Published by the Foundation for Open Access Statistics Editors-in-chief: Bettina Grün, Torsten Hothorn, Rebecca Killick, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
[test by reto]
Authors: Sanford Weisberg
Title: Dimension Reduction Regression in R
Abstract: Regression is the study of the dependence of a response variable y on a collection predictors p collected in x. In dimension reduction regression, we seek to find a few linear combinations β1x,...,βdx, such that all the information about the regression is contained in these linear combinations. If d is very small, perhaps one or two, then the regression problem can be summarized using simple graphics; for example, for d=1, the plot of y versus β1x contains all the regression information. When d=2, a 3D plot contains all the information.

Several methods for estimating d and relevant functions of β1,..., βdhave been suggested in the literature. In this paper, we describe an R package for three important dimension reduction methods: sliced inverse regression or sir, sliced average variance estimates, or save, and principal Hessian directions, or phd. The package is very general and flexible, and can be easily extended to include other methods of dimension reduction. It includes tests and estimates of the dimension , estimates of the relevant information including β1,..., βd, and some useful graphical summaries as well.

Page views:: 16443. Submitted: 2001-08-20. Published: 2002-01-10.
Paper: Dimension Reduction Regression in R     Download PDF (Downloads: 17848)
Supplements:
dr_1.0.tar.gz: Dimension Reduction R package Download (Downloads: 1425; 805KB)

DOI: 10.18637/jss.v007.i01

by
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.