is used for updating the missing event times, infectious periods
and corresponding parameters for the SINR continuous time ILMs. The parameter values of
the gamma proposal distribution could be provided through the periodproposal argument.
If they are not provided, the parameters of the gamma proposal distribution are then based
on the fixed shape and updated rate values from the argument delta. Computationally, it
may be more efficient to apply a block update for the periods and event times. This can
be implemented using the blockupdate argument, which requires that the user specifies m
(assuming removal and infection times are known for the first m individuals), and the size of
each block.

The epictmcmc function allows for sampling from multiple MCMC chains. This is done by
providing the number of chains to be run via the option nchains. Additionally, multiple chains
can be run in parallel by setting parallel = TRUE. This implies the use of the parLapply
function from the parallel package (R Core Team 2021). The number of cores to be used is set
to the minimum of the number of chains and the available cores on the user’s computer. Note
that, if parallel is set to FALSE and nchains is greater than one, multiple MCMC chains are
run sequentially. When parallel is set to TRUE, the clusterSetRNGStream function from
the parallel package (R Core Team 2021) is used to distribute the setting seed value by the
set.seed function to each core to reproduce the same results, otherwise each core sets its
seed value from the current seed of the master process.

The output of this function is an object of class ‘epictmcmc’. There are S3 methods: print,
summary and plot that depend on the coda package (Plummer, Best, Cowles, and Vines
2006). The latter function has a plottype argument to specify which samples need to be
plotted. This argument has three options: "parameter" to produce trace plots of the posterior
distributions of the model parameters, and "inf.times" ("rem.times") to produce plots of
the average posterior and 95% CI of the unobserved infection (removal) times when datatype
set to "known removal" ("unknown removal"). The S3 plot method for ‘epictmcmc’ objects
has the same options as the method for ‘mcmc’ objects in the coda package, for example, start,
thin, and density.

The class ‘epictmcmc’ contains the MCMC samples of the model parameters and the missing
information (if datatype is not set to "known epidemic") as an mcmc matrix, and other
useful information to be used in other functions, such as the above S3 methods. So standard
summary methods from coda, such as summary and plot methods for ‘mcmc’ objects, can be
employed using these MCMC samples as inputs.

Posterior predictive checks of the fitted model can be performed using the datagen function.
This requires that the user supplies the model parameter values with a combined sample of
the MCMC model parameter outputs. If desired, the simulation can be constrained to the
first m infected individuals and their event times. This can be achieved by appending this
information to the initialepi option.
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5. Examples

5.1. Simulated network-based epidemic

In this section, we illustrate the EpiILMCT package by fitting a simple SIR network-based
continuous time ILM to a simulated epidemic. We consider an isolated population of 50 indi-
viduals distributed uniformly in an area of 10×10 units. We also consider a binary suscepti-
bility covariate z which can be thought as being, say, an individual’s treatment or vaccination
status. Thus, the infectivity rate given in Equation 2 becomes:

λj(t) = (α0 + α1zj)
∑
i∈I(t)

cij , α0, α1 > 0,

where the susceptibility function ΩS(j) = α0 + α1zj ; there are no transmissibility covariates
ΩT (i) = 1; and ε = 0. First, let us simulate the XY coordinates of individuals and the binary
covariate z as follows:

R> set.seed(91938)
R> loc <- cbind(runif(50, 0, 10), runif(50, 0, 10))
R> cov <- cbind(rep(1, 50), rbinom(50, 1, 0.5))

To simulate the epidemic, we generate a contact network using the contactnet function.
Here, we use the power-law contact network model with β = 1.8 and ν = 1, as illustrated in
the following code:

R> net <- contactnet(type = "powerlaw", location = loc, beta = 1.8, nu = 1)

Figure 4 shows the contact network (grey lines). The epidemic is then generated using the
datagen function. Here, the epidemic is initialized with a randomly chosen infectious individ-
ual; then generated by providing the function with the contact network matrix, the suscepti-
bility covariate and the following parameter values: α0 = 0.08, α1 = 0.5, and Di ∼ Γ(4, δ = 2).
This is coded as follows:

R> epi <- datagen(type = "SIR", kerneltype = "network",
+ kernelmatrix = net, suspar = c(0.08, 0.5), delta = c(4, 2),
+ suscov = cov)

The object epi is stored in the data file NetworkData as a class ‘datagen’, along with the
susceptibility covariate (cov), available in the EpiILMCT package.

R> data("NetworkData", package = "EpiILMCT")
R> class(NetworkData[[1]])

[1] "datagen"

R> names(NetworkData[[1]])

[1] "type" "kerneltype" "epidat" "location" "network"
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R> head(NetworkData[[1]]$epidat)

id.individual rem.time inf.period inf.time
[1,] 50 1.526078 1.5260782 0.0000000
[2,] 16 2.612491 1.9933013 0.6191893
[3,] 5 2.394094 1.6567882 0.7373061
[4,] 45 3.169602 2.2370141 0.9325876
[5,] 44 1.805656 0.5661341 1.2395222
[6,] 19 1.737867 0.4576725 1.2801945

To illustrate the propagation of the epidemic, we set the argument plottype to "propagation".
To limit the number of plots, we assign the time.index option to be a vector containing time
points for plots to be generated as shown in the following code:

R> plot(NetworkData[[1]], plottype = "propagation",
+ time.index = seq_len(6))

We can also produce density plots of the infection and removal times, and a plot of the infec-
tious periods, by specifying the argument plottype to "history" as shown in the following
code:

R> plot(NetworkData[[1]], plottype = "history")

Figure 3 shows the densities of the infection and removal times, and the infectious periods;
while Figure 4 shows the epidemic propagation plot.
To illustrate fitting continuous time ILMs to data, we analyze the epidemic using the function
epictmcmc. This is done under two observation scenarios: "known epidemic" and "known
removal". For the former analysis, we assign Γ(1, 0.1) gamma prior distributions to the model
parameters α0 and α1 and use normal MCMC proposals with variances equal to 0.5 and 1,
respectively. As we have two susceptibility parameters, the argument control.sus is then
a list that contains: 1) a list of a vector of initial values of α0 and α1, and a 2 × 4 matrix
in which each row represents the required information for updating each parameter; and 2)
a 50× 2 matrix of the covariates representing the unity intercept and the binary covariate z.
Now, we run the MCMC using the epictmcmc function for sampling a single chain of 150,000
iterations using the following code:

R> set.seed(91938)
R> suscov <- list(NULL)
R> suscov[[1]] <- list(c(0.01, 0.1), matrix(c("gamma", "gamma",
+ 1, 1, 0.1, 0.1, 0.5, 1), ncol = 4, nrow = 2))
R> suscov[[2]] <- NetworkData[[2]]
R> mcmc1 <- epictmcmc(object = NetworkData[[1]],
+ datatype = "known epidemic", nsim = 150000, control.sus = suscov)

The estimates of the model parameters can be obtained through the S3 summary method for
‘epictmcmc’ objects. The posterior means and 95% credible intervals of these parameters can
be obtained via the following command:
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Figure 3: The epidemic curves of the infection and removal times for the epidemic that was
generated using the simple network-based continuous time ILM. The red shaded area in the
third plot represents the infectious periods.

R> summary(mcmc1, start = 10000, thin = 10)

*********************************************************
Model: SIR network-based continuous-time ILM
Method: Markov chain Monte Carlo (MCMC)
Data assumption: fully observed epidemic
number.chains : 1 chains
number.iteration : 140000 iterations
number.parameter : 2 parameters

*********************************************************
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

Alpha_s[1] 0.0850579 0.0268504 0.000226919 0.000298624
Alpha_s[2] 0.5082012 0.1290994 0.001091050 0.001179665





























https://CRAN.R-project.org/package=EpiILMCT
https://doi.org/10.18637/jss.v063.i15
https://CRAN.R-project.org/package=spTimer
https://doi.org/10.1093/biomet/asp052
https://CRAN.R-project.org/package=future.apply
https://doi.org/10.1016/j.sste.2013.07.001
https://doi.org/10.1111/gean.12008


https://doi.org/10.18637/jss.v063.i18
https://doi.org/10.18637/jss.v063.i18
https://doi.org/10.1111/1467-9469.00296
https://doi.org/10.1111/1467-9469.00296
https://doi.org/10.18637/jss.v061.i02
https://doi.org/10.1016/j.sste.2016.04.013
https://doi.org/10.18637/jss.v083.i11
https://doi.org/10.18637/jss.v083.i11
https://statnet.org/
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=surveillance
https://CRAN.R-project.org/package=surveillance
https://doi.org/10.1093/imammb/14.2.85
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v084.i08


https://doi.org/10.1214/09-ba417
https://doi.org/10.1016/j.prevetmed.2013.01.004
https://doi.org/10.18637/jss.v084.i09
https://doi.org/10.1371/journal.pone.0146253
https://doi.org/10.1371/journal.pone.0146253
https://doi.org/10.1080/02664763.2014.881787
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://CRAN.R-project.org/view=SpatioTemporal
https://doi.org/10.1093/aje/kwm082
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1016/j.sste.2014.08.003
https://doi.org/10.1002/cjs.11304
https://doi.org/10.1002/cjs.11304
https://www.R-project.org/
http://www.repidemicsconsortium.org/projects/


https://doi.org/10.1007/s00285-015-0910-3
https://doi.org/10.1007/s00285-015-0910-3
https://CRAN.R-project.org/package=splancs
https://doi.org/10.18637/jss.v070.i10
https://CRAN.R-project.org/package=adaptMCMC
https://CRAN.R-project.org/package=adaptMCMC
https://CRAN.R-project.org/package=hergm
https://CRAN.R-project.org/package=hergm
https://doi.org/10.18637/jss.v052.i04
https://doi.org/10.18637/jss.v063.i07
https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM




















44 EpiILMCT: Continuous Time ILMs of Infectious Disease

Affiliation:
Waleed Almutiry
Department of Mathematics
College of Science and Arts in Ar Rass
Qassim University
Qassim, Saudi Arabia
E-mail: wkmtierie@qu.edu.sa

Vineetha Warriyar K V
Sport Injury Prevention Research Centre
Faculty of Kinesiology
University of Calgary
Calgary, AB Canada
E-mail: vineethawarriyar.kod@ucalgary.ca

Rob Deardon
Faculty of Veterinary Medicine
Department of Mathematics and Statistics
University of Calgary
Calgary, AB Canada
E-mail: robert.deardon@ucalgary.ca
URL: http://people.ucalgary.ca/~robert.deardon/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
June 2021, Volume 98, Issue 10 Submitted: 2018-03-30
doi:10.18637/jss.v098.i10 Accepted: 2020-01-25

mailto:wkmtierie@qu.edu.sa
mailto:vineethawarriyar.kod@ucalgary.ca
mailto:robert.deardon@ucalgary.ca
http://people.ucalgary.ca/~robert.deardon/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v098.i10

	Introduction
	Model
	Likelihood function

	Contents of the EpiILMCT package
	Contact network
	Epidemic simulation

	Bayesian inference
	Examples
	Simulated network-based epidemic
	Case study: Tomato spotted wilt virus (TSWV) data

	Conclusion
	The likelihood of the general SINR continuous time ILMs
	R code to extract individual level data from surveillance
	R code to implement ring-based control strategy
	Comparing computation times to run different models

