Journal of Statistical Software

July 2022, Volume 103, Issue 1. doi: 10.18687/jss.v103.i01

modelsummary: Data and Model Summaries in R

Vincent Arel-Bundock
Université de Montréal

Abstract

modelsummary is a package to summarize data and statistical models in R. It supports
over one hundred types of models out-of-the-box, and allows users to report the results
of those models side-by-side in a table, or in coefficient plots. It makes it easy to execute
common tasks such as computing robust standard errors, adding significance stars, and
manipulating coefficient and model labels. Beyond model summaries, the package also
includes a suite of tools to produce highly flexible data summary tables, such as dataset
overviews, correlation matrices, (multi-level) cross-tabulations, and balance tables (also
known as “Table 1”). The appearance of the tables produced by modelsummary can
be customized using external packages such as kableExtra, gt, flextable, or huxtable;
the plots can be customized using ggplot2. Tables can be exported to many output
formats, including HTML, BTEX, Text/Markdown, Microsoft Word, Powerpoint, Excel,
RTF, PDF, and image files. Tables and plots can be embedded seamlessly in rmarkdown,
knitr, or Sweave dynamic documents. The modelsummary package is designed to be
simple, robust, modular, and extensible.

Keywords: tables, data summary, model summary, crosstab, regression table, coefficient plot,
R.

1. Introduction

Data analysts often communicate their results using regression tables, coefficient plots, de-
scriptive summaries, balance tables, crosstabs, or correlation tables. Creating these tables
and plots can be a time-consuming and aggravating process. The modelsummary package
eases this burden by allowing users to create a wide range of publication-ready data and
model summaries under one roof, using a simple, consistent, and powerful set of functions.

The modelsummary package follows four key design principles:

1. Simplicity. All of the package’s functions use a simple and consistent user interface.
The number of arguments per function is limited. Each argument is well documented
and accompanied by copious examples.

https://doi.org/10.18637/jss.v103.i01
https://orcid.org/0000-0003-2042-7063

modelsummary: Data and Model Summaries in R

Function Description

Data summary functions

datasummary Extremely flexible tool to draw (multi-level) crosstabs and sta-
tistical summaries of all kinds

datasummary_skim Quick overview of a dataset, with variables’ mean, standard

deviation, minimum, median, maximum, number of unique val-
ues, share of missing observations, and an inline histogram

datasummary_balance Balance table (also known as “Table 17) with the mean, stan-
dard deviation, and differences in means across treatment
groups

datasummary_correlation Correlation tables with support for various correlation methods

datasummary_crosstab (Multi-level) cross-tabulations

datasummary_df Turns a data.frame or a tibble into a deeply customizable,

print-ready table

Model summary functions

modelsummary Tables to summarize one statistical model or multiple models
side-by-side. It makes it easy to rename, reorder, or omit co-
efficients and goodness-of-fit statistics; add significance stars;
compute “robust” standard errors or confidence intervals; in-
sert extra information, notes, or captions; and customize the
display of numeric entries.

modelplot Coefficient plots (“dot and whisker”) which can be customized
with the ggplot2 package

Table 1: A list of the main functions in the modelsummary package.

2. Flexibility. modelsummary supports over one hundred types of statistical models out-
of-the-box, and makes it very easy for users and developers to add support for new
models. Tables can be exported to many output formats, including HTML, ATRX,
Text/Markdown, Microsoft Word, Powerpoint, Excel, RTF, PDF, and image files. They
can be customized extensively with R (R Core Team 2022) packages such as kableEx-
tra (Zhu 2021), gt (Iannone, Cheng, and Schloerke 2022), flextable (Gohel 2022), and
huxtable (Hugh-Jones 2022). Plots can be customized using ggplot2 (Wickham 2016).

3. Robustness. Each new release of modelsummary is checked against an extensive series of
tests which cover nearly all of the code base. Each function inspects user input carefully
to preempt problems and return informative error messages.

4. Community. modelsummary does not try to reinvent the wheel, but rather builds on the
work of the R community to empower users. Instead of implementing its own engine to
extract the results of different estimation routines, modelsummary relies on the broom
(Robinson, Hayes, and Couch 2022) and easystats (Liidecke, Ben-Shachar, Patil, and
Makowski 2020) projects. Instead of implementing its own engine to generate HTML
or WTEX code, modelsummary supports several of the most popular table-making pack-
ages in the R ecosystem. This gives users access to cutting edge features, improves
maintainability for the modelsummary developers, and ensures that functionality will
automatically improve as upstream packages develop.

Journal of Statistical Software 3

The modelsummary package includes two main families of functions. The first produces
data summaries. The second produces model summaries. Table 1 gives an overview of the
package’s main functions. These functions are all designed with a simple and consistent user
interface. This makes modelsummary easy to learn for users who seek an integrated tool for
scientific communication. The package modelsummary is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=modelsummary. The
next section illustrates the benefits of the package with practical examples.

2. Illustrations

To illustrate how to use the modelsummary package, we will consider two datasets. The
first holds information about penguins near Palmer Station in Antarctica (Horst, Hill, and
Gorman 2020). The second tracks the results of RuPaul’s Drag Race, a televised reality
competition series (Miller 2022). Both datasets are available as standalone R packages and
at the RDatasets archive, a website which hosts over 1700 free datasets in CSV format:
https://vincentarelbundock.github.io/Rdatasets.

2.1. Data summaries

The first step in our data analysis is to load the modelsummary package and the penguins
dataset. Then, we take a subset of columns and rename them:

R> library("modelsummary")
R> data("penguins", package = "palmerpenguins")
R> variables <- c(

+ "flipper_length_mm" = "Flipper",
+ "bill_length_mm" = "Bill",

+ "body_mass_g" = "Body Mass",
+ "sex" = "Sex",

+ "island" = "Island",

+ "species" = "Species")

R> penguins <- setNames(penguins[, names(variables)], variables)

To begin the data exploration, we use datasummary_skim. This function was heavily inspired
by the skimr package (Waring, Quinn, McNamara, Arino de la Rubia, Zhu, and Ellis 2022).
It gives a high-level overview of the dataset, with key descriptive statistics and an inline
histogram. This code produces Table 2:

R> datasummary_skim(penguins)

By default, datasummary_skim only summarizes continuous variables, but this behavior can
be altered with the type argument.

After “skimming” the data, it is often useful to report descriptive statistics for subgroups of
the sample. In an experimental setting, for example, the analyst may want to verify that
covariates are balanced between treatment arms, and might like to highlight differences in
means for important variables. This kind of table is colloquially referred to as “Table 1” or
“Balance Table.” To create such a table, we use the datasummary_balance command.

https://CRAN.R-project.org/package=modelsummary
https://vincentarelbundock.github.io/Rdatasets

4 modelsummary: Data and Model Summaries in R

Unique (#) Missing (%) Mean SD Min Median Max

Flipper 56 12009 141 172.0 1970 231.0 _— el
Bill 165 1 43.9 5.5 32.1 44.5 506 il
Body Mass 95 1 4201.8 802.0 2700.0 4050.0 6300.0 - iEa——

Table 2: A summary table produced by the datasummary_skim function.

Female (N=165) Male (N=168)
Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error
Flipper 197.4 12.5 204.5 14.5 7.1 1.5
Bill 42.1 4.9 45.9 5.4 3.8 0.6
Body Mass 3862.3 666.2 4545.7 787.6 683.4 79.9
N Pct. N Pct.
Island Biscoe 80 48.5 83 49.4
Dream 61 37.0 62 36.9
Torgersen 24 14.5 23 13.7
Species Adelie 73 44.2 73 43.5
Chinstrap 34 20.6 34 20.2
Gentoo 58 35.2 61 36.3

Table 3: A balance table produced by the datasummary_balance function.

Flipper Bill Body Mass

Flipper 1 .
Bill 0.66 1 .
Body Mass 0.87 0.60 1

Table 4: A correlation table produced by the datasummary_correlation function.

The first argument of datasummary_balance is a one-sided formula which identifies the groups
that we want to compare. The output of this command is shown in Table 3:

R> datasummary_balance(~ Sex, data = penguins)

Under the hood, datasummary_balance uses the estimatr package (Blair, Cooper, Coppock,
Humphreys, and Sonnet 2022) to estimate standard errors around the differences in means.
As a result, the function can produce estimates that automatically take into account clusters,
weights, or blocked experimental designs.

To explore the relationships between numeric variables, it is often useful to create a correlation
table. The datasummary_correlation makes this easy. This function can report different
kinds of correlations (e.g., Pearson, Kendall, Spearman), and allows users to supply their own
methods. This code produces Table 4:

R> datasummary_correlation(penguins)

The datasummary_crosstab can help us explore the relationships between categorical vari-
ables. The first argument of this function is a two-sided formula, where the left-hand side

Journal of Statistical Software 5

Female Male
Island Adelie Chinstrap Gentoo Adelie Chinstrap Gentoo All
Biscoe N 22 0 58 22 0 61 168
% row 13.1 0.0 34.5 13.1 0.0 36.3 100.0
Dream N 27 34 0 28 34 0 124
% row 21.8 27.4 0.0 22.6 27.4 0.0 100.0
Torgersen N 24 0 0 23 0 0 52
% row 46.2 0.0 0.0 44.2 0.0 0.0 100.0
All N 73 34 58 73 34 61 344
% row 21.2 9.9 16.9 21.2 9.9 17.7 100.0

Table 5: A cross-tabulation table produced by the datasummary_crosstab function.

represents the row variable and the right-hand side identifies the column variables. For ex-
ample, to draw a cross-tab of the Island variable against the Species variable, we could

type:
R> datasummary_crosstab(Island ~ Species, data = penguins)

The datasummary_crosstab function can also produce multi-level crosstabs. To achieve this,
we use the asterisk (*) as a nesting operator. The code below produces Table 5, which shows
counts and shares of penguins by Island, Sex, and Species:

R> datasummary_crosstab(Island ~ Sex * Species, data = penguins)

If Tables 2-5 do not fill our particular needs, we can turn to the datasummary function.
datasummary is a general purpose tool built on top of the tables package (Murdoch 2020).
It can make crosstabs and data summaries, and it can display the output of virtually any
function in the R language.

The datasummary function builds a table by reference to a two-sided formula: the left side
defines rows and the right side defines columns. The terms of the formula represent variables
and the functions that we want to apply to those variables. Terms linked by a + sign are
displayed one after the other, in the order in which they enter the formula.

For example, if we want to display the Flipper and Body Mass variables on separate rows,
and the variables’ means and standard deviations in distinct columns, we type:

R> datasummary(Flipper + “Body Mass™~ ~ Mean + SD, data = penguins)

The command above produces Table 6a. Two aspects of this code are noteworthy. First,
when a variable name includes spaces (e.g., Body Mass), we can enclose it in backticks in the
datasummary formula.

Second, the Mean and SD terms of the formula above are convenience functions supplied by
the modelsummary package. These functions call the corresponding mean and sd functions
in base R, but set na.rm = TRUE by default. Since the Flipper and Body Mass variables of
the penguins dataset include missing observations, using the base R mean and sd functions
in the datasummary formula — with their na.rm = FALSE default — would produce a table
with empty cells. The convenience functions offered by modelsummary include: Mean, Median,
Min, Max, N, Ncol, NPercent, NUnique, PO, P25, P50, P75, P100, SD, Var.

6 modelsummary: Data and Model Summaries in R

Crucially, users are not limited to the summary functions supplied by modelsummary itself.
Indeed, datasummary can display the output of any arbitrary R function that accepts a vector
and returns a single numeric or character value. For instance, we could define a new Range
function which displays the minimum and maximum values of variables in square brackets:

R> Range <- function(x) {
+ sprintf("[}s, %s]", min(x, na.rm = TRUE), max(x, na.rm = TRUE))
+ F

Then, we can add our new Range function to the formula, and pivot the previous table with
functions on rows (left side of the formula) and variables in columns (right side of the formula).
This code produces Table 6b:

R> datasummary(Mean + SD + Range ~ Flipper + Bill, data = penguins)

datasummary also allows users to compute statistics for different subgroups of the data. To
achieve this, we use the asterisk (*) as a nesting operator, connecting a factor variable to
a function: Sex * Mean will calculate the mean of each variable, for each value of the Sex
variable. This code produces Table 6¢:

R> datasummary(Flipper + Bill ~ Sex * Mean + SD, data = penguins)

The * nesting operator can be “distributed” across terms with parentheses. For instance, Sex
* (Mean + SD) will calculate both the means and standard deviations of our variables, for
each value of Sex. This code produces Table 6d:

R> datasummary(Flipper + Bill ~ Sex * (Mean + SD), data = penguins)

Thanks to the tables package, datasummary supports a series of “pseudo-functions” which
can be used in formulae. When a formula includes factor or character variables, we can use
N to count the number of observations in each category; Percent () to compute percentages;
and the number 1 to represent a “total” category. These pseudo-functions can be useful to
create highly customized cross-tabs. For example, this code produces Table 6e:

R> datasummary(Island + 1 ~ N + Percent(), data = penguins)

Here again, we can use the * nesting operators to count penguins in subgroups. Inserting Sex
* Species in the formula will compute statistics for each sex/species subgroup. Heading
is another useful pseudo-function which allows us to rename columns and rows. This code
produces Table 6f:

R> datasummary(Sex * Species ~ Heading("#") * N + Heading("}") * Percent(),
+ data = penguins)

In sum, the modelsummary package includes a convenient set of “templates” to produce
common tables: skim, balance, correlation, and cross-tabs. Thanks to the work of Murdoch
(2020), users can also leverage a powerful formula syntax to build highly customized tables
using the datasummary function. The modelsummary website includes more details and
several additional examples: https://vincentarelbundock.github.io/modelsummary/.

https://vincentarelbundock.github.io/modelsummary/

Journal of Statistical Software

Mean SD

Flipper 200.92 14.06
Body Mass 4201.75 801.95

(a) Flipper + “Body Mass ™~ Mean + SD

Flipper Bill
Mean 200.92 43.92
SD 14.06 5.46

Range [172, 231] [32.1, 59.6]

(b) Mean + SD + Range ~ Flipper + Bill

Female Male
Mean Mean SD

Flipper 197.36 204.51 14.06
Bill 4210 4585 5.46

c) Flipper + Bill ~ Sex * Mean + SD
pp

Female Male
Mean SD Mean SD

Flipper 197.36 12.50 204.51 14.55
Bill 42.10 490 4585 5.37

(d) Flipper + Bill ~ Sex * (Mean + SD)

Island N Percent

Biscoe 168 48.84
Dream 124 36.05
Torgersen 52 15.12
All 344 100.00

(e) Island + 1 ~ N + Percent()

Sex Species # %

Female Adelie 73 21.22
Chinstrap 34 9.88
Gentoo 58 16.86
Male Adelie 73 21.22
Chinstrap 34 9.88
Gentoo 61 17.73

(f) Sex * Species ~ Heading("#") * N + Heading("%") * Percent()

Table 6: Six tables drawn by the datasummary function. The subtable captions show the
two-sided formulae used to create the tables.

8 modelsummary: Data and Model Summaries in R

Model 1
(Intercept) 7.045
(0.169)
minichalw —1.023
(0.404)
missc 0.298
(0.308)
episode —0.309
(0.024)
Num.Obs. 1286
R2 0.120
R2 Adj. 0.118
AIC 6634.3
BIC 6660.1
Log.Lik. —3312.163
F 58.284

Table 7: A table produced by the modelsummary function.

2.2. Model summaries

The second family of functions in the modelsummary package are designed to help users
communicate the results of statistical models. The modelsummary function produces tables
to summarize one or many models side-by-side. The modelplot function draws coefficient
plots (dot and whisker). Both functions are highly customizable, and they support over one
hundred types of statistical models out-of-the-box.

To illustrate, we load the dragracer dataset, which includes information about contestants’
performance in each episode of RuPaul’s Drag Race:

R> data("rpdr_contep", package = "dragracer")
R> dragracer <- rpdr_contep

Columns of this dataset include a contestant’s rank in each episode (rank), Mini Challenge
winners (minichalw), Miss Congeniality titles (missc), a season identifier (season), and the
position of each episode within a season (episode).

Our analysis begins by using the 1m function to estimate a linear model with rank as dependent
variable. We then use the modelsummary function to summarize the findings. The output of
this code is displayed in Table 7:

R> mod <- Im(rank ~ minichalw + missc + episode, data = dragracer)
R> modelsummary (mod, gof_omit = "RMSE")

Now suppose we want to compare three models: the simple linear model, a linear mixed
effects model with random slopes by season, and a generalized (Poisson) linear mixed effects.
We also want those models to be clearly labelled in the table. To do this, we use the lmer
and glmer functions from the Ime4 package to estimate mixed effects models, and we store
everything in a named list:

Journal of Statistical Software

LM LMER GLMER
(Intercept) 7.073 7.079 1.994
(0.166) (0.269) (0.046)
minichalw —1.004 —0.702 —0.156
(0.403) (0.401) (0.064)
episode —0.309 —0.348 —0.071
(0.024) (0.024) (0.004)
missc 0.356 0.073
(0.302) (0.041)
SD (Intercept) 0.761 0.146
SD (Observations) 3.112 1.000
Num.Obs. 1286 1286 1286
R2 0.119
R2 Adj. 0.118
R2 Marg. 0.142 0.310
R2 Cond. 0.190 0.403
AIC 6633.3 6609.8 6669.5
BIC 6653.9 6640.8 6695.3
ICC 0.1 0.1
Log.Lik. —3312.633
F 86.963
RMSE 3.10 3.11

Table 8: A table produced by the modelsummary function.

R> library("lme4")
R> models <- 1ist(

+ "LM" = Im(rank ~ minichalw + episode, data = dragracer),

+ "LMER" = lmer(rank ~ minichalw + missc + episode + (1 | season),
+ data = dragracer),

+ "GLMER" = glmer (rank ~ minichalw + missc + episode + (1 | season),
+ data = dragracer, family = poisson))

Named or unnamed lists of models can be fed directly to modelsummary. We can also use the
align = "1ddd" argument to left-align the first column and dot-align the other ones (each
character represents a column).! This code produces Table 8:

R> modelsummary(models, output = "latex", align = "1ddd")

We can improve and customize this table by altering the argument values of the modelsummary
function. Assign nicer labels to the coefficients of our models by passing a named vector to
coef_rename. Change the number of digits with fmt. Set the type of (classical, robust, or
clustered) standard errors to display for each model using the vcov argument. Feed a regular
expression to gof_omit to omit all statistics from the bottom panel, except the number of

Dot alignment is only available for WTEX and PDF output, since it relies on the siunitx I¥TEX package.

10 modelsummary: Data and Model Summaries in R

observations and the standard errors identifier.? Change the width of the confidence intervals
with conf_level. Drop the uncertainty statistics in parentheses by setting statistic =
NULL. Define a caption with the title argument. Add a note to the bottom of the table with
the notes argument.

A useful feature of the modelsummary function is that it can leverage the glue package to
accept interpreted string literals (Hester 2022). Users can thus define exactly how they
want coefficient or uncertainty estimates to be displayed in their tables, by using the glue
curly braces syntax. For example, to display a confidence interval in brackets next to the
estimate, we can set estimate = "{estimate} [{conf.low}, {conf.high}]". In this ex-
pression, the estimate, conf.low, and conf.high values follow the naming convention es-
tablished by the broom package. Users can see a list of available values by applying the
modelsummary: :get_estimates function to one of their models.

Putting everything together gives us this code, which produces Table 9:

R> coef_labels <- c(

+ "minichalw" = "Mini Challenge Winner",
+ "missc" = "Miss Congeniality",

+ "episode" = "Episode",

+ "(Intercept)" = "Constant")

R> modelsummary (models,

+ coef_rename = coef_labels,

+ fmt =1,

+ vcov = list("robust", "classical", '"classical"),

+ gof_omit = "~(7!Num/Std)",

+ conf_level = 0.99,

+ statistic = NULL,

+ title = "A \\code{modelsummary} table about RuPaul's Drag Race.",
+ notes = "Source: dragracer package (Miller 2020).",

+ estimate = "{estimate} [{conf.low}, {conf.high}]")

Many analysts prefer to report the results of statistical models in graphical form, using co-
efficient plots. The modelplot function has the same user interface as modelsummary; both
functions accept the same kinds of objects and the same arguments. This code produces the
ggplot2 graphic in Figure 1:

R> modelplot (models, coef_rename = coef_labels)

As stated above, the modelplot and modelsummary are designed with very similar user inter-
faces. One useful argument that those functions share is vcov, which allows users to display
various types of uncertainty estimates: heteroskedasticity-robust, panel-corrected, bootstrap,
HAC, etc. When the analyst sets vcov, corrected standard errors and confidence intervals
are computed automatically using the sandwich (Zeileis, K6ll, and Graham 2020) and lmtest
(Zeileis and Hothorn 2002) packages.

For example, if we want to compare the confidence intervals associated with six different
variance estimators, we can create a named list of this form:

2The "~ (?!Num|Std) " regular expression uses a “negative lookahead” to match every term in the goodness-
of-fit section of the table except those that start with “Num” or “Std”. For information on Perl-compatible
regular expressions, see the grep function documentation.

Journal of Statistical Software 11

LM LMER GLMER
Constant 7.1 (6.6, 7.6] 7.1 (6.4, 7.8] 2.0 [1.9, 2.1]
Mini Challenge Winner —1.0 [-1.7, —0.3] —0.7 [-1.7, 0.3] —0.2 [-0.3, 0.0]
Episode 0.3 [-0.4, —0.2] —0.3[-0.4, —0.3] —0.1[-0.1, —0.1]
Miss Congeniality 0.4 [-0.4, 1.1] 0.1 [0.0, 0.2]
SD (Intercept) 0.8 0.1
SD (Observations) 3.1 1.0
Num.Obs. 1286 1286 1286
Std.Errors Robust Classical Classical

Source: dragracer package (Miller 2020).

Table 9: A modelsummary table about RuPaul’s Drag Race.

Miss Congeniality ®
Episode ([] GLMER
¢ LMER
Mini Challenge Winner —o— LM
Constant ——
0.0 2.5 5.0 7.5

Coefficient estimates and 95% confidence intervals

Figure 1: A coefficient plot produced by the modelplot function.

R> vcov_list <- list(

+ "Classical" = "classical",

+ "Robust" = "robust",

+ "Clustered" = ~ episode,

+ "Andrews' kernel HAC" = sandwich::kernHAC,

+ "Newey-West" = sandwich: :NeweyWest,
+ "Bootstrap" = sandwich: :vcovBS)

This list can include strings like "classical", "robust", "stata", or "HC3" which describe
the type of standard errors to use. It can include one-sided formulae which are passed to the
sandwich: :vcovCL function to request clustered standard errors. Finally, the vcov list can
include variance-covariance matrices, or functions that return such matrices.

In the current application, we want to compare six different confidence intervals for a sin-
gle model. Therefore, we create a named list which includes the same model six times.
Then, we call the modelplot function, and customize the plot’s appearance with ggplot2’s
scale_color_brewer, guides, and theme functions. The result of this code is shown in
Figure 2:

12 modelsummary: Data and Model Summaries in R

Miss Congeniality :*: Bootstrap
Newey-West

Andrews' kernel HA(

- 00 -0 &

Clustered
Robust
Mini Challenge Winner .
Classical
-2 -1 0 1

Coefficient estimates and 99% confidence intervals

Figure 2: A coefficient plot produced by the modelplot function.

R> library("ggplot2")
R> mod_list <- lapply(vcov_list, function(x) mod)
R> modelplot(mod_list, vcov = vcov_list, conf_level = 0.99,

+ coef_omit = "Intercept|episode", coef_rename = coef_labels) +
+ scale_color_brewer(palette = "Dark2") +

+ guides(color = guide_legend(reverse = TRUE)) +

+ theme (text = element_text(family = "Times"))

Note that when the analyst supplies a single model but multiple vcov entries, the modelsummary
and modelplot functions will automatically “recycle” the model by repeating it as many times
as necessary. However, the resulting table or plot would not be as nicely labeled as Figure 2.

By default, when users add layers to a ggplot2 plot using the + operator, new geoms will be
added on top of the default point range. We can add ggplot2 geoms in the background of a
plot (e.g., a vertical line at 0) using the background argument.

2.3. Customizing tables

One of the major benefits of modelsummary is that the tables it produces are compatible
with four of the most popular table-making packages in the R ecosystem: kableExtra, gt,
flextable, huxtable. By default, the functions produce kableExtra tables, which means that
we can use the |> operator to pass our tables to that packages’ functions for customization.

For example, to identify two models as "Gaussian" and one as "Poisson", we can use the
add_header_above function. To color and bold one of the rows, we can use row_spec. This
code produces Table 10:

R> library("kableExtra")

R> modelsummary(models, stars = TRUE, gof_omit = ".*",
+ coef_rename = coef_labels) [>
+ add_header_above(c(" " = 1, "Gaussian" = 2, "Poisson" = 1)) [>

+ row_spec(3, background = "pink", bold = TRUE)

To use a different package to customize tables, we simply change modelsummary’s output

Journal of Statistical Software

Gaussian Poisson
LM LMER GLMER
Constant 7.073%%* 7.079%** 1.994***
(0.166) (0.269) (0.046)
Mini Challenge Winner —1.004* —0.702+ —0.156*
(0.403) (0.401) (0.064)
Episode —0.309%** —(.348*** _(0.071***
(0.024) (0.024) (0.004)
Miss Congeniality 0.356 0.073+
(0.302) (0.041)
SD (Intercept) 0.761 0.146
SD (Observations) 3.112 1.000

+p<0.1,*p <0.05 **p < 0.01, *** p < 0.001
Table 10: A regression table produced by the modelsummary function and customized with

the kableExtra package.

Model 1

(Intercept) R

(0.169)
minichalw -1.023

(0.404)

Figure 3: A portion of an HTML regression table with embedded image, produced by com-
bining the modelsummary and gt packages.

argument. For example, this code uses gt to insert a web-hosted image in an HTML regression
table, as shown in Figure 3:

R> library("gt")

R> img <- "https://www.R-project.org/logo/Rlogo.svg"

R> modelsummary(mod, output = "gt") |[>

+ text_transform(locations = cells_body(columns = 2, rows = 1),
+ fn = function(x) web_image(url = img))

2.4. Saving and exporting

The tables produced by the datasummary and modelsummary families of functions can be
saved and exported to a wide array of formats, including HTML, KTEX, Text/Markdown,
Microsoft Word, Powerpoint, Excel, RTF, PDF, and image files.

13

14 modelsummary: Data and Model Summaries in R

Users can save tables directly to file by setting the output argument to a valid file path. The
desired output format is then inferred from the file extension. For example:

"table.tex")
"table.html")
"table.docx")

R> modelsummary (mod, output
R> modelsummary(mod, output
R> modelsummary (mod, output

Tables can also be echoed to the R console in raw form:

R> modelsummary(mod, output = "markdown")

R> modelsummary(mod, output = "html")

R> modelsummary(mod, output = "latex")

R> modelsummary(mod, output = "latex_tabular")

Tables can be returned as objects for further processing using external packages, by setting
the output argument to "kableExtra", "gt", "flextable", or "huxtable".

When compiling R Markdown documents, modelsummary infers the target format and sets
the output argument automatically, such that no further user intervention is required. An

R Markdown document with simple calls like modelsummary (mod) or datasummary_skim(mtcars)
will typically compile to PDF or HTML without modification.

3. Package internals

The modelsummary package is designed to be modular and extensible. Figure 4 gives a
schematic representation of its internal structure.

The left branch of Figure 4 gives an overview of the code used to summarize statistical models.
The box at the top represents the user interface. The modelsummary and modeplot functions
are harmoniously designed, in the sense that they accept almost all the same arguments.
When these functions are called, user inputs are validated with the checkmate package, a
dependency-free argument checking tool which returns helpful error messages on failure (Lang
2017).

The next step is to extract results from model objects. The get_estimates function tries to
extract estimates with broom: :tidy, and then falls back to parameters: :parameters. The
get_gof function tries to extract goodness-of-fit statistics with broom::glance, and then
falls back to performance: :performance. The order of priority between broom (Robinson
et al. 2022), performance (Liidecke, Ben-Shachar, Patil, Waggoner, and Makowski 2021),
and parameters (Liidecke et al. 2020) can be modified by changing the modelsummary_get
global option. The get_estimates and get_gof functions were designed for internal use by
modelsummary, but they are exported to the namespace for users who need a versatile and
standardized way to extract raw results from over a hundred distinct object types.

Once statistical results are extracted, modelsummary transforms the data to suit the desired
output format: multiple models are merged; coefficients and statistics are renamed, omitted,
and/or sorted; numeric values are rounded; robust standard errors are computed; significance
stars are added; etc.

Finally, modelsummary infers the output format that users need by looking at the output
argument, and it feeds the data to a “table factory” function. By default, the factory builds

Journal of Statistical Software

Model summaries

Data summaries
e modelsummary

e modelplot o datasummary

e datasummary_skim

e datasummary_crosstab

o datasummary_correlation

e datasummary_balance
Extract l
* broom Summarize
e easystats
o Custom tidy & glance tables
methods

AN

Transform

Draw

o kableExtra
o gt

« flextable

¢ huxtable
o ggplot2

Save

« HTML

° EAFIEX

« PDF

¢ R dataframes
« JPG, PNG

« RTF

o Microsoft Word
¢ R Markdown

e Sweave

Figure 4: The internal structure of the modelsummary package is modular and extensible.

16 modelsummary: Data and Model Summaries in R

HTML, KTEX, and Markdown tables using kableExtra, but users can request a different
object type by changing the output argument. If the user specifies a valid file path as
output (e.g., output = "file.tex"), an appropriate table factory is selected based on the
file extension, and the table is saved to file automatically.

In the right branch of Figure 4, we see that functions in the data summary family go
through a similar process. However, instead of extracting results from statistical models,
the datasummary functions use the tables package to compute statistical summaries from
a dataset. Then, internal functions from the modelsummary package transform the results
slightly, before feeding them to a table factory.

The key benefit of the modular design described in Figure 4 is that both families of functions
are funnelled to the same table factories. This means that the model and data summary
functions can have very similar user interfaces, and that the resulting tables can be customized
and saved in exactly the same ways.

Another benefit of the modular approach is that modelsummary is very easy to extend. As
of version 0.9.4, tables can be exported using four different table-making packages. Adding
support for new table factories is a trivial task, often requiring less than 50 lines of code. The
next section shows that it is also very easy to add support for new models and statistics.

4. Extending and customizing modelsummary

There are many ways to extend and customize the modelsummary package or the outputs of
its functions. Here, we consider a few: supporting new statistical models, transforming the
numerical results of a model, and adding custom statistics.

4.1. Support for new statistical models

The modelsummary package supports over one hundred statistical models out-of-the-box.
To add support for a new model type, users can define two S3 methods (tidy and glance)
which conform to the specification described on the broom package website: https://broom.
tidymodels.org/

The tidy method is a function called tidy.CLASSNAME, which accepts a statistical model
of class ‘CLASSNAME’, and returns a data frame with one row per term/coefficient, and dis-
tinct columns with standardized names: term, estimate, std.error, statistic, p.value,
conf.low, conf.high. For example, a minimal tidy method to extract results from a model
of class ‘Im’ could be:

R> tidy.1lm <- function(x, ...) {
out <- data.frame/(
term = names (coef(x)),
estimate = coef(x),
std.error = sqrt(vcov(x)))
return (out)

}

+ + + + + +

The glance method is a function called glance.CLASSNAME, which accepts a statistical model
of class ‘CLASSNAME’, and returns a data frame with a single row, and one model characteristic

https://broom.tidymodels.org/
https://broom.tidymodels.org/

Journal of Statistical Software 17

per column. For example, a minimal glance method to extract information from a model of
class ‘1m’ could be:

R> glance.lm <- function(x, ...) {

+ out <- data.frame(

+ nobs = nobs(x),

+ r.squared = summary (x)$r.squared)
+ return (out)

+ }

The minimalist methods given above are superfluous because modelsummary already supports
1m models by default. But they illustrate the general point: As soon as valid tidy.CLASSNAME
and glance.CLASSNAME methods are defined, modelsummary automatically supports all mod-
els of the relevant class. When those methods are defined, calling modelsummary (mod) should
just work.

Users who define tidy and glance methods to support new statistical models are strongly
encouraged to give back to the community by submitting their methods for inclusion in
the broom package. Interested readers are also encouraged to visit the parameters and
performance websites to learn how they can support the work of those who develop these
essential infrastructure packages.

Two other extension strategies deserve a note. First, since broom supports the objects pro-
duced by the coeftest function of the Imtest package (Zeileis and Hothorn 2002), any model
supported by that package will automatically be supported by modelsummary. All that
users need to do is apply coeftest to the model before feeding the result to modelsummary.
Second, modelsummary allows users to summarize arbitrary data by storing them in a
list of class modelsummary_list. See details on the modelsummary website: https://
vincentarelbundock.github.io/modelsummary/.

4.2. Transformations

Analysts often wish to transform their model estimates before reporting them. Some trans-
formations are so common that packages like broom offer built-in machinery to execute them.
For example, it is common to exponentiate the coefficient estimates produced by a logistic
regression model, and the broom: :tidy function includes an exponentiate argument to do
just that. This argument can be supplied directly to modelsummary, which will use the el-
lipsis "..." argument to push through the request to broom: :tidy. This code estimates a
logistic regression model and draws a table with exponentiated coefficients and confidence
intervals:

R> mod_logit <- glm(vs ~ hp + mpg, data = mtcars, family = binomial)
R> modelsummary (mod_logit, exponentiate = TRUE, statistic = "conf.int")

For deeper customization, package modelsummary offers an alternative mechanism: defining
tidy_custom and glance_custom S3 methods. These methods follow the same specification
as the tidy and glance methods described in Section 4.1. When they are defined, their
output will override the default values extracted from the models being summarized.

For example, to draw Table 11, which uses arrows to display the signs of a linear model’s
coefficient estimates, we can call this code:

https://vincentarelbundock.github.io/modelsummary/
https://vincentarelbundock.github.io/modelsummary/

18 modelsummary: Data and Model Summaries in R

Model 1
(Intercept) 0
minichalw +
missc T
episode d

Table 11: The content of a modelsummary table can be customized by defining a tidy_custom
or a glance_custom method.

R> tidy_custom.lm <- function(x, ...) {

+ out <- data.frame(

+ "term" = names (coef(x)),

+ "estimate" = ifelse(coef(x) > 0, "t", "L"))

+ return (out)

+ 3

R> modelsummary(mod, statistic = NULL, gof_omit = ".*")

4.3. Adding custom statistics

The mechanism described in the previous section can also be used to add custom statistics
to a table. For example, many researchers want to adjust the p values that they report to
account for multiple comparisons. The p.adjust function in R can calculate many types of
corrected p values, adjusted following the methods of Bonferroni (1936); Holm (1979), and
others.

To adjust the p values of a linear regression model, we define a new tidy_custom.1lm method
which returns a data frame with one column called term and another column with the new
statistic we wish to report. We can also add statistics to the bottom of the table by defining
a glance_custom.lm method which returns a data frame with one row and one piece of
information per column. For instance, if the analyst plans to conduct 10 tests with the
minichalw coefficient, they could write:

R> tidy_custom.lm <- function(x, ...) {

+ out <- broom::tidy(x)

+ out$bonferroni <- p.adjust(out$p.value, n = 10, method = "bonferroni")
+ out$holm <- p.adjust(out$p.value, n = 10, method = "holm")

+ return (out)

+ }

R> glance_custom.lm <- function(x, ...) {

+ out <- data.frame("Num.Comparisons" = "10", "Model" = class(x)[1])

+ return(out)

+ }

Then, we call modelsummary and use glue strings in the statistic argument to label the
different p values. To focus on the minichalw variable, we use the coef_map argument which
allows users to select, reorder, and rename a subset of variables. This code produces Table 12:

Journal of Statistical Software

Model 1

Mini Challenge —1.0227
p = 0.0114
p (Bonferroni) = 0.1143
p (Holm) = 0.0914

Num.Obs. 1286
Num.Comparisons 10
Model Im

Table 12: A regression table with adjusted p values.

R> modelsummary (mod,

+ statistic = c("p = {p.valuel}",

+ "p (Bonferroni) = {bonferroni}",
+ "p (Holm) = {holm}"),

+ coef_map = c("minichalw" = "Mini Challenge"),
+ gof_omit = "R2|IC|Log|F|RMSE",

+ fmt = 4)

5. Conclusion and comparison

The table-making ecosystem in R is a crowded field. Several packages can produce model
summaries, including trailblazers like xtable and modern alternatives like gtsummary (Dahl,
Scott, Roosen, Magnusson, and Swinton 2019; Sjoberg, Curry, Hannum, Larmarange, Whit-
ing, and Zabor 2022). Even more packages can produce data summaries, such as the excellent
skimr (Waring et al. 2022), tables (Murdoch 2020), tablel (Rich 2021), tableone (Yoshida
and Bartel 2022), and furniture (Barrett and Brignone 2017) packages.

modelsummary is a useful addition to this thriving ecosystem. First, modelsummary intro-
duces a powerful set of functions which can produce both data and model summaries, using
a simple and consistent user interface. Second, by using both broom and easystats to extract
estimation results, modelsummary supports more model types than any other R package
released to date. Third, modelsummary makes it easier than most other packages to exe-
cute common tasks such as displaying clustered standard errors, or deeply customizing the
display of results (via the tidy_custom and glance_custom mechanisms). Fourth, model-
summary can export tables using several specialized table-making packages, which makes
its outputs infinitely customizable. Fifth, the modular design of the package ensures that
it remains easy to maintain and extend; adding support for new statistical models and
table formats should be relatively painless. Finally, the modelsummary package is exten-
sively tested, well documented, and accompanied by a rich website full of concrete examples:
https://vincentarelbundock.github.io/modelsummary/

modelsummary has two main drawbacks. Since the package does not draw tables itself, users
sometimes need to call external functions to change the appearance of their outputs. For deep
customization, many analysts will thus choose to learn an external package like kableExtra
or gt. Relatedly, modelsummary requires dependencies to extract model results and draw
tables. Those dependencies do not pose a serious threat to the future of the package because

19

https://vincentarelbundock.github.io/modelsummary/

20 modelsummary: Data and Model Summaries in R

they are actively-maintained, have large user-bases, and because modelsummary’s modular
design would allow its developers to pivot easily if one upstream package were deprecated.
Nevertheless, users who do not want to onboard too many dependencies may want to consider
alternative packages.

With respect to data summaries, modelsummary strikes a balance between two general ap-
proaches. The first approach is exemplified by the tables package, on which modelsummary
relies heavily. tables offers a general purpose tool to create summary tables which can be
exported to IWTEX, HTML, and kableExtra formats. The datasummary family of functions in
modelsummary build on that foundation by (a) offering convenient “templates” for common
use-cases such as balance tables or crosstabs; (b) expanding the range of output formats; and
(c) integrating tables’s formula syntax in a wider ecosystem with a harmonized user interface.

The second approach for data summaries can be seen in packages such as skimr, tableone,
tablel, and furniture. These packages overlap with some of the functions introduced in this
article; indeed, they have directly inspired many of modelsummary’s own features. These
packages tend to offer a series of hard-coded “templates” to execute common tasks such as
building balance tables or dataset overviews. However, they do not offer the same kind of
formula language to create highly customized tables; they can export to fewer output formats;
they offer less flexibility to customize the appearance of tables; and they do not share a user
interface with functions which can summarize statistical models in addition to raw data.

With respect to model summaries, there are several alternative packages to consider. The first
are the popular stargazer (Hlavac 2022) and texreg (Leifeld 2013). Both of these packages
offer integrated solutions to extract, reshape, and display statistical results in HTML, IATEX,
and text formats. By handling all of these steps themselves, they obviate the need to call
on dependencies. One drawback of this approach is complexity: to master the stargazer
function, analysts must sift through the documentation for 85 distinct arguments. Similarly,
the texreg function has 48 distinct arguments. Another cost is flexibility: although package
developers have made tremendous efforts to allow customization, the stargazer and texreg
functions remain less flexible and powerful than dedicated table-drawing packages like kable-
Extra or gt. Finally, although texreg offers a package-specific mechanism to support new
models, the modelsummary approach is arguably easier, more general, and standardized (see
Section 4.1). The stargazer package also seems to pose particular challenges for maintain-
ability and development: the whole package appears to consist of a single 7000 lines long
function, with a large number of hard-coded variables.

huxtable is a general-purpose table-making package which can also extract and display results
from statistical models. modelsummary supports this package as one of its output formats, by
setting: output="huxtable". This means that huxtable functions can be used to customize
the appearance of a modelsummary table. When used as a standalone regression table-maker,
the main drawbacks of huxtable are that its results customization functions are less flexible
than modelsummary’s, and that the HIML and IXTEX code it generates is not designed to
be human-readable or hand-editable.

memisc is a package which can summarize the results of statistical models (EIff 2021). It
supports fewer model types than modelsummary, but produces good-looking text, IXTEX,
and HTML tables. This package’s main focus area is the analysis of survey data, and it
offers many utilities to handle labeled data and to overcome survey-specific challenges, such
as displaying clustered variance estimates.

Journal of Statistical Software 21

Finally, the gtsummary package is emblematic of a new R generation of packages in this space,
similar in spirit to modelsummary: It uses broom to extract results from model objects, it
can export to several table-making packages, and it includes many functions to produce data
summaries (e.g., “Table 1”). By default, gtsummary produces tables that look like those we
typically see in peer reviewed journals in the life sciences. If users do not like modelsummary,
this would be a good place to look next.

In sum, whereas several packages offer functionality that overlaps, modelsummary offers an

attractive combination of features, thanks to its simplicity, flexibility, robustness, and its
strategy to leverage the great work the R community.

Acknowledgments

I thank the authors of broom (Robinson et al. 2022), checkmate (Lang 2017), generics
(Wickham, Kuhn, and Vaughan 2022), glue (Hester 2022), insight (Liidecke, Waggoner, and
Makowski 2019), kableExtra (Zhu 2021), parameters (Liidecke et al. 2020), performance
(Liidecke et al. 2021), and tables (Murdoch 2020).

I thank the Journal of Statistical Software editors, two anonymous reviewers, Garrick Aden-
Buie, Lysle Boller, Karl Broman, Benjamin Elbers, Michael E. Flynn, Joachim Gassen, An-
drew Heiss, Nick C. Huntington-Klein, Daniel Liidecke, Grant McDermott, Marco Mendoza
Avina, Richard Paquin Morel, Indrajeet Patil, Moritz P. Schwarz, Felix Turbanisch, Florence
Vallée-Dubois, Lukas Wallrich, Achim Zeiles.

References

Barrett TS, Brignone E (2017). “Furniture for Quantitative Scientists.” The R Journal, 9(2),
142-148. doi:10.32614/rj-2017-037.

Blair G, Cooper J, Coppock A, Humphreys M, Sonnet L (2022). estimatr: Fast Estimators
for Design-Based Inference. R package version 0.30.6, URL https://CRAN.R-project.
org/package=estimatr.

Bonferroni C (1936). “Teoria Statistica delle Classi e Calcolo Delle Probabilita.” Pubblicazioni
del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8, 3—62.

Dahl DB, Scott D, Roosen C, Magnusson A, Swinton J (2019). xtable: Export Tables to BTEX
or HTML. R package version 1.8-4, URL https://CRAN.R-project.org/package=xtable.

Elff M (2021). memisc: Management of Survey Data and Presentation of Analysis Results.
R package version 0.99.30.7, URL https://CRAN.R-project.org/package=memisc.

Gohel D (2022). flextable: Functions for Tabular Reporting. R package version 0.7.2, URL
https://CRAN.R-project.org/package=flextable.

Hester J (2022). glue: Interpreted String Literals. R package version 1.6.2, URL https:
//CRAN.R-project.org/package=glue.

https://doi.org/10.32614/rj-2017-037
https://CRAN.R-project.org/package=estimatr
https://CRAN.R-project.org/package=estimatr
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=memisc
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=glue

22 modelsummary: Data and Model Summaries in R

Hlavac M (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables. Cen-
tral European Labour Studies Institute (CELSI), Bratislava, Slovakia. R package version
5.2.3, URL https://CRAN.R-project.org/package=stargazer.

Holm S (1979). “A Simple Sequentially Rejective Multiple Test Procedure.” Scandinavian
Journal of Statistics, pp. 65-70.

Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica)
Penguin Data. R package version 0.1.0, URL https://CRAN.R-project.org/package=
palmerpenguins.

Hugh-Jones D (2022). huxtable: Easily Create and Style Tables for BTpX, HTML and
Other Formats. R package version 5.5.0, URL https://CRAN.R-project.org/package=
huxtable.

Iannone R, Cheng J, Schloerke B (2022). gt: Easily Create Presentation-Ready Display Tables.
R package version 0.6.0, URL https://CRAN.R-project.org/package=gt.

Lang M (2017). “checkmate: Fast Argument Checks for Defensive R Programming.” The R
Journal, 9(1), 437-445. doi:10.32614/rj-2017-028.

Leifeld P (2013). “texreg: Conversion of Statistical Model Output in R to ITEX and HTML
Tables.” Journal of Statistical Software, 55(8), 1-24. doi:10.18637/jss.v055.108.

Liidecke D, Ben-Shachar MS, Patil I, Makowski D (2020). “Extracting, Computing and
Exploring the Parameters of Statistical Models Using R.” Journal of Open Source Software,
5(53), 2445. doi:10.21105/joss.02445.

Liidecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021). “performance: An R
Package for Assessment, Comparison and Testing of Statistical Models.” Journal of Open
Source Software, 6(60), 3139. doi:10.21105/joss.03139.

Liiddecke D, Waggoner PD, Makowski D (2019). “insight: A Unified Interface to Access
Information from Model Objects in R” Journal of Open Source Software, 4(38), 1412.
d0i:10.21105/joss.01412.

Miller S (2022). dragracer: Data Sets for RuPaul’s Drag Race. R package version 0.1.7, URL
https://CRAN.R-project.org/package=dragracer.

Murdoch D (2020). tables: Formula-Driven Table Generation. R package version 0.9.6, URL
https://CRAN.R-project.org/package=tables.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rich B (2021). tablel: Tables of Descriptive Statistics in HTML. R package version 1.4.2,
URL https://CRAN.R-project.org/package=tablel.

Robinson D, Hayes A, Couch S (2022). broom: Convert Statistical Objects into Tidy Tibbles.
R package version 0.8.0, URL https://CRAN.R-project.org/package=broom.

https://CRAN.R-project.org/package=stargazer
https://CRAN.R-project.org/package=palmerpenguins
https://CRAN.R-project.org/package=palmerpenguins
https://CRAN.R-project.org/package=huxtable
https://CRAN.R-project.org/package=huxtable
https://CRAN.R-project.org/package=gt
https://doi.org/10.32614/rj-2017-028
https://doi.org/10.18637/jss.v055.i08
https://doi.org/10.21105/joss.02445
https://doi.org/10.21105/joss.03139
https://doi.org/10.21105/joss.01412
https://CRAN.R-project.org/package=dragracer
https://CRAN.R-project.org/package=tables
https://www.R-project.org/
https://CRAN.R-project.org/package=table1
https://CRAN.R-project.org/package=broom

Journal of Statistical Software

Sjoberg DD, Curry M, Hannum M, Larmarange J, Whiting K, Zabor EC (2022). gtsummary:
Presentation-Ready Data Summary and Analytic Result Tables. R package version 1.5.2,
URL https://CRAN.R-project.org/package=gtsummary.

Waring E, Quinn M, McNamara A, Arino de la Rubia E, Zhu H, Ellis S (2022). skimr:
Compact and Flexible Summaries of Data. R package version 2.1.4, URL https://CRAN.
R-project.org/package=skimr.

Wickham H (2016). ggplot2: FElegant Graphics for Data Analysis. 3rd edition. Springer-
Verlag.

Wickham H, Kuhn M, Vaughan D (2022). generics: Common S3 Generics Not Provided by
Base R Methods Related to Model Fitting. R package version 0.1.2, URL https://CRAN.
R-project.org/package=generics.

Yoshida K, Bartel A (2022). tableone: Create “Table 17 to Describe Baseline Characteristics
with or without Propensity Score Weights. R package version 0.13.2, URL https://CRAN.
R-project.org/package=tableone.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7-10. URL https://CRAN.R-project.org/doc/Rnews/.

Zeileis A, Koll S, Graham N (2020). “Various Versatile Variances: An Object-Oriented Im-
plementation of Clustered Covariances in R.” Journal of Statistical Software, 95(1), 1-36.
doi:10.18637/jss.v095.101.

Zhu H (2021). kableExtra: Construct Complex Table with kable and Pipe Syntax. R package
version 1.3.4, URL https://CRAN.R-project.org/package=kableExtra.

Affiliation:

Vincent Arel-Bundock

Université de Montréal

Science Politique, Pavillon Lionel-Groulx

3150 rue Jean-Brillant, C-4020

Montréal, QC

Canada, H3T 1N8

Email: vincent.arel-bundock@umontreal.ca

Journal of Statistical Software https://www. jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
July 2022, Volume 103, Issue 1 Submitted: 2021-08-11

doi:10.18637/jss.v103.101 Accepted: 2021-11-25

23

https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=generics
https://CRAN.R-project.org/package=generics
https://CRAN.R-project.org/package=tableone
https://CRAN.R-project.org/package=tableone
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.18637/jss.v095.i01
https://CRAN.R-project.org/package=kableExtra
mailto:vincent.arel-bundock@umontreal.ca
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v103.i01

	Introduction
	Illustrations
	Data summaries
	Model summaries
	Customizing tables
	Saving and exporting

	Package internals
	Extending and customizing modelsummary
	Support for new statistical models
	Transformations
	Adding custom statistics

	Conclusion and comparison

