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Abstract

This paper describes the implementation in R of a method for tabular or graphical display of terms
in a complex generalised linear model. By complex, I mean a model that contains terms related by
marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables
or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised
linear model. Fitted values under the model are computed for each such term. The lower-order ‘relatives’
of a high-order term (e.g., main effects marginal to an interaction) are absorbed into the term, allowing
the predictors appearing in the high-order term to range over their values. The values of other predictors
are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its
proportional distribution in the data, or to equal proportions in its several levels. Variations of effect
displays are also described, including representation of terms higher-order to any appearing in the model.

1 Background and Motivation

This paper describes the implementation in R of a method for tabular or graphical display of terms in a
complex generalised linear model. By complex, I mean a model that contains terms related by marginality
or hierarchy (in the sense of Nelder, 1977), such as polynomial terms, or main effects and interactions. I call
these tables or graphs effect displays.

I assume that readers are familiar with R, which is a free, open-source implementation of the S sta-
tistical programming language and computing environment. Extensive information on R is available at
<http://www.r-project.org/>. The software described in the paper is distributed as the effects package
for R, available on the Comprehensive R Archive Network (CRAN) at <http://cran.r-project.org/>.

The general approach implemented in the effects package is a modest extension of methods introduced
by Fox (1987). Similar, if less general, ideas have a long history, dating at least to Fisher’s (1936) “adjusted
means” in the analysis of covariance. Goodnight and Harvey’s (1978) “least-squares means” in analysis of
variance and covariance, and Searle, Speed, and Milliken’s (1980) “estimated population marginal means” are
other examples, though all of these approaches are restricted to interactions among factors (i.e., categorical
predictors) in a linear model. Recently King, Tomz, and Wittenberg (2000) and Tomz, Wittenberg, and
King (2003) have presented similar ideas, but their approach, based on Monte-Carlo simulation of a model,
is much more complicated than the one discussed here.

To motivate effect displays, consider the following data on police treatment of individuals arrested in
Toronto for simple possession of small quantities of marijuana. (The data discussed here are part of a larger
data set featured in a series of articles in the Toronto Star newspaper.) Under these circumstances police
have the option of releasing an arrestee with a summons to appear in court – similar to a traffic ticket;
alternatively, the individual may be brought to the police station for questioning and possible indictment.
The principal question of interest is whether and how the probability of release is influenced by the subject’s
race, age, and other characteristics. The data are in the data frame Arrests in the effects package:

∗Please address comments to the author at jfox@mcmaster.ca. Most of the programming for the software described here was

done while I was a visitor in 2001 at Nuffield College, Oxford University. I am grateful to Anthony Heath for his hospitality,

and to David Firth for stimulating discussions that motivated me to write the software. Michael Friendly of York University

generously provided the Arrests data used for examples in this paper, and made several suggestions for improving the software.

I am also grateful to Michael Cowles and Caroline Davis for providing data used in an example. Of course, none of these

individuals is responsible for my use of their data. David Firth, Robert Andersen, and two anonymous reviewers provided

helpful comments on earlier drafts of the paper.

1



2 Journal of Statistical Software, 2003, Vol. 8, No. 15

> library(effects)

> data(Arrests)

> dim(Arrests)

[1] 5226 8

> Arrests[sort(sample(5226, 10)),] # sample 10 of 5226 observations

released colour year age sex employed citizen checks

275 Yes White 1999 18 Male Yes Yes 3

596 Yes White 2000 20 Male Yes Yes 3

676 Yes White 1998 14 Male No Yes 0

2046 Yes White 1999 23 Male Yes Yes 0

2236 Yes White 2002 20 Male Yes Yes 2

3905 Yes White 2001 19 Male Yes Yes 3

3910 Yes White 1997 32 Male No No 2

4506 Yes White 1997 32 Male No No 3

4730 Yes White 1997 21 Male Yes No 0

5213 No Black 2001 27 Male Yes Yes 3

>

Most of the variables in the data set are self explanatory, with the following exceptions:

• colour is either Black or White. The original data included the additional categories “Brown” and
“Other,” but their meaning is ambiguous and their use relatively infrequent.

• The observations span the years 1997 through (part of) 2002. A few arrests in 1996 were eliminated.
In the analysis reported below, year is treated as a factor (i.e., as a categorical predictor).

• When suspects are stopped by the police, their names are checked in six data bases – of previous
arrests, previous convictions, parole status, and so on. The variable checks records the number of
data bases on which an individual’s name appeared.

Preliminary analysis of the data suggested a logit model including interactions between colour and year

and between colour and age, and main effects of employed, citizen, and checks. The effects of age and
checks appear to be reasonably linear on the logit scale and are modelled as such:

> Arrests$year <- as.factor(Arrests$year)

> arrests.mod <- glm(released ~ employed + citizen + checks

+ + colour*year + colour*age,

+ family=binomial, data=Arrests)

> summary(arrests.mod)

Call:

glm(formula = released ~ employed + citizen + checks + colour *

year + colour * age, family = binomial, data = Arrests)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4787 0.3241 0.4485 0.6262 1.7132

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.344433 0.310043 1.111 0.266602

employedYes 0.735064 0.084760 8.672 < 2e-16 ***

citizenYes 0.585984 0.113757 5.151 2.59e-07 ***

checks -0.366642 0.026026 -14.088 < 2e-16 ***

colourWhite 1.212516 0.349734 3.467 0.000526 ***
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year1998 -0.431179 0.260337 -1.656 0.097674 .

year1999 -0.094434 0.261522 -0.361 0.718029

year2000 -0.010897 0.259184 -0.042 0.966463

year2001 0.243063 0.262991 0.924 0.355370

year2002 0.212955 0.353243 0.603 0.546604

age 0.028728 0.008618 3.333 0.000858 ***

colourWhite:year1998 0.651956 0.313448 2.080 0.037530 *

colourWhite:year1999 0.155950 0.307010 0.508 0.611478

colourWhite:year2000 0.295753 0.306159 0.966 0.334039

colourWhite:year2001 -0.380541 0.304022 -1.252 0.210683

colourWhite:year2002 -0.617318 0.419210 -1.473 0.140866

colourWhite:age -0.037373 0.010199 -3.664 0.000248 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4776.3 on 5225 degrees of freedom

Residual deviance: 4257.1 on 5209 degrees of freedom

AIC: 4291.1

Number of Fisher Scoring iterations: 4

> library(car) # for the Anova function

> Anova(arrests.mod)

Anova Table (Type II tests)

Response: released

LR Chisq Df Pr(>Chisq)

employed 72.673 1 < 2.2e-16 ***

citizen 25.783 1 3.820e-07 ***

checks 205.211 1 < 2.2e-16 ***

colour 19.572 1 9.687e-06 ***

year 6.087 5 0.2978477

age 0.459 1 0.4982736

colour:year 21.720 5 0.0005917 ***

colour:age 13.886 1 0.0001942 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

It is relatively difficult (but not impossible) to discern from inspection of the coefficients how colour,
year, and age combine to influence the probability of release. (In contrast, the effects of employed, citizen,
and checks are quite clear from the coefficients, although some mental arithmetic is required unless one is
comfortable with interpreting effects on the logit scale.) The model employs the default 0/1 dummy coding
for factors that R terms “treatment” contrasts (but the coding employed is immaterial to the effect displays
described below).
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2 Effect Displays

A general principle of interpretation for statistical models containing terms that are marginal to others is
that high-order terms should be combined with their lower-order relatives – for example, an interaction
between two factors should be combined with the main effects marginal to the interaction. In conformity
with this principle, Fox (1987) suggests identifying the high-order terms in a generalised linear model. Fitted
values under the model are computed for each such term. The lower-order ‘relatives’ of a high-order term
(e.g., main effects marginal to an interaction) are absorbed into the term, allowing the predictors appearing
in the high-order term to range over their values. The values of other predictors are fixed at typical values:
for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the
data, or to equal proportions in its several levels. This procedure is illustrated below.

Consider the generalised linear model with linear predictor η = Xβ and link function g(µ) = η, where
µ is the expectation of the response vector y. Suppose that we have an estimate b of β, along with the

estimated covariance matrix V̂ (b) of b. Let the rows of X∗ include all combinations of values of predictors
appearing in a high-order term, along with typical values of the remaining predictors. The structure of
X∗ with respect, for example, to interactions, is the same as that of the model matrix X. Then the fitted
values η̂

∗ = X∗b represent the effect in question, and a table or graph of these values – or, alternatively,
of the fitted values transformed to the scale of the response, g−1(η̂∗) – is an effect display. The standard

errors of η̂∗, available as the square-root diagonal entries of X∗V̂ (b)X∗′, may be used to compute pointwise
confidence intervals for the effects, the end-points of which may then also be transformed to the scale of the
response.

For example, colour:age is a high-order term of the logit model fit to the Arrests data in the preceding
section. The lower-order relatives of this term are the constant, and the terms for colour and age. The
arrestees in the data set range in age from 12 to 66, with the .025 and .975 quantiles at 15 and 45, respectively.
As mentioned, there are two levels of colour, so if we set age to all integer values between 15 and 45, there
are 62 combinations of values of these two predictors. Other predictors in the model (employed, citizen,
checks, and year) will be set to typical values, as previously explained.

The matrix X∗ then appears as follows (with columns in the same order as the coefficients in the R
output above, and labelled by coefficient):




(b1) (b2) (b3) (b4) (b5) (b6) (b7) (b8) (b9) (b10) (b11) (b12) (b13) (b14) (b15) (b16) (b17)
1 0.79 0.85 1.64 0 0.17 0.21 0.24 0.23 0.05 15 0 0 0 0 0 0
1 0.79 0.85 1.64 1 0.17 0.21 0.24 0.23 0.05 15 0.17 0.21 0.24 0.23 0.05 15
1 0.79 0.85 1.64 0 0.17 0.21 0.24 0.23 0.05 16 0 0 0 0 0 0
1 0.79 0.85 1.64 1 0.17 0.21 0.24 0.23 0.05 16 0.17 0.21 0.24 0.23 0.05 16
1 0.79 0.85 1.64 0 0.17 0.21 0.24 0.23 0.05 17 0 0 0 0 0 0
1 0.79 0.85 1.64 1 0.17 0.21 0.24 0.23 0.05 17 0.17 0.21 0.24 0.23 0.05 17
1 0.79 0.85 1.64 0 0.17 0.21 0.24 0.23 0.05 18 0 0 0 0 0 0
1 0.79 0.85 1.64 1 0.17 0.21 0.24 0.23 0.05 18 0.17 0.21 0.24 0.23 0.05 18
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 0.79 0.85 1.64 1 0.17 0.21 0.24 0.23 0.05 65 0.17 0.21 0.24 0.23 0.05 65




In particular:

• Column 1 of X∗ represents the constant.

• Column 2 reflects the 79 percent of arrestees who were at level Yes of employed, and hence had values
of 1 on the treatment-coded contrast for this factor; 0.79 is therefore also the mean of the contrast.
Note that this column, along with other constant columns in X∗, is in effect absorbed in the constant
term, and therefore influences only the average level of the computed effects (on the scale of the linear
predictor).

• Column 3 reflects the 85 percent of arrestees who were in level Yes of citizen.

• Column 4 reflects the average value of checks, 1.64.
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colour*age effect plot
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Figure 1: Effect display for the interaction of colour and age in the logit model fit to the Arrests data.
The vertical axis is labelled on the probability scale, and a 95-percent pointwise confidence interval is drawn
around the estimated effect.

• Column 5 repeats the two values 0 and 1 for the contrast for colour (to be taken in combination with
the values of age in column 11).

• Columns 6 through 10 represent the contrasts for year, and contain the proportions of arrestees in
years 1998 through 2002; this reflects the use of the first level of year, 1997, as the baseline level.

• Column 11 contains the twice-repeated integer values of age, from 15 through 65.

• Columns 12 through 16 are for the interaction of colour with year (which is absorbed in the colour

term).

• Column 17 is for the colour by age interaction.

Although it is not difficult to construct X∗ directly in this manner, it is tedious to do so. A graphical
effect display for the colour by age interaction, computed by the software described in Section 3, appears
in Figure 1: Apparently age has quite a different relationship to the probability of release for blacks and
whites: older blacks are more likely to be released than younger blacks, while older whites are less likely to
be released than younger whites; the relationship between age and the probability of release is also steeper
for blacks than for whites.

Notice from the unequal spacing of the tick marks on the vertical axis of Figure 1 that although the axis
is labelled on the scale of the response (i.e., the probability scale), the effects are plotted on the scale of the
linear predictor (the logit scale); consequently, the lines plotted on the display are straight. I return to this
point below.
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3 Effect-Display Software

The software in the effects package consists of several related functions, described in more specific detail
in the help pages for the package given as an appendix to this paper:

• The function effect returns an object of class effect, containing information for constructing an
effect display. The essential input to effect includes a linear (lm) or generalised-linear (glm) model
object, and a term for which the effect is to be computed. This term will usually be a high-order
term of the model, but it is possible to compute effects for lower-order terms (averaging over their
higher-order relatives), and for terms that are not in the model but that have relatives that are in
the model. For example, in the model fit to the Arrests data, the two way interactions colour:year

and colour:age appear in the model, but not the three-way interaction colour:year:age (nor the
two-way interaction year:age). Computing the colour:year:age effect combines the colour:year

and colour:age interactions. In my experience, the result of combining lower-order interactions for
overlapping predictors (here colour in colour:year and colour:age) is not always obvious, and such
a display can therefore prove informative. For example, in Figure 2 the lines for each of blacks and
whites are parallel across panels, reflecting the absence of a year:age interaction, but the relative
heights of the lines vary, reflecting the colour:year interaction: In the earlier years, the line for blacks
is mostly below that for whites, suggesting that (holding the other factors constant) at most ages
whites were more likely than blacks to be released (particularly when we take into account the fact
that most arrestees were young); in the last two years, however, the line for blacks is mostly above
that for whites.

• Figure 2 is computed by the following command (note the warning message):

> plot(effect("colour:year:age", arrests.mod, xlevels=list(age=15:45)),

+ multiline=TRUE, ylab="Probability(released)", rug=FALSE)

Warning message:

colour:year:age does not appear in the model in:

effect("colour:year:age", arrests.mod, xlevels = list(age = 15:45))

• In this command, I have supplied an optional argument to the effect function: xlevels=

list(age=15:45)) specifies values for age, which otherwise would default to 10 equally spaced values
across the full range of the predictor. As mentioned, the ages 15 through 45 encompass 95 percent of
the observations, excluding therefore a small number of very young and very old individuals.

• There are also optional arguments supplied to plot:

— multiline=TRUE specifies that separate graphs should not be drawn for each level of colour. By
default, confidence envelopes are suppressed in a multi-line effect display.

— ylab="Probability(released)" gives a non-default label for the vertical axis (the default would
simply be the name of the response, released).

— rug=FALSE suppresses a “rug plot” (one-dimensional scatterplot) for age, which would otherwise
appear on the horizontal axis of the graph. In some instances – but not here, where the data set
is quite large – displaying the distribution of the variable on the horizontal axis in this manner
can give the viewer a rough sense of where the data are located.

• The function all.effects takes a linear or generalised linear model object as its required argument,
finds all high-order terms in the model, and returns a list of effects corresponding to these terms.

• There are print, summary, and plot methods both for effect objects and for effect.list objects
(returned by effect and all.effects, respectively). Effect plots are created using Trellis graphics
(via the lattice package in R). The plot method for effect.list objects presents a text menu from
which the user can select effects to graph. For example, to produce Figure 1:
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colour*year*age effect plot

age

P
ro
b
a
b
ili
ty
(r
e
le
a
s
e
d
)

0.7

0.75

0.8

0.85

0.9

15 20 25 30 35 40 45

year:1997 year:1998

15 20 25 30 35 40 45

year:1999

year:2000 year:2001

15 20 25 30 35 40 45

0.7

0.75

0.8

0.85

0.9

year:2002

colour
Black
White

Figure 2: A graph of the colour by year by age effect, which corresponds to a term not in the model. The
model includes colour:year and colour:age interactions, but not the colour:year:age interaction.
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> arrests.effects <- all.effects(arrests.mod, xlevels=list(age=15:45))

> plot(arrests.effects, ylab="Probability(released)", rug=FALSE)

1:employed

2:citizen

3:checks

4:colour*year

5:colour*age

Selection: 5

1:employed

2:citizen

3:checks

4:colour*year

5:colour*age

Selection: 0

>

The plot method for effect objects allows one to graph effects on the response scale (rather than
the scale of the linear predictor) or to transform the vertical axis of the plot in an arbitrary manner.
Plotting effects on the response scale makes them more complex, however: Except in the case of the identity
link, effects that are linear on the scale of the linear predictor are not linear on the scale of the response.
Consequently, for example, profiles of effects are not parallel on the response scale even in the absence of
interactions. As well, plotting on the scale of the linear predictor makes the choice of “typical” values for
excluded effects less critical, in that these values only affect the labeling of the vertical axis (i.e., the level
of the effects) and not the configuration of the display. Applied to the preceding example, plotting on the
response (probability) scale produces Figure 3:

> plot(effect("colour:year:age", arrests.mod, xlevels=list(age=15:45)),

+ rescale.axis=FALSE, multiline=TRUE, ylab="Probability(released)",

+ rug=FALSE)

Warning message:

colour:year:age does not appear in the model in:

effect("colour:year:age", arrests.mod, xlevels = list(age = 15:45))

3.1 Some Details

Many aspects of effect displays can be controlled through optional arguments to the effect function and
to the plot, print, and summary methods for effect objects. Defaults are set in a manner intended to
produce pleasing displays. For example, the predictor with the largest number of values (or levels) is plotted
by default on the horizontal axis; similarly, in a multi-line display, the predictor with the smallest number
of values is used to define the lines, different colours and line types are selected to represent the values of
the predictor, and a legend is drawn at the top of the plot (as in Figures 2 and 3). All this can be modified
via optional arguments.

Some thought should be given to the scale on which effects are displayed. The default behaviour is to
compute and graph effects on the scale of the linear predictor but to label the vertical axis on the scale of
the response. Arbitrary transformations are supported, however. For example, if a linear model is fit to the
log of the response (e.g., log dollar income), then the exponential function could be used to transform ticks
mark labels to the original scale (dollars). See the transformation argument to effect, and the type and
rescale.axis arguments to the plot method for effect objects.

The effect objects contain a variety of information that can be used to construct custom displays, and
print and summary methods for effect objects present tables of the results (note that an interaction may
be specified either with asterisks or colons – they are treated as equivalent since lower-order terms are in
any event absorbed):
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colour*year*age effect plot
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Figure 3: Plotting on the scale of the response (the probability scale) – compare to Figure 2. Note that the
tick marks on the vertical axis are equally spaced; that the lines in the plot are not quite straight; and that
corresponding lines are not quite parallel across panels.
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> colour.year <- effect("colour*year", arrests.mod)

> colour.year

colour*year effect

year

colour 1997 1998 1999 2000 2001 2002

Black 0.8186570 0.7457543 0.8042136 0.8170335 0.8519954 0.8481584

White 0.8615922 0.8858824 0.8687663 0.8922020 0.8443687 0.8059984

> summary(colour.year)

colour*year effect

year

colour 1997 1998 1999 2000 2001 2002

Black 0.8186570 0.7457543 0.8042136 0.8170335 0.8519954 0.8481584

White 0.8615922 0.8858824 0.8687663 0.8922020 0.8443687 0.8059984

Lower 95 Percent Confidence Limits

year

colour 1997 1998 1999 2000 2001 2002

Black 0.7453235 0.6868669 0.7527411 0.7689683 0.8104012 0.7629002

White 0.8228821 0.8581418 0.8434657 0.8703516 0.8180900 0.7409131

Upper 95 Percent Confidence Limits

year

colour 1997 1998 1999 2000 2001 2002

Black 0.8744318 0.796843 0.8471467 0.8569591 0.8857510 0.9065155

White 0.8929427 0.908775 0.8905083 0.9107475 0.8674663 0.8578700

By default, the print and summary methods express effects on the scale of the response, but this behaviour
may be modified via the argument type. In general, I find tabular displays of effects less satisfactory than
graphical displays, but when the predictors are factors with relatively few levels, tabular displays may suffice.

To calculate fitted values for effect displays, the effect function implements the strategy for “safe
prediction” described by Hastie (1992: Sec. 7.3.3; see also Venables and Ripley, 2002: Sec. 6.4). This is
an issue for terms in a linear or generalised linear model with bases that depend upon the data, such as
orthogonal polynomial regressors or regression splines. In such cases, naive generation of a new model matrix
to be used along with the coefficients for the original fit produces incorrect results.

A simple example of effect plots incorporating regression splines, orthogonal-polynomial regressors, and
a transformed predictor appears in Figure 4. The data for this example pertain to the rated prestige of 102
Canadian occupations. The prestige of the occupations is regressed on three predictors, all derived from
the 1971 Census of Canada: the average income of occupational incumbents, in dollars (represented in the
model as the log of income); the average education of occupational incumbents, in years (represented by
a B-spline with three degrees of freedom); and the percentage of occupational incumbents who were women

(represented by an orthogonal polynomial of degree two):
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Figure 4: Effect plots for the predictors of prestige in the Canadian occupational prestige data. The model
includes the log of income, a B-spline in education, and a quadratic in women.
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> data(Prestige)

> library(splines) # for bs

> prestige.mod <- lm(prestige ~ log(income) + bs(education, df=3) + poly(women, 2),

+ data=Prestige)

> summary(prestige.mod)

Call:

lm(formula = prestige ~ log(income) + bs(education, df = 3) +

poly(women, 2), data = Prestige)

Residuals:

Min 1Q Median 3Q Max

-13.9603 -4.9834 0.3720 3.7870 17.0921

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -72.916 15.494 -4.706 8.58e-06 ***

log(income) 12.672 1.836 6.901 5.74e-10 ***

bs(education, df = 3)1 -8.197 7.822 -1.048 0.29735

bs(education, df = 3)2 25.660 5.497 4.668 9.97e-06 ***

bs(education, df = 3)3 30.418 4.585 6.634 2.00e-09 ***

poly(women, 2)1 11.978 9.384 1.276 0.20489

poly(women, 2)2 18.465 6.828 2.704 0.00811 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.721 on 95 degrees of freedom

Multiple R-Squared: 0.8564, Adjusted R-squared: 0.8474

F-statistic: 94.46 on 6 and 95 DF, p-value: < 2.2e-16

> Anova(prestige.mod)

Anova Table (Type II tests)

Response: prestige

Sum Sq Df F value Pr(>F)

log(income) 2151.5 1 47.6249 5.744e-10 ***

bs(education, df = 3) 6067.0 3 44.7653 < 2.2e-16 ***

poly(women, 2) 400.2 2 4.4295 0.01448 *

Residuals 4291.8 95

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(all.effects(prestige.mod, default.levels=50))

1:log(income)

2:bs(education, df = 3)

3:poly(women, 2)

Selection: 1

1:log(income)

2:bs(education, df = 3)

3:poly(women, 2)

Selection: 2
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1:log(income)

2:bs(education, df = 3)

3:poly(women, 2)

Selection: 3

1:log(income)

2:bs(education, df = 3)

3:poly(women, 2)

Selection: 0

>

When a model includes interactions between or among covariates, consideration should be given to the
values at which the covariates are set in effect displays and to the form of the display. Consider the following
example, taken from research by Cowles and Davis (1987) on volunteering for psychological experiments
(discussed in greater detail in Fox, 1987). The response variable in the study is dichotomous: whether or not
each of 1421 subjects volunteered to participate in an experiment. The authors modelled the data in a logistic
regression of volunteering on the factor sex, the personality dimensions neuroticism and extraversion,
and the product of neuroticism and extraversion. The two covariates each can take on integer values
between 0 and 24.

> data(Cowles)

> cowles.mod <- glm(volunteer ~ sex + neuroticism*extraversion,

+ data=Cowles, family=binomial)

> summary(cowles.mod)

Call:

glm(formula = volunteer ~ sex + neuroticism * extraversion, family = binomial,

data = Cowles)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4749 -1.0602 -0.8934 1.2609 1.9978

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.358200 0.501037 -4.707 2.52e-06 ***

sexmale -0.247152 0.111613 -2.214 0.02680 *

neuroticism 0.110776 0.037633 2.944 0.00324 **

extraversion 0.166816 0.037700 4.425 9.65e-06 ***

neuroticism:extraversion -0.008552 0.002933 -2.916 0.00354 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1933.5 on 1420 degrees of freedom

Residual deviance: 1897.4 on 1416 degrees of freedom

AIC: 1907.4

Number of Fisher Scoring iterations: 3



14 Journal of Statistical Software, 2003, Vol. 8, No. 15

> Anova(cowles.mod)

Anova Table (Type II tests)

Response: volunteer

LR Chisq Df Pr(>Chisq)

sex 4.9184 1 0.026572 *

neuroticism 0.3139 1 0.575316

extraversion 22.1372 1 2.538e-06 ***

neuroticism:extraversion 8.6213 1 0.003323 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The default effect display for the neuroticism by extraversion interaction is shown in Figure 5:

> plot(effect("neuroticism*extraversion", cowles.mod))

The display is not bad, but the default of 10 values for the conditioning variable extraversion produces
too many panels in the graph; this problem is compounded for higher-order interactions involving covariates.
An alternative multi-line display, setting extraversion to six values, appears in Figure 6:

> plot(effect("neuroticism*extraversion", cowles.mod,

+ xlevels=list(neuroticism=0:24, extraversion=seq(0, 24, 6))),

+ multiline=TRUE, ylab="Probability(Volunteer)")

In instances such as this, better custom displays can often be produced by using the information contained
in the effect object. An example, produced by the following code, is shown in Figure 7:

> ne.effect <- effect("neuroticism*extraversion", cowles.mod,

+ xlevels=list(neuroticism=seq(0, 24, 6), extraversion=0:24),

+ confidence.level=2/3)

> ne.sumry <- summary(ne.effect, type="link") # for effects & confidence bounds

> fit <- ne.sumry$effect # fitted values for effect

> lower <- ne.sumry$lower # lower confidence bounds

> upper <- ne.sumry$upper # upper confidence bounds

> par(mar=c(5, 4, 4, 4)+.1) # leave some extra room

> plot(c(0, 30), range(c(lower, upper)), type="n", xaxt="n",

+ xlab="Extraversion", ylab="Logit of Volunteering")

> axis(1, at=seq(0, 24, 6))

> text(25, 1.8, "Neuroticism", adj=0)

> prob.axis() # right-side axis, from car package

> neuroticism <- seq(0, 24, 6)

> for (neuro in 1:5){ # plot effects

+ lines(0:24, fit[neuro,], lwd=2)

+ text(25, fit[neuro, 25], paste("N = ", neuroticism[neuro]), adj=0)

+ }

> extraversion <- 0:24

> extra <- seq(1, 25, by=6)

> for (neuro in c(1, 3, 5)){ # plot confidence bars

+ arrows(extraversion[extra], lower[neuro, extra],

+ extraversion[extra], upper[neuro, extra],

+ angle=90, code=3, lty=2, length=0.05, col="red")

+ }

>
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Figure 5: Default effect display for the interaction between two covariates – neuroticism and extraversion

in Cowles and Davis’s volunteering data.
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neuroticism*extraversion effect plot
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Figure 6: Multi-line effect display for the neuroticism by extraversion interaction, setting extraversion

to six values.
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Figure 7: Custom effect display for the neuroticism by extraversion interaction.
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In this display, extraversion is plotted on the horizontal axis, and several lines are produced for repre-
sentative values of neuroticism, with the lines labelled at the right of the display rather than in a legend.
To reduce clutter, confidence bars are drawn at intervals along the extraversion axis, and the confidence
level is set to 2/3. Effects are plotted on the logit scale; the vertical axis at the left is labelled on the logit
scale, but an additional probability axis appears at the right. The summary method for effect objects is
used to extract matrices (more generally, arrays) of fitted values and confidence limits for the effects.
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Arrests Arrests for Marijuana Possession

Description

Data on police treatment of individuals arrested in Toronto for simple possession of small
quantities of marijuana. The data are part of a larger data set featured in a series of articles
in the Toronto Star newspaper.

Usage

data(Arrests)

Format

A data frame with 5226 observations on the following 8 variables.

released Whether or not the arrestee was released with a summons; a factor with levels:
No; Yes.

colour The arrestee’s race; a factor with levels: Black; White.

year 1997 through 2002; a numeric vector.

age in years; a numeric vector.

sex a factor with levels: Female; Male.

employed a factor with levels: No; Yes.

citizen a factor with levels: No; Yes.

checks Number of police data bases (of previous arrests, previous convictions, parole sta-
tus, etc. – 6 in all) on which the arrestee’s name appeared; a numeric vector

Source

Personal communication from Michael Friendly, York University.

Cowles Cowles and Davis’s Data on Volunteering

Description

The Cowles data frame has 1421 rows and 4 columns. These data come from a study of
the personality determinants of volunteering for psychological research.

Usage

data(Cowles)
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Format

This data frame contains the following columns:

neuroticism scale from Eysenck personality inventory.

extraversion scale from Eysenck personality inventory.

sex a factor with levels: female; male.

volunteer volunteeing, a factor with levels: no; yes.

Source

Cowles, M. and C. Davis (1987) The subject matter of psychology: Volunteers. British
Journal of Social Psychology 26, 97–102.

effect Functions For Constructing Effect Plots

Description

effect constructs an "effect" object for a term (usually a high-order term) in a linear or
generalized linear model, absorbing the lower-order terms marginal to the term in question,
and averaging over other terms in the model.

all.effects identifies all of the high-order terms in a model and returns a list of "effect"
objects (i.e., an object of type "effect.list").

Usage

effect(term, mod, xlevels=list(), default.levels=10, se=TRUE,
confidence.level=.95,
transformation=list(link=family(mod)$linkfun, inverse=family(mod)$linkinv),
typical=mean)

all.effects(mod, ...)

as.data.frame(x, row.names=NULL, optional=TRUE)

Arguments

term the quoted name of a term, usually, but not necessarily, a high-order term
in the model.

mod an object of class "lm" or "glm".

xlevels an optional list of values at which to set covariates, with components of
the form covariate.name = vector.of.values.

default.levels

number of values for covariates that are not specified explicitly via xlevels;
covariate values set by default are evenly spaced between the minimum
and maximum values in the data.
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se if TRUE, the default, calculate standard errors and confidence limits for
the effects.

confidence.level

level at which to compute confidence limits based on the standard-normal
distribution; the default is 0.95.

transformation

a two-element list with elements link and inverse. For a generalized lin-
ear model, these are by default the link function and inverse-link (mean)
function. For a linear model, these default to NULL. If NULL, the identify
function, I, is used; this effect can also be achieved by setting the argu-
ment to NULL. The inverse-link may be used to transform effects when
they are printed or plotted; the link may be used in positioning axis la-
bels (see below). If the link is not given, an attempt will be made to
approximate it from the inverse-link.

typical a function to be applied to the columns of the model matrix over which
the effect is ”averaged”; the default is mean.

... arguments to be passed down.

x an object of type "effect".
row.names, optional

not used.

Details

Normally, the functions to be used directly are all.effects, to return a list of high-order
effects, and the generic plot function to plot the effects. (see plot.effect.list and
plot.effect). Plots are drawn using the xyplot function in the lattice package. Effects
may also be printed (implicitly or explicitly via print) or summarized (using summary) (see
print.effect.list, summary.effect.list, print.effect, and summary.effect).

If asked, the effect function will compute effects for terms that have higher-order relatives
in the model, averaging over those terms (which rarely makes sense), or for terms that
do not appear in the model but are higher-order relatives of terms that do. For example,
for the model Y ~ A*B + A*C + B*C, one could compute the effect corresponding to the
absent term A:B:C, which absorbs the constant, the A, B, and C main effects, and the three
two-way interactions. In either of these cases, a warning is printed.

In calculating effects, the strategy for ‘safe’ prediction described in Hastie (1992: Sec. 7.3.3)
is employed.

Value

effect returns an "effect" object with the following components:

term the term to which the effect pertains.

formula the complete model formula.

response a character string giving the response variable.

variables a list with information about each predictor, including its name, whether
it is a factor, and its levels or values.
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fit a one-column matrix of fitted values, representing the effect on the scale of
the linear predictor; this is a ravelled table, representing all combinations
of predictor values.

x a data frame, the columns of which are the predictors, and the rows of
which give all combinations of values of the predictors.

model.matrix the model matrix from which the effect was calculated.

data a data frame with the data on which the fitted model was based.

discrepancy the percentage discrepancy for the ‘safe’ predictions of the original fit;
should be very close to 0.

se a vector of standard errors for the effect, on the scale of the linear predic-
tor.

lower, upper one-column matrices of confidence limits, on the scale of the linear pre-
dictor.

confidence.level

corresponding to the confidence limits.
transformation

a two-element list, with element link giving the link function, and element
inverse giving the inverse-link (mean) function.

Author(s)

John Fox 〈jfox@mcmaster.ca〉.

References

Fox, J. (1987) Effect displays for generalized linear models. Sociological Methodology 17,
347–361.

Hastie, T. J. (1992) Generalized additive models. In Chambers, J. M., and Hastie, T. J.
(eds.) Statistical Models in S, Wadsworth.

See Also

print.effect, summary.effect, plot.effect, print.summary.effect, print.effect.list,
summary.effect.list, plot.effect.list, xyplot

Examples

data(Cowles)

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,

data=Cowles, family=binomial)

eff.cowles <- all.effects(mod.cowles, xlevels=list(neuroticism=0:24,

extraversion=seq(0, 24, 6)))

eff.cowles

model: volunteer ~ sex + neuroticism * extraversion

sex effect

sex
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female male

0.4409441 0.3811941

neuroticism*extraversion effect

extraversion

neuroticism 0 6 12 18 24

0 0.07801066 0.1871263 0.3851143 0.6301824 0.8225756

1 0.08636001 0.1963396 0.3870453 0.6200668 0.8083638

2 0.09551039 0.2058918 0.3889798 0.6098458 0.7932997

3 0.10551835 0.2157839 0.3909179 0.5995275 0.7773775

. . .

23 0.51953129 0.4747277 0.4303273 0.3870199 0.3454282

24 0.54709527 0.4895731 0.4323256 0.3768303 0.3243880

plot(eff.cowles, ’sex’, ylab="Prob(Volunteer)")

Loading required package: lattice

plot(eff.cowles, ’neuroticism:extraversion’, ylab="Prob(Volunteer)",

ticks=list(at=c(.1,.25,.5,.75,.9)))

plot(eff.cowles, ’neuroticism:extraversion’, multiline=TRUE,

ylab="Prob(Volunteer)")

plot(effect(’sex:neuroticism:extraversion’, mod.cowles,

xlevels=list(neuroticism=0:24, extraversion=seq(0, 24, 6))), multiline=TRUE)

Warning message:

sex:neuroticism:extraversion does not appear in the model in:

effect("sex:neuroticism:extraversion", mod.cowles,

xlevels = list(neuroticism = 0:24,

data(Prestige)

mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2),

data=Prestige)

eff.pres <- all.effects(mod.pres, default.levels=50)

plot(eff.pres)

Prestige Prestige of Canadian Occupations

Description

The Prestige data frame has 102 rows and 6 columns. The observations are occupations.

Usage

data(Prestige)
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Format

This data frame contains the following columns:

education Average education (years) of occupational incumbents, in 1971.

income Average income (dollars) of incumbents, 1971.

women Percentage of incumbents who are women, 1971.

prestige Pineo-Porter prestige score for occupation, from a social survey conducted in the
mid-1960s.

census Canadian Census occupational code.

type Type of occupation. A factor with levels (note: out of order): bc, Blue Collar; prof,
Professional, Managerial, and Technical; wc, White Collar.

Source

Canada (1971) Census of Canada. Vol. 3, Part 6. Statistics Canada [pp. 19-1–19-21].

Personal communication from B. Blishen, W. Carroll, and C. Moore, Departments of Soci-
ology, York University and University of Victoria.

References

Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.

summary.effect Summarizing, Printing, and Plotting Effects

Description

summary, print, and plot methods for effect and effect.list objects.

Usage

print(x, type=c("response", "link"), ...)
print(x, ...)
print{x, ...}
summary(object, type=c("response", "link"), ...)
summary(object, ...)
plot(x, x.var=which.max(levels),

z.var=which.min(levels), multiline=is.null(x$se), rug=TRUE, xlab,
ylab=x$response, main=paste(effect, "effect plot"),
colors=palette(), symbols=1:10, lines=1:10, cex=1.5, ylim,
factor.names=TRUE, type=c("response", "link"), ticks=list(at=NULL, n=5),
alternating=TRUE, rescale.axis=TRUE, ...)

plot(x, selection, ...)
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Arguments

x an object of type "effect", "summary.effect", or "effect.list", as
appropriate.

object an object of type "effect" or "effect.list", as appropriate.

type if "response" (the default), effects are printed or the vertical axis is
labelled on the scale of the response variable; if "link", effects are printed
or the vertical axis labelled on the scale of the linear predictor.

x.var the index (number) of the covariate or factor to place on the horizontal
axis of each panel of the effect plot. The default is the predictor with the
largest number of levels or values.

z.var the index (number) of the covariate or factor for which individual lines are
to be drawn in each panel of the effect plot. The default is the predictor
with the smallest number of levels or values. This argument is only used
if multiline = TRUE.

multiline if TRUE, each panel of the display represents combinations of values of two
predictors, with one predictor (corresponding to x.var) on the horzontal
axis, and the other (corresponding to z.var) used to define lines in the
graph; defaults to TRUE if there are no standard errors in the object being
plotted, and FALSE otherwise.

rug if TRUE, the default, a rug plot is shown giving the marginal distribution
of the predictor on the horizontal axis, if this predictor is a covariate.

xlab the label for the horizontal axis of the effect plot; if missing, the function
will use the name of the predictor on the horizontal axis.

ylab the label for the vertical axis of the effect plot; the default is the response
variable for the model from which the effect was computed.

main the title for the plot, printed at the top; the default title is constructed
from the name of the effect.

colors colors[1] is used to plot effects, colors[2] to plot confidence bands.
In a mulitline plot, the successive colors correspond to the levels of the
z.var covariate or factor.

symbols, lines

corresponding to the levels of the z.var covariate or factor on a multiline
plot. These arguments are used only if multiline = TRUE; in this case a
legend is drawn at the top of the display.

cex character expansion for plotted symbols; default is 1.

ylim 2-element vector containing the lower and upper limits of the vertical
axes; if NULL, the default, then the vertical axes are scaled from the data.

factor.names a logical value, default TRUE, that controls the inclusion of factor names
in conditioning-variable labels.

ticks a two-item list controlling the placement of tick marks on the vertical axis,
with elements at and n. If at=NULL (the default), the program attempts
to find ‘nice’ locations for the ticks, and the value of n (default, 5) gives
the approximate number of tick marks desired; if at is non-NULL, then
the value of n is ignored.
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alternating if TRUE (the default), the tick labels alternate by panels in multi-panel
displays from left to right and top to bottom; if FALSE, tick labels appear
at the bottom and on the left.

rescale.axis if TRUE (the default), the tick marks on the vertical axis are labelled on
the response scale (e.g., the probability scale for effects computed on the
logit scale for a binomial GLM).

selection the optional index (number) or quoted name of the effect in an effect list
to be plotted; if not supplied, a menu of high-order terms is presented.

... arguments to be passed down.

Details

In a generalized linear model, by default, the print and summary methods for effect
objects print the computed effects on the scale of the response variable using the inverse of
the link function. In a logit model, for example, this means that the effects are expressed
on the probability scale.

By default, effects in a GLM are plotted on the scale of the linear predictor, but the vertical
axis is labelled on the response scale. This preserves the linear structure of the model while
permitting interpretation on what is usually a more familiar scale. This approach may also
be used with linear models, for example to display effects on the scale of the response even
if the data are analyzed on a transformed scale, such as log or square-root.

Value

The summary method for "effect" objects returns a "summary.effect" object with the
following components (those pertaining to confidence limits need not be present):

header a character string to label the effect.

effect an array containing the estimated effect.

lower.header a character string to label the lower confidence limits.

lower an array containing the lower confidence limits.

upper.header a character string to label the upper confidence limits.

upper an array containing the upper confidence limits.

Author(s)

John Fox 〈jfox@mcmaster.ca〉.

See Also

effect, all.effects, xyplot

Examples

data(Cowles)

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,

data=Cowles, family=binomial)

eff.cowles <- all.effects(mod.cowles, xlevels=list(neuroticism=0:24,
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extraversion=seq(0, 24, 6)))

eff.cowles

model: volunteer ~ sex + neuroticism * extraversion

sex effect

sex

female male

0.4409441 0.3811941

neuroticism*extraversion effect

extraversion

neuroticism 0 6 12 18 24

0 0.07801066 0.1871263 0.3851143 0.6301824 0.8225756

1 0.08636001 0.1963396 0.3870453 0.6200668 0.8083638

2 0.09551039 0.2058918 0.3889798 0.6098458 0.7932997

3 0.10551835 0.2157839 0.3909179 0.5995275 0.7773775

. . .

23 0.51953129 0.4747277 0.4303273 0.3870199 0.3454282

24 0.54709527 0.4895731 0.4323256 0.3768303 0.3243880

plot(eff.cowles, ’sex’, ylab="Prob(Volunteer)")

Loading required package: lattice

plot(eff.cowles, ’neuroticism:extraversion’, ylab="Prob(Volunteer)",

ticks=list(at=c(.1,.25,.5,.75,.9)))

plot(eff.cowles, ’neuroticism:extraversion’, multiline=TRUE,

ylab="Prob(Volunteer)")

plot(effect(’sex:neuroticism:extraversion’, mod.cowles,

xlevels=list(neuroticism=0:24, extraversion=seq(0, 24, 6))), multiline=TRUE)

Warning message:

sex:neuroticism:extraversion does not appear in the model in:

effect("sex:neuroticism:extraversion", mod.cowles,

xlevels = list(neuroticism = 0:24,

data(Prestige)

mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2),

data=Prestige)

eff.pres <- all.effects(mod.pres, default.levels=50)

plot(eff.pres)
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