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Abstract

Multivariate time series observations are increasingly common in multiple fields of
science but the complex dependencies of such data often translate into intractable models
with large number of parameters. An alternative is given by first reducing the dimension
of the series and then modelling the resulting uncorrelated signals univariately, avoiding
the need for any covariance parameters. A popular and effective framework for this
is blind source separation. In this paper we review the dimension reduction tools for
time series available in the R package tsBSS. These include methods for estimating the
signal dimension of second-order stationary time series, dimension reduction techniques
for stochastic volatility models and supervised dimension reduction tools for time series
regression. Several examples are provided to illustrate the functionality of the package.
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1. Dimension reduction and BSS for time series
In many fields of applied science multivariate time series, xt = (xt,1, . . . , xt,p)>, t = 1, . . . T ,
are collected. Examples include geophysical time series, telecommunications data, financial
time series and biomedical time series, e.g., EEG, MEG and fMRI. Such data are often charac-
terized by two main features, which both pose problems for multivariate time series modelling.
First, the p components in multivariate time series data are often correlated and therefore
individual time series cannot be modelled using univariate time series models. Models such
as multivariate autoregressive moving average (ARMA) and multivariate generalized autore-
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2 Dimension Reduction for Time Series in a BSS Context

gressive conditional heteroskedasticity (GARCH) include huge numbers of parameters and
model fitting becomes computationally impractical unless the models are noticeably simpli-
fied. Second, the data can be high-dimensional and might contain a high unknown number of
noise components. As an example, consider current biomedical datasets where the number of
time series components vary from hundreds to millions, and the main aim of the analysis is
to separate the signals of interest from noise. For such high-dimensional data, fitting multi-
variate time series models might become impossible, and at the very least unreasonable as it
is not sensible to assign a huge number of model parameters for noise components. These two
features often encountered in multivariate time series data motivate us to consider dimension
reduction methods suitable for time series.
In this paper we illustrate how blind source separation (BSS) methods (see for example Comon
and Jutten 2010; Nordhausen and Oja 2018) can be used for dimension reduction in a time
series context. Recall first that a (linear) BSS model assumes that the observable p-variate
time series x = (xt)t=0,±1,±2,... satisfy

xt = µ+ Ωzt, t = 0,±1,±2, . . . , (1)

where µ ∈ Rp is a p-variate location vector, Ω ∈ Rp×p is a full-rank mixing matrix and
z = (zt)t=0,±1,±2,... is a p-variate latent time series satisfying E(zt) = 0, Cov(zt) = Ip and

Covτ (zt) = E(ztz>t+τ ) = Λτ is a diagonal matrix for all τ = 1, 2, . . . .

The p time series in z are thus weakly stationary and uncorrelated, and the model is often
referred to as a second-order source separation model (SOS). If we make the stronger assump-
tion on the independence of the p time series in z, then the model is called the independent
time series model. The BSS approach for dimension reduction is often preferred since the
obtained components can be treated as independent, allowing univariate fitting and predic-
tion methods. For example Van der Weide (2002) and Broda and Paolella (2009) have used
this idea for multivariate GARCH modelling. Furthermore, with BSS one can also decide
componentwise whether an estimated component is relevant or not. For related research on
this, see Matteson and Tsay (2011).
There are two different approaches to define signal and noise in BSS. One commonly used
noisy BSS model is the one where an additive external noise vector is included in model (1),
that is, we assume that xt = µ + Ωzt + εt, t = 0,±1,±2, . . . , where εt ∈ Rp is a vector of
white noise (Comon and Jutten 2010). The other approach, and the one we prefer, differs
from the noisy BSS model in that it assumes that q of the p sources are signal and p − q
are internal noise components. In particular, we assume that the source vector zt can be
partitioned into two parts, zt = (s>t ,w>t )>, so that the first part st ∈ Rq includes the sources
of interest while wt ∈ Rp−q represents the noise components. To be more specific, we assume
the following BSS model

xt = µ+ Ωzt = µ+ Ω1st + Ω2wt, t = 0,±1,±2, . . . , (2)

where µ ∈ Rp is a location vector, Ω = (Ω1,Ω2) ∈ Rp×p is a full-rank mixing matrix,
Ω1 ∈ Rp×q and Ω2 ∈ Rp×(p−q), and the p-variate latent time series zt = (s>t ,w>t )> satisfy

(A1) E(zt) = 0 and Cov(zt) = Ip,

(A2) st ∈ Rq and wt ∈ Rp−q are independent.
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(A3) Covτ (zt) =
(

Λτ 0
0 0

)
, where Λτ ∈ Rq×q is a diagonal matrix for all τ = 1, 2, . . .

Notice that in model (2) no distributional assumptions are made for the noise components wt,
we simply require that they do not show any linear autocorrelations. Examples of such noise
components include white noise as well as components exhibiting volatility clustering. The
latter components have zero linear autocorrelations but non-zero quadratic autocorrelations.
Notice also that in the BSS model (2) the components in st can be identified at most up to
signs and permutations of its components, and Ω1 at most up to the signs and permutation
of its columns. Matrix Ω2 is identifiable only up to post-multiplication with an orthogonal
(p− q)× (p− q) matrix.
We note that other approaches besides BSS are frequently used for the dimension reduction
of multivariate time series data. We next list some of the most well-known of these and dis-
cuss the benefits of BSS over them. The simplest options are arguably the classical principal
component analysis (PCA) and factor analysis, which however treat the data as independent
observations. As the ability to use temporal information is crucial in analyzing time series,
a number of extensions of the two methods that allow for this have been suggested in the
literature. The most prominent example is given by dynamic factor models, see Stock and
Watson (2010); Ensor (2013) and the references therein, where the latent factors are most
often assumed to obey a vector autoregressive structure. This is in strict contrast to the BSS
model (1) where no structural assumptions on the latent variables are made (beyond tem-
poral uncorrelatedness). As an example of this versatility, consider the methods SOBI and
vSOBI discussed in Section 2 and Section 3, respectively, which both comply with the BSS
framework but the former assumes the sources to be standard linear processes and the latter
that they are series exhibiting stochastic volatility. For a more recent extension of PCA,
see the time series PCA (Chang, Guo, and Yao 2018) which is actually based on a slight
modification of the model (1) and thus constitutes a form of BSS. Other contenders include,
e.g., non-negative matrix factorizations (Cheung, Devarajan, Severini, Turolla, and Bonato
2015; Févotte, Smaragdis, Mohammadiha, and Mysore 2018) and autoencoders (Bianchi,
Livi, Mikalsen, Kampffmeyer, and Jenssen 2019). The involved complicated constraints and
structures make such models difficult to analyze theoretically, whereas the relatively straight-
forward form of the BSS model makes it possible to obtain convergence rates and other
theoretical guarantees (Miettinen, Illner, Nordhausen, Oja, Taskinen, and Theis 2016). To
summarize, the advantages of BSS over its competitors lie in its ability to model temporal
data while making minimal assumptions on the latent variables and in the BSS model which
is simultaneously complicated enough to be useful and simple enough to study theoretically.
This paper is organized as follows. In Section 2 we recall two classical second-order source
separation methods and show how they can be used to estimate the dimension of the interest-
ing source components in model (2). In Section 3 we consider dimension reduction in a case
where the time series exhibit stochastic volatility and our main interest is finding out whether
some of the components lack stochastic volatility features. In Section 4 several supervised
dimension reduction methods for multivariate time series are discussed. Section 5 reviews
the existing packages available in R (R Core Team 2021) for multivariate time series and BSS
as well as describes the functionality of the R package tsBSS (Matilainen, Croux, Miettinen,
Nordhausen, Oja, and Taskinen 2021). In Section 6 several examples are given to illustrate the
functionality of the tsBSS package. The package tsBSS is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=tsBSS.

https://CRAN.R-project.org/package=tsBSS
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2. Dimension estimation using AMUSE and SOBI
In this section we illustrate how two classical second-order source separation methods, AMUSE
(algorithm for multiple unknown signals extraction) by Tong, Soon, Huang, and Liu (1990)
and SOBI (second-order blind identification) by Belouchrani, Abed-Meraim, Cardoso, and
Moulines (1997), can be used to estimate the dimension of important components in the BSS
model. Let us start by recalling the two methods. Hence, assume for a moment that xt
follows a BSS model (2) with q = p, that is, there are no noise components included in the
model. Assume also, without loss of generality, that µ = 0. The aim of second-order source
separation is to find an unmixing matrix W ∈ Rp×p such that the component time series in
Wxt are standardized and mutually uncorrelated, that is, Wxt = zt up to location shifts,
sign changes and permutations of the components.
Write now xstt = Cov(xt)−1/2xt for a standardized time series. Cardoso and Souloumiac
(1993) showed that the standardized series then satisfy xstt = Uzt, where U ∈ Rp×p is
an unknown orthogonal matrix. The standardization thus solves the BSS problem up to
rotation, that is, the unmixing matrix is given by W = U>Cov(xt)−1/2. In AMUSE, the
rotation matrix U is found simply using the eigendecomposition of the autocovariance matrix
with given lag τ , as by assumption, Covτ (xstt ) = UCovτ (zt)U> = UΛτU

> for any lag τ .
For the statistical properties of AMUSE estimators, see Miettinen, Nordhausen, Oja, and
Taskinen (2012).
The drawback of the AMUSE procedure is that, in order to separate all p source components,
we need to assume that for a chosen lag τ , the eigenvalues in Λτ are distinct. As this may
not hold in practice, it is often better to use approximate joint diagonalization of several
autocovariance matrices as suggested in Belouchrani et al. (1997). Their SOBI method is
a natural extension of AMUSE as the solution is given by W = U>Cov(xt)−1/2 where the
orthogonal U = (u1, . . . ,up) ∈ Rp×p maximizes

∑
τ∈T

p∑
i=1

(u>i Covτ (xstt )ui)2,

that is, we find a rotation that makes the autocovariance matrices defined by a set of lags
T = {τ1, . . . , τK} “as diagonal as possible”. Different algorithms for approximate joint diago-
nalization yield naturally different SOBI solutions. The statistical properties of various SOBI
estimators are discussed in Miettinen, Nordhausen, Oja, and Taskinen (2014); Illner et al.
(2015); Miettinen et al. (2016) where the performances of the estimators are also compared.
In most cases, the SOBI method outperforms the AMUSE method.
For more details about joint diagonalization in general and especially in R, see Miettinen,
Nordhausen, and Taskinen (2017) and the references therein. In the following, joint diago-
nalization will be a reoccuring theme in most discussed methods and we will always use for
this purpose an algorithm based on Given’s (or Jacobi) rotations as suggested by Clarkson
(1988) and implemented in R, for example, in the package JADE (Miettinen et al. 2017).
The joint diagonalization of K symmetric matrices of size p× p is an operation of complexity
O(Kp3) (whereas the ordinary eigendecomposition has K = 1 and the complexity O(p3)),
and as such some care has to be taken when applying the methods to data sets where the
number of variables is measured in hundreds rather than in tens. Moreover, as is common
with eigendecomposition-type algorithms, the possibility of numerical issues should be taken
into account when working with data sets having p in the high hundreds.
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Consider then the BSS model (2) with q < p, that is, the model consists of mutually uncor-
related and stationary components as well as of noise components which are not of interest.
When using AMUSE, the eigendecomposition of an autocovariance matrix of the standardized
vectors xstt = Cov(xt)−1/2xt is now by assumption

Covτ (xstt ) = UΛ̃τU
> = (U1,U2)

(
Λτ 0
0 0

)(
U>1
U>2

)
,

where U1 ∈ Rp×q, U2 ∈ Rp×(p−q), and Λτ ∈ Rq×q is a diagonal matrix consisting of the q
marginal τ -th autocovariances of the latent series. As noise components do not show any
linear autocorrelations, the last p− q diagonal values in Λ̃τ are equal to zero. The aim is thus
to find a rotation matrix U1 so that the latent source components are given by st = U>1 x

st
t

up to sign changes and permutation. In Matilainen, Nordhausen, and Virta (2018), the noise
components are identified simply by investigating the diagonal elements of Λ̃2

τ , where the
squaring is used for ordering the sources in decreasing order of interestingness. The noise
components are then the last p − q components having zero eigenvalues. For finite samples,
the eigenvalues are naturally never equal to zero, and we look for p − q components having
“small enough” eigenvalues. In Matilainen et al. (2018) a bootstrap-based test for testing the
null hypothesis H0k : q = k is proposed, and in Virta and Nordhausen (2021) an asymptotic
test is given. The signal dimension can then be estimated by testing successively H0k for all
possible dimensions k = 0, . . . , p − 1 and using the resulting chain of p-values to pin-point
the correct dimension. To avoid testing all p hypotheses, one can also use, e.g., a divide-and-
conquer approach, see Matilainen et al. (2018) for details. Previously similar approaches have
been used in the context of independent component analysis (ICA) in Nordhausen, Oja, and
Tyler (2017a) and Nordhausen, Oja, Tyler, and Virta (2017b).
The AMUSE method based dimension reduction suffers again from one major drawback.
The q components of interest must have non-zero autocovariances with the given lag so
that they can be separated from noise components. To overcome this problem, the AMUSE
method can be replaced with the SOBI method, which uses K autocovariance matrices in
estimation. In order to find all latent source components, it is only required that for each
source its autocovariance with one of the lags τ ∈ T must be non-zero. In Matilainen et al.
(2018) and Virta and Nordhausen (2021), bootstrap and asymptotic tests based on the sum
of squared “eigenvalue matrices” ∑τ∈T Λ̃2

τ are used. Notice that as the SOBI procedure is
based on joint diagonalization, matrices Λ̃τ are not exact eigenvalue matrices, but obtained
as Λ̃ = diag(U>Covτ (xstt )U). Nevertheless, the testing procedure is similar to that used in
the case of AMUSE. For a comparison of different approaches for testing the dimension of
source subspace, see Matilainen et al. (2018) and Virta and Nordhausen (2021).
As already stated, the choice of the lag set T is of prime importance in the SOBI-based tests
as they only recognize signals having autocorrelation on at least one lag in T . As such, T
should be chosen to contain enough lags to identify all the signals, but at the same time be
kept small enough, as including too many unnecessary lags can lead into slower computations
and noisy estimation in practice. The default set {1, . . . , 12} used in tsBSS exhibits this
compromise. The previous naturally holds even stronger for AMUSE which allows only for
a single lag τ (yielding faster performance in return) and unless expert knowledge on an
appropriate lag is available, SOBI should be used instead of AMUSE. The choice of lags for
SOBI is for example also discussed in Tang, Liu, and Sutherland (2005); Taskinen, Miettinen,
and Nordhausen (2016).
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The above idea to use the magnitude of “eigenvalues” to determine which of the components
are noise components and which are interesting source components, can also be visually
investigated with a scree plot. In such a plot it is however often difficult to decide when an
“eigenvalue” is small enough to be related to a noise component. Recently, Luo and Li (2016)
extended the scree plot into the ladle plot where, in addition to the information contained
in the eigenvalues, also information from the corresponding eigenvectors is used. The main
idea in the ladle plot is that the eigenvectors related to noise components span a space and
are not well-defined as compared to the eigenvectors related to components with unique
signal eigenvalues. Thus measuring this variability using bootstrap sampling and combining
it with the information from the eigenvalues gives us a better picture of the number of noise
components.
The ladle plot based on AMUSE and SOBI was introduced recently in Nordhausen and
Virta (2018). The plots are constructed using stationary time series bootstrapping ideas as
follows. Let λ2

0, λ
2
1, . . . , λ

2
p−1 be the (re-indexed) “eigenvalues” in decreasing order and define

the normalized function φ : {0, . . . , p− 1} → R as

φn(k) = λ2
k (1 +

p−1∑
l=0

λ2
l )−1.

Next, let B̂k contain the first k corresponding columns of the (joint) diagonalizer of AMUSE
(SOBI) computed for the original data sample and denote by B∗k,j , j = 1, . . . ,m, the corre-
sponding quantity for the j-th bootstrap sample. The average variation (around B̂k) of the
space spanned by the first k vectors can then be measured as

fn(k) = 1
m

m∑
j=1
{1− |det(B̂>kB∗k,j)|},

for k = 1, . . . , p − 1 with fn(0) := 0. The ladle function gn(k) is now obtained simply by
summing the functions φn and fn,

gn(k) = fn(k) + φn(k),

and visualizing the ladle function then yields the ladle plot. The ladle estimator for the
source subspace dimension is the value of k for which gn(k) is minimal. For further details,
the interested reader is referred to Luo and Li (2016) and Nordhausen and Virta (2018).

3. Dimension reduction in the context of volatility clustering
As discussed earlier, AMUSE and SOBI use linear autocovariances in estimation and have
proven to be powerful methods when separating uncorrelated linear processes from noise.
However, as these two methods treat also components exhibiting volatility clustering as noise,
they cannot be used for estimating such time series. If this is our main interest, then extensions
of second-order source separation methods are needed.
Matilainen, Nordhausen, and Oja (2015) considered the independent component model for
time series (which assumes that the component series in zt are independent) and proposed
two methods which use fourth-order cumulants in estimation: In gFOBI (generalized FOBI),
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the matrices of fourth cross-moments Bτ (xt) = E[xt+τx>t xtx>t+τ ] are approximately jointly
diagonalized, that is, we find an orthogonal matrix U ∈ Rp×p such that it maximizes

∑
τ∈T

p∑
i=1

(u>i Bτ (xstt )ui)2.

The gFOBI estimator is then given by W = U>Cov(xstt )−1/2. Notice that by using τ = 0
we obtain the classical FOBI (fourth-order blind identification) method which was proposed
already in Cardoso (1989) for solving the independent component analysis problem.
The gJADE (generalized JADE) method, in turn, extends the classical JADE (joint approxi-
mate diagonalization of eigenmatrices) method by Cardoso and Souloumiac (1993) to a time
series context by using a larger class of fourth-order cumulants in estimation. Write the
cross-cumulant matrices as

Cjk
τ (xt) = E[xt+τx>t Ejkxtx

>
t+τ ]− Covτ (xt)(Ejk +Ekj)Covτ (xt)> − trace(Ejk)Ip,

where Ejk = eje
>
k , j, k = 1, . . . , p with ei denoting the vector with a 1 in the i-th coordi-

nate and 0’s elsewhere. Then the gJADE solution is given by W = U>Cov(xt)−1/2, where
orthogonal U ∈ Rp×p maximizes

∑
τ∈T

p∑
i=1

p∑
j=1

p∑
k=1

(u>i Cjk
τ (xstt )ui)2.

Again, the choice τ = 0 reduces to the classical JADE solution.
Another branch of methods designed for separating independent time series exhibiting volatil-
ity clustering is based on the use of nonlinearity functions in the estimation. An extension
of classical SOBI method was proposed in Matilainen, Miettinen, Nordhausen, Oja, and Tas-
kinen (2017b). Their vSOBI (variant of SOBI) estimate is given by W = U>Cov(xstt )−1/2,
where U ∈ Rp×p maximizes

∑
τ∈T

p∑
i=1

(E[G(u>i xstt )G(u>i xstt+τ )]− E[G(u>i xstt )]E[G(u>i xstt+τ )])2,

and G can be any twice continuously differentiable function. Commonly used choices for G are
G(y) = y2 and G(y) = log(cosh(y)). The vSOBI method also extends the two FixNA (Fixed-
point algorithms for maximizing nonlinear autocorrelation) methods proposed by Hyvärinen
(2001) and Shi, Jiang, and Zhou (2009). For the comparisons of gFOBI, gJADE, FixNA and
vSOBI, see Matilainen et al. (2017b).
The methods recalled above are designed for separating time series which do not show any
linear autocorrelations. However, if our interest is in separating uncorrelated stationary time
series from components exhibiting volatility clustering, that is, we consider the BSS model (2)
with the p − q noise sources actually being components with volatility clustering, the above
methods are not applicable. Miettinen, Matilainen, Nordhausen, and Taskinen (2019) com-
bined a second-order source separation method (SOBI) with vSOBI using G(x) = x2. Their
gSOBI (generalized SOBI) solution is given asW = U>Cov(xstt )−1/2, where U ∈ Rp×p solves

b
∑
τ1∈T1

p∑
i=1

(uiCovτ1(xstt )u>i )2 + (1− b)
∑
τ2∈T2

p∑
i=1

(E[(u>i xstt )2(u>i xstt+τ2)2]− 1)2.
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Here T1 and T2 are the lag sets for the linear and the quadratic parts, respectively, and b ∈ [0, 1]
assigns the weights for the two parts. The first part of the objective function is designed to
find components which are linear processes and the second part components with volatility
clustering. In Miettinen et al. (2019) the statistical properties of the gSOBI estimator are
given, and its performance under different values for b is studied using simulation studies.
The value of b should be larger than 0.5 and b = 0.9 is suggested for general use.
Miettinen et al. (2019) also propose a test for identifying whether there is volatility clus-
tering in the components or not. In order to do this, possible linear autocorrelation of a
component needs to be removed first. The presence of linear autocorrelation is measured
using a modified version of Ljung-Box test. For the components exhibiting linear autocorre-
lation, volatility clustering test is performed on ARMA residuals. Finally, the components
are ordered according to the value of the test statistic of the volatility clustering test.
The research in Miettinen et al. (2019) was motivated by Hu and Tsay (2014) who proposed
principal volatility component (PVC) analysis for identifying and ordering components with
volatility clustering. With a slight modification, the PVC method can also be seen as a BSS
method as it simultaneously diagonalizes two scatter matrices (see Miettinen et al. 2019, for
more details).

4. Supervised dimension reduction for time series
The methods described above can be considered as unsupervised dimension reduction methods
as no specific response, which should be modelled based on xt, was assumed. In supervised
dimension reduction it is assumed that we have observed a univariate response time series
yt and that the dimension of xt should be reduced without losing information about yt
and without knowing the functional relationship between yt and xt. Supervised dimension
reduction methods are well established for iid data, the most popular methods being sliced
inverse regression (SIR) (Li 1991) and sliced average variance estimation (SAVE) (Cook 2000).
These and other iid supervised dimension reduction methods are implemented, for example,
in R in the package dr (Weisberg 2002).
Supervised dimension reduction in case of time series data is however much more difficult as
the dependence between yt and xt may also lag in time. To address this problem Matilainen,
Croux, Nordhausen, and Oja (2017a) and Matilainen, Croux, Nordhausen, and Oja (2019)
suggested time series versions of SIR and SAVE as well as a weighted linear combination of the
two methods. The three approaches are denoted TSIR, TSAVE and TSSH (time series SIR
SAVE hybrid), respectively, and recalled in the following. Let now y = (yt)t=0,±1,±2,... and
x = (xt)t=0,±1,±2,... be (weakly and jointly) stationary univariate and p-variate time series,
respectively. We then assume that

yt = f(xt,xt−1, . . . ; εt, εt−1, . . .),

where function f is unspecified, ε = (εt)t=0,±1,±2,... is an unspecified stationary noise process
independent from xt, and the explaining time series xt follow the BSS model

xt = Ωzt + µ,

where again µ ∈ Rp is a location vector and Ω ∈ Rp×p is a full rank mixing matrix. The
stationary p-variate source time series zt can be partitioned into zt = (z(1)>

t , z
(2)>

t )>, where
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z
(1)
t ∈ Rq and z(2)

t ∈ Rp−q. The dimension q denotes the smallest value which fulfills the
conditions

(B1) E(zt) = 0 and COV(zt) = Ip and

(B2) (y, z(1)>)>⊥⊥z(2).

All the information needed to model yt is therefore contained in the process z(1)
t and one can

write

yt = f(xt,xt−1, . . . ; εt, εt−1, . . .) = f0(z(1)
t , z

(1)
t−1, . . . ; εt, εt−1, . . .) (3)

with another unspecified function f0, possibly depending on Ω and µ. As in the unsuper-
vised case, this model is ill-defined in the sense that both z(1)

t and z(2)
t can be multiplied by

orthogonal matrices and still fulfill conditions (B1) and (B2). The goal is therefore to find
an estimate for an unmixing matrix W such that Wxt = z

(1)
t up to an orthogonal transfor-

mation. Moreover, one should identify which lagged values z(1)
t , z

(1)
t−1, . . . contribute in the

model.
TSIR and TSAVE use similar approximate joint diagonalization as the unsupervised methods
considered in previous sections. For TSIR Matilainen et al. (2017a) suggest to use matrices

G0,τ (zt, yt) = Cov(E(zt|yt+τ )),

and for TSAVE the matrices

G1,τ (zt, yt) = E((Ip − Cov(zt|yt+τ ))2),

are suggested in Matilainen et al. (2019). The solutions are then given asW = U>Cov(xt)−1/2,
where the orthogonal matrix U ∈ Rp×q maximizes

∑
τ∈T

q∑
i=1

(u>i Gs,τ (xstt , yt)ui)2 (4)

with s = 0 for TSIR and s = 1 for TSAVE, respectively. To compute the matrices Gs,τ in
practice, the response time series yt is ordered and divided into H slices which are then used
to approximate the conditional expectations in G0,τ and G1,τ .
For a weighted combination of TSIR and TSAVE, TSSH, an orthogonal matrix U ∈ Rp×q
maximizes

∑
τ∈T

q∑
i=1

(u>i ((1− b)G0,τj (xstt , yt) + bG1,τj (xstt , yt))ui)2,

where b ∈ [0, 1]. Notice that b = 0 gives now the TSIR solution and b = 1 the TSAVE
solution.
In practice the number of sources, that is, the value of q, is unknown and needs to be estimated.
Also the important lags regarding the sources need to be found. So far no statistical tests
for these are available, however Matilainen et al. (2017a, 2019) used the pseudo-eigenvalues
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λij = u>i Gs,τj (xstt , yt)ui for determining the value of q as follows. Notice that now T =
{τ1, . . . , τK}. Consider the matrix L = lij where

lij = λij∑k
i=1

∑K
j=1 λij

, i = 1, . . . , q; j = 1, . . . ,K,

are the scaled pseudo-eigenvalues and the scaling is chosen so that the elements of L add up
to 1. Denote the marginal sums of the “eigenvalues” as λi· = ∑K

j=1 λij and assume that the
unmixing matrix is such that the latent sources are ordered with respect to λ1· ≥ . . . ≥ λq·
and q = p. Then Matilainen et al. (2017a) suggested four different strategies for finding
the appropriate amount of sources and the lags corresponding to the sources by, similarly
to the principal component analysis (PCA), trying to explain 100 × P% of the dependence
between the latent sources and the response series. The recommended strategy according
to Matilainen et al. (2019) is the so called “biggest value” strategy which finds the smallest
number r of elements (i1, j1), . . . , (ir, jr) of L such that ∑r

k=1 likjk ≥ P . For details about
the other strategies see Matilainen et al. (2017a). For the number of slices Matilainen et al.
(2019) recommend to use H = 10 for TSIR and H = 5 for TSAVE.

5. Dimension reduction of multivariate time series in R

5.1. Existing packages
In R, many classes are available for time series data and numerous packages implement mod-
eling multivariate time series, see, for example, the CRAN task view “Time Series Analysis”
(https://CRAN.R-project.org/view=TimeSeries). Possibly the most comprehensive and
general package for multivariate time series modeling is the MTS package (Tsay and Wood
2021), offering methods for fitting, among others, multivariate MA, AR, ARMA and mul-
tivariate stochastic volatility models, but also dimension reduction methods for time series
data. Further R packages that implement unsupervised dimension reduction for time series,
mainly through PCA and factor models, include the packages gdpc (Peña, Smucler, and Yohai
2021), PCA4TS (Chang, Guo, and Yao 2015), freqdom (Hormann and Kidzinski 2017) and
tsfa (Gilbert and Meijer 2005).
R-implementations of numerous blind source separation methods are also available, most of the
packages, however, containing mainly BSS methods for iid data. These include, for example,
fICA (Miettinen, Nordhausen, and Taskinen 2018), fastICA (Marchini, Heaton, and Ripley
2019), ica (Helwig 2018), ProDenICA (Hastie and Tibshirani 2010) and ICS (Nordhausen,
Oja, and Tyler 2008). The package JADE (Miettinen et al. 2017) contains, besides iid BSS
methods, also AMUSE and SOBI as well as BSS methods for nonstationary time series. The
package BSSasymp (Miettinen et al. 2017) implements the SOBI variant eSOBI (Taskinen
et al. 2016) and tensorBSS (Virta, Koesner, Li, Nordhausen, Oja, and Radojicic 2021) offers
BSS approaches for tensor-valued time series. Time series packages which can fit multivariate
models in a BSS context by assuming an ICA model are for example gogarch (Pfaff 2012)
and rmgarch (Ghalanos 2019).

5.2. The package tsBSS
The tsBSS package (Matilainen et al. 2021), which we introduce here, is the most compre-

https://CRAN.R-project.org/view=TimeSeries
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hensive package for BSS methods for vector-valued time series. The package tsBSS depends
on the packages boot (Canty and Ripley 2021), forecast (Hyndman and Khandakar 2008),
ICtest (Nordhausen, Oja, Tyler, and Virta 2021), JADE, parallel, Rcpp (Eddelbuettel and
François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014). Most functions in
the package assume that the input multivariate time series is either a matrix with p columns
and T rows or a corresponding object of class ‘mts’, ‘xts’ or ‘zoo’.
We next describe the functions implementing the methods discussed in Sections 2, 3 and 4.
The AMUSE- and SOBI-based signal dimension testing and estimation methods described in
Section 2 are implemented as the functions:

• AMUSEasymp, AMUSEboot, and AMUSEladle

• SOBIasymp, SOBIboot, and SOBIladle

In each function, the user supplies the multivariate time series and the lag(s) to be used. In the
hypothesis testing functions (*asymp and *boot) the signal dimension to be tested is specified
using the argument k, whereas in the *ladle functions the user supplies the maximum number
of components to be evaluated as possible signals via the ncomp argument. All bootstrapping
functions use by default only one core, but offer the possibility of doing parallel computations.
Examples on this are shown in Section 6. For the bootstrap hypothesis testing, the user can
choose between one parametric and three nonparametric bootstrap versions. For details, see
the corresponding help files. For the ladle functions, the user can choose between fixed block
bootstrapping and stationary bootstrapping.
The testing functions return objects of class ‘ictest’, which is introduced in the package
ICtest and inherits from class ‘htest’, and there are print, components, plot, ggplot and
screeplot methods available for the class. The ladle functions return objects of class ‘ladle’,
which was again introduced in ICtest, and available methods for this class are print, summary,
components, plot. The actual ladle plot is obtained by calling ladleplot or ggladleplot.
The functions which implement BSS methods for multivariate time series exhibiting volatility
clustering, as described in Section 3, are usually called by the name of the method. Hence,
the package has the functions FixNA, gFOBI, gJADE, PVC and vSOBI. All five functions let the
user specify the set of lags to be used. The default is to use the first 12 lags which seems
fairly standard in the BSS literature. As there is no natural order of the components, it will
usually differ between the methods and the functions usually return the unmixing matrix,
the estimated sources, the vector of the lags used and the location of the original series.
For financial time series, however, the components of main interest are those which exhibit
volatility clustering - therefore all the functions have also the arguments ordered, acfk and
original, functioning as follows.
When setting ordered = TRUE, the components are ordered according to their degree of
volatility clustering as measured by quadratic correlation. For this purpose, acfk specifies
a vector of lags which will be used to test for serial correlations. Then, if marginal tests
of linear correlation detect dependencies at level α, marginal ARMA models will be fitted
to each source component. The default is α = 0.05 but the user can change it. Then the
components whose serial dependence was deemed significant are replaced by their residuals
from an ARMA fit using auto.arima. For these components, tests of quadratic correlations
are performed and the components are ordered according to their test statistics, in order to
set the components having the strongest quadratic correlations first. The argument original



12 Dimension Reduction for Time Series in a BSS Context

Type Name Output class Reference
Blind source separation gFOBI ‘bssvol’ Matilainen et al. (2015)

gJADE ‘bssvol’ Matilainen et al. (2015)
vSOBI ‘bssvol’ Matilainen et al. (2017b)
FixNA ‘bssvol’ FixNA (Shi et al. 2009),

FixNA2 (Matilainen et al. 2017b)
gSOBI ‘bssvol’ Miettinen et al. (2019)
PVC ‘bssvol’ Hu and Tsay (2014),

Miettinen et al. (2019)
Dimension estimation AMUSEasymp ‘ictest’ (ICtest) Virta and Nordhausen (2021)

SOBIasymp ‘ictest’ (ICtest) Virta and Nordhausen (2021)
AMUSEboot ‘ictest’ (ICtest) Matilainen et al. (2018)
SOBIboot ‘ictest’ (ICtest) Matilainen et al. (2018)
AMUSEladle ‘ladle’ (ICtest) Nordhausen and Virta (2018)
SOBIladle ‘ladle’ (ICtest) Nordhausen and Virta (2018)

Autocorrelation testing lbtest ‘lbtest’ Miettinen et al. (2019)
Supervised dimension tssdr ‘tssdr’ TSIR (Matilainen et al. 2017a),
reduction TSAVE & TSSH

(Matilainen et al. 2019)
summary.tssdr ‘summary.tssdr’ Matilainen et al. (2017a)

Table 1: Summary of the functions in tsBSS package.

is used to indicate whether the user wants to return the original sources in the desired order
or the ordered sources after removing the serial linear correlations. A function for testing the
linear and quadratic correlations is also available in the package under the name lbtest, see
the corresponding help page for details.
In case of ordered = TRUE, the output of the stochastic volatility BSS functions will contain
many additional features, such as, details of the marginal ARMA fits as well as test statistic
values and p values for the marginal linear and quadratic correlation tests. If original =
FALSE, the source component object S naturally does not anymore correspond to the original
sources, which are then returned as Sraw. The returned object for all the stochastic volatility
BSS functions is of the class ‘bssvol’, which inherits from the class ‘bss’. Many useful
methods such as components or plot are available for this class.
The previous BSS methods designed for time series with volatility clustering, FixNA, gFOBI,
gJADE, PVC and vSOBI, can deal with linear processes, but the sixth method described in Sec-
tion 3, gSOBI, is clearly a more efficient choice when there are both linear process components
and components with volatility clustering. The gSOBI function works basically the same way
as all other BSS functions mentioned above. In gSOBI, however, the user has to specify two
sets of lags, one for the “SOBI part” and one for the “vSOBI part”. From our experience,
it seems that the lag set for the vSOBI part can be much smaller than the lag set for the
SOBI part. Furthermore, the user can, via the argument b, control how much weight should
be given to the SOBI part. The default is b = 0.9.
For the supervised dimension reduction methods described in Section 4, the function tssdr
is available. Via the argument algorithm, the user can choose between "TSIR" (default),
"TSAVE" and the hybrid method "TSSH". The other main input arguments are the univariate
response series y and the multivariate explaining series X. The argument k controls the lags to
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Class Methods
‘bssvol’ bss.components∗, coef∗, plot, print
‘lbtest’ print
‘tssdr’ components, plot, print
‘summary.tssdr’ coef, components, plot, print
∗ inherited from class ‘bss’ (JADE)

Table 2: Summary of the methods in classes in tsBSS package.

be used and the argument H the number of slices. Note that for the TSSH method, different
numbers of slices can be used for the TSIR and TSAVE parts by providing a vector of length
two. The argument weight specifies the weight given to TSAVE. By default, both parts get
equal weight. The returned object is of the class ‘tssdr’ and the function returns, among
other things, the unmixing matrix, the estimated sources and the matrix L as described in
Section 4. The most useful methods for an object of this class are plot and summary. In the
summary call one can specify, using the argument type, one of the four methods to get an
indication about which sources and which lags are relevant. The threshold value P needed
for this is by default 0.8, but can be changed via the argument thres.
The functions and the classes and their methods in tsBSS package are summarized in Tables 1
and 2, respectively.

6. Illustrations

6.1. Dimension estimation using AMUSE and SOBI

Following the structure of the paper, we first consider the case where it is assumed that the
signals are components with second-order dependencies, and the goal of the analysis is to test
hypotheses about the number of signals in order to estimate their number.
For the example, the packages tsBSS and tuneR (Ligges, Krey, Mersmann, and Schnackenberg
2018) are needed, which we load as follows.

R> library("tsBSS")
R> library("tuneR")

We create an artificial 20-variate time series by mixing three sound signals available in the
JADE package with 17 Gaussian white noise processes.

R> S1 <- readWave(system.file("datafiles/source5.wav", package = "JADE"))
R> S2 <- readWave(system.file("datafiles/source7.wav", package = "JADE"))
R> S3 <- readWave(system.file("datafiles/source9.wav", package = "JADE"))
R> set.seed(1234)
R> p <- 20
R> NOISE <- matrix(rnorm(50000 * (p - 3)), ncol = p - 3)
R> S <- cbind(S1@left, S2@left, S3@left, NOISE)
R> S <- scale(S, center = FALSE, scale = apply(S, 2, sd))
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R> St <- ts(S, start = 0, frequency = 8000)
R> A <- matrix(runif(p^2, 0, 1), p, p)
R> X <- tcrossprod(St, A)
R> Xt <- ts(X, start = 0, frequency = 8000)

Then we use the asymptotic test for SOBI using lags 1 to 10 to test the hypothesis that there
are H03 : q = 3 signals. Note that the argument k in SOBIasymp below is not a tuning
parameter but instead specifies which null hypothesis H0k we are interested in testing.

R> SOBIasymp(Xt, k = 3, tau = 1:10)

SOBI test for white noise processes

data: x
T = 1441.1, df = 1530, p-value = 0.9482
alternative hypothesis: there are fewer than 17 white noise components

Thus, the null hypothesis cannot be rejected. Experimenting with different choices of tau
(not shown here) also gave the same conclusion. For demonstration purposes we test the
hypothesis H02 : q = 2 using nonparametric bootstrap with the third bootstrap variant
"np3" which allows for dependence between the noise components. For further details about
the different bootstrap strategies see the help files for AMUSEboot and SOBIboot.
To speed up the bootstrap computations we use 3 cores and fix for reproducibility the seeds
using the iseed argument.

R> SOBIboot(Xt, k = 2, tau = 1:10, s.boot = "np3", ncores = 3, iseed = 3333)

ICA subwhite noise bootstrapping test using SOBI and strategy
np3

data: x
T = 3886.3, replications = 200, p-value = 0.004975
alternative hypothesis: the last 18 components are not white noise

The bootstrap test clearly rejects the null hypothesis which verifies, when combined with the
first test, that there are three signals.
To directly estimate the number of signals, the Ladle plot is a natural starting point. We use
again SOBI with lags 1 to 10. As SOBIladle uses ts.boot from the boot package (Canty
and Ripley 2021) also this can be computed in parallel, by passing the arguments parallel
= "multicore" and ncpus to specify the number of cores. However, as bootstrapping is
done separately for each suspected number of dimensions, it is advisable to set the maximum
number of components that should be evaluated in order to save computation time. Here we
say the maximum is 12 via the ncomp argument. The argument l = 40 specifies that we use
stationary bootstrap with expected block lengths of 40.

R> SL <- SOBIladle(Xt, tau = 1:10, l = 40, ncomp = 12,
+ parallel = "multicore", ncpus = 3)
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Figure 1: Ladle plot for the sound example data.

The plot is then obtained as

R> ladleplot(SL)

and shown in Figure 1 where the position of the minimum again verifies that there are three
signals in this time series. To see the three signals one can use

R> plot(SL, which = "k")

where which = "k" specifies that one does not want to plot all sources but only those corre-
sponding to the estimated number of signals. The time courses of the three signals are shown
in Figure 2.

6.2. Dimension reduction in the context of stochastic volatility

In financial time series the second order correlations are often not of interest and the focus
is on the stochastic volatility features of the data. Our preferred method in this context is
gSOBI and we will demonstrate its functionality using the exchange rate dataset from stochvol
package (Kastner 2016), which contains daily bilateral prices of one Euro in 23 currencies.
The daily measurements are from January 3, 2000, until April 4, 2012.
In addition to the tsBSS package we use for this example also the packages stochvol (Kastner
2016) and zoo (Zeileis and Grothendieck 2005). For reproducibility purposes for this example
also a seed is set.
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Figure 2: The estimated signals from sound example data based on the ladle estimate using
SOBI.

R> library("tsBSS")
R> library("zoo")
R> library("stochvol")
R> data("exrates", package = "stochvol")
R> set.seed(1234)

We apply the gSOBI method to the logarithmic returns of the original variables using the
preferred weight b = 0.9 for the “SOBI” part. The resulting sources will be ordered ac-
cording to their volatility clustering level which we evaluate using quadratic autocorrelations
after removing componentwise second order autocorrelations by fitting automatically ARMA
to those components which exhibit linear autocorrelation. The argument acfk = 1:5 spec-
ifies that the first five lags should be used to test for linear and quadratic autocorrelation,
respectively.

R> exrlogr <- zoo(apply(exrates[, -(ncol(exrates))], 2, logret))
R> attr(exrlogr, "index") <- as.Date(rownames(exrlogr))
R> gSOBIwrd <- gSOBI(exrlogr, b = 0.9, ordered = TRUE, acfk = 1:5,
+ original = FALSE)

The 23 raw sources can be plotted as follows

R> plot(gSOBIwrd$Sraw, main = "The raw sources", xlab = "Time")

However, due to the dimensionality of the data the figure is not included here. To evaluate
which components exhibit serial autocorrelations we look at the linP object which returns
the marginal p values based on the modified Ljung-Box test. The armaeff object is a binary
indicator indicating which source components exhibit serial autocorrelation.

R> round(gSOBIwrd$linP, 4)
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