## Replication script for examples used in RESI: An R Package for Robust Effect Sizes ## Megan Jones, Kaidi Kang, Simon Vandekar # install.packages("RESI") # install.packages("sars") # install_version("RESI") # install.packages("survival") # RESI on linear model library(RESI) mod_lm <- lm(charges ~ region * age + sex + bmi, data = insurance) summary(mod_lm) set.seed(0827) resi_obj_lm <- resi(mod_lm) summary(resi_obj_lm) anova(resi_obj_lm) omnibus(resi_obj_lm) library(ggplot2) plot(resi_obj_lm) ggplot(anova(resi_obj_lm)) set.seed(0827) resi_obj_lm2 <- resi(mod_lm, vcov.args = list(type = "HC0"), Anova.args = list(type = 3)) resi_obj_lm2 # RESI on nonlinear model data(niering, package = "sars") head(niering) # run to display an error # mod_nls <- nls(s ~ c*a^z, data = niering, start = list(c = 2, z = 0.5)) mod_nls <- nls(s ~ c*a^z, data = niering, start = list(c = 3, z = 0.25)) summary(mod_nls) set.seed(0827) resi_obj_nls <- resi(mod_nls, data = niering, boot.method = "bayes") resi_obj_nls mod_nls2 <- nls(s ~ c*a^z, data = niering, start = list(c = coef(mod_nls)[1], z = coef(mod_nls)[2])) set.seed(0827) resi(mod_nls2, data = niering, boot.method = "bayes") # RESI on survival model library(survival) set.seed(0827) mod_surv <- survreg(Surv(time, status) ~ age + sex + ph.karno, data = survival::lung, dist="weibull", robust = TRUE) mod_surv_reduced <- survreg(Surv(time, status) ~ ph.karno, data = survival::lung, dist="weibull", robust = TRUE) resi_obj_surv <- resi(mod_surv, mod_surv_reduced, data = survival::lung, unbiased = FALSE, store.boot = TRUE, alpha = c(0.05, 0.1), nboot = 1500) resi_obj_surv set.seed(0827) omnibus(resi(mod_surv, data = survival::lung, unbiased = FALSE, alpha = c(0.05, 0.1), nboot = 1500)) summary(resi_obj_surv, alpha = c(0.001, 0.01)) anova(resi_obj_surv, alpha = c(0.001, 0.01)) sessionInfo()