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Abstract

We describe some functions in the R package ggm to derive from a given Markov
model, represented by a directed acyclic graph, different types of graphs induced after
marginalizing over and conditioning on some of the variables. The package has a few
basic functions that find the essential graph, the induced concentration and covariance
graphs, and several types of chain graphs implied by the directed acyclic graph (DAG)
after grouping and reordering the variables. These functions can be useful to explore the
impact of latent variables or of selection effects on a chosen data generating model.

Keywords: conditional independence, directed acyclic graphs, covariance graphs, concentra-
tion graphs, chain graphs, multivariate regression graphs, latent variables, selection effects.

1. Introduction

The R package ggm (see Marchetti and Drton (2006)) has been designed primarily for fitting
Gaussian Graphical Markov models based on directed acyclic graphs (DAGs), concentration
and covariance graphs and ancestral graphs. The package is a contribution to the gR-project
described in Lauritzen (2002).
Special functions are designed to define easily some basic types of graphs by using model
formulae. For example, in Figure 1 the directed acyclic graph to the right is defined with the
function DAG shown top left and its output is the adjacency matrix of the graph.
In the package ggm all graph objects are defined simply by their adjacency matrix with special
codes for undirected, directed, or bidirected edges. In the future, ggm should be extended
to comply to the classes and methods developed by Højsgaard and Dethlefsen (2005) in the
gRbase package.
In this paper we describe some functions in the ggm package which are concerned with graph
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> dag = DAG(Y~X+U, X~Z+U)
> dag
Y X U Z

Y 0 0 0 0
X 1 0 0 0
U 1 1 0 0
Z 0 1 0 0

U

Y

Z

X

Figure 1: A generating directed acyclic graph obtained from the function DAG by using model
formulae.

computations. In particular, we describe procedures to derive from the adjacency matrix
of a generating DAG and an ordered partition of its vertices, an implied chain graph after
grouping and reordering the variables as specified by the partition. The theory is developed
in Wermuth and Cox (2004). Our focus however is on the details of the implementation in
R and on examples of application. This paper is a tutorial on available R software tools to
investigate the effects on a postulated generating model of latent variables or of selection
effects.

In Section 2 we introduce the kind of graphs discussed (mixed graphs), the conventions used
to specify their adjacency matrices and the syntax of model formulae for directed acyclic
graphs. This syntax is especially suggestive of associated linear recursive structural models.
Then we describe some basic functions for d-separation tests and for obtaining classes of
Markov equivalent directed acyclic graphs. In Section 3 functions for deriving undirected
graphs implied by a generating DAG are discussed and some details on the algorithms used
in their computation are given in the appendix. Chain graphs with different interpretations,
compatible with the generating graph are explained in Section 4.

2. Defining graphs

2.1. Graphs and adjacency matrices

A graph G = (V, E) is defined by a set of vertices V (also called nodes) and a set of edges
E . The edges considered in package ggm may be directed (→), undirected ( ) or bidirected
(L9999K). Here we will use dashed bidirected edges L9999K as a compromise between the notation
by Cox and Wermuth (1996) which use dashed undirected edges and that by Richardson and
Spirtes (2002), which use solid bidirected edges ←→. For a similar notation see also Pearl
(2000).

Graphs considered in this paper may be represented by a square matrix E = [eij ], for (i, j) ∈
V × V , called adjacency matrix where eij can be either 0, 1, 2 or 3. The basic rules of these
adjacency matrices are as follows.

• We always assume that eii = 0 for any node i ∈ V .

• If there is no edge between two distinct nodes i and j, then eij = eji = 0 and we say
that i and j are not adjacent. These zero values in the adjacency matrix are also called
structural zeros.
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• A directed edge i← j is represented by eij = 0 and eji = 1.

• An undirected edge i j is represented by eij = 1 and eji = 1.

• A bidirected edge i L9999K j is represented by eij = 2 and eji = 2.

• A double edge i←−−L9999Kj is represented by eij = 2 and eji = 3. This is the only allowed
situation with multiple edges between two nodes. This case is called bow pattern by
Brito and Pearl (2002).

If a graph contains only undirected edges it is sometimes called a concentration graph, if it
contains only bidirected edges it is called a covariance graph. The adjacency matrices of
covariance and concentration graphs are symmetric. If a graph contains only directed edges
it is a directed graph. If it does not contain cycles (a cycle is a direction preserving path with
identical end points) it is called directed acyclic graph (DAG).

Wermuth and Cox (2004) define an equivalent representation of graphs based on a binary
matrix called edge matrix. The edge matrix M of a graph is related to its adjacency matrix
E by M = E> + I, where I is the identity matrix of the same size as E and > denotes
transposition.

2.2. Model formulae for DAGs

In package ggm there are no special objects of class graph and graphs are represented simply
by adjacency matrices with rows and columns labeled with the names of the vertices. The
graphs can be plotted using the function drawGraph which is a minimal but useful tool for
displaying small graphs with a rudimentary interface for adjusting nodes and edges. A more
powerful interface is provided by the R package dynamicGraph (Badsberg 2005).

Usually, we don’t want to define graphs by specifying directly the adjacency matrix, but we
prefer a more convenient way through constructor functions. We will often use the function
DAG that defines a directed acyclic graph from a set of regression model formulae. Each
formula indicates simply the response variables and the direct influences, i.e. a node i and
the set of its parents pa(i) = {j ∈ V : i ← j}. In the formula, the node and its parents are
written as in R linear regression models.

Example 1 The graph in Figure 1 is defined by the command DAG(Y ~ X+U, X ~ Z+U) which
essentially is a set of symbolic linear structural equations. This graph is indeed the represen-
tation of the independencies implied by the linear recursive equations

Y = αX + βU + εY

X = γZ + δU + εX

U = εU (1)
Z = εZ

with independent residuals ε. Note that we omitted the formulae for nodes associated to
exogenous variables Z and U .
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The linear structural equations can be rewritten in reduced form
1 −α −β 0
0 1 −γ −δ
0 0 1 0
0 0 0 1




Y
X
U
Z

 =


εY

εX

εU

εZ


or AV = ε where V = (Y, X,U, Z)> and A is an upper triangular matrix. The edge matrix
A associated with the DAG is a binary matrix obtained from A by replacing each non zero
element by 1. This is obtained with the function edgeMatrix:

> edgeMatrix(dag)
Y X U Z

Y 1 1 1 0
X 0 1 1 1
U 0 0 1 0
Z 0 0 0 1

Edge matrices play an important role in the algorithms used in ggm to compute the induced
graphs (see the appendix).

2.3. DAG models and the Markov property

Let us denote by V the set of nodes and by E = [eij ] the adjacency matrix of a directed
acyclic graph D = (V,E). Now we suppose that a set of random variables Y = (Yi), i ∈ V
can be associated to the nodes V of the graph such that their density fY factorizes as

fY (y) =
∏
i∈V

f(yi|ypa(i))

If this is the case then the random vector Y is said to be Markov with respect to the DAG D.
Often the DAG together with a compatible ordering of the nodes is thought as representing
a process by which the data are generated. This generating graph is sometimes called the
parent graph (Wermuth and Cox 2004).
Then, to the set of missing edges of the DAG (or equivalently to the set M = {(i, j) :
eij = 0, eji = 0} of structural zeros of the adjacency matrix) corresponds a set of conditional
independencies that are satisfied by all distributions that are Markov with respect to the
graph. These independencies are encoded in the so called Markov properties of the DAG,
(see Lauritzen (1996)) and can be read off the graph using the concept of d-separation, Pearl
(1988). Two nodes i and j are d-separated given a set C not containing i or j if there exist no
path between i and j such that every collision node → ◦ ← on the path has a descendant in
C and no other node on the path is in C. Two disjoint sets of nodes A and B are d-separated
given a third disjoint set C if for every node i ∈ A and j ∈ B, i and j are d-separated given C.
Then, for the global Markov property two disjoint sets A and B of variables are independent
given a third disjoint set C, A⊥⊥ B|C, if A and B are d-separated by C in the DAG. We can
verify if two sets of nodes A and B are d-separated given C with the function dSep.

Example 2 It is immediate to check that in the DAG of Figure 1 nodes Z and U are not
d-separated given Y
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Figure 2: A DAG, in panel (a), and the associated essential graph, in panel (b).

> dSep(dag, first="Z", second="U", cond="Y")
[1] FALSE
> dSep(dag, first="Z", second="U", cond=NULL)
[1] TRUE

while they are d-separated given the empty set.

It is well-known that different DAGs may determine the same statistical model, i.e. the same
set of conditional independence restrictions among the variables associated to the nodes. If
there are two DAGs D1 and D2 and the class of probability measures Markov to D1 coincide
with the class of probability measures Markov to D2, then D1 and D2 are said Markov-
equivalent. Verma and Pearl (1990) and Frydenberg (1990) have shown that two DAGs are
Markov equivalent iff they have the same nodes, the same set of adjacencies and the same
immoralities (i.e. configurations i → j ← k with i and k not adjacent). The class of all
DAGs Markov-equivalent to a given DAG D can be summarized by the essential graph D∗

associated with D. The essential graph has the same set of adjacencies of D, but there is an
arrow i→ j in D∗ if and only if there is an arrow i→ j in every D′ belonging to the class of
all DAGs Markov-equivalent to D. In ggm the essential graph associated to D is computed
by the function essentialGraph.

Example 3 For instance let us define a DAG with D = DAG(D~B+C, B~A, C~A), see Fig-
ure 2(a). Then the essential graph is

> essentialGraph(D)
U Y Z X

U 0 0 0 0
Y 1 0 0 1
Z 1 0 0 1
X 0 1 1 0

see Figure 2(b). It has two essential arrows Z → U ← Z but the arrows X → Z and X → Y
can be reversed (but not simultaneously) without changing the set of independencies.

3. Undirected graphs induced from a generating DAG

In the following we are interested in studying the independencies entailed by a DAG which
is assumed to describe the data generating process. These independencies can be encoded in
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Figure 3: The overall induced concentration (a)) and covariance graphs (b) for the parent
graph of Figure 1.

several types of ”induced” graphs, and the rest of the paper describes the basic functions of
package ggm that can be used to derive them.

3.1. Overall concentration and covariance graph

The simplest graph induced by a DAG is the overall concentration graph which has an undi-
rected edge i j iff the DAG does not imply i⊥⊥ j|V \ {i, j}. Thus the concentration graph
may be interpreted via the pairwise Markov property of undirected graphs. The overall con-
centration graph is obtained after the operation of moralization of the DAG. This means that
if two nodes i and j are adjacent in the DAG then they are adjacent in the concentration
graph, and if they are not adjacent but have a common response, i → ◦ ← j in the DAG,
then an additional edge i j results in the concentration graph.

Another important induced graph is the overall covariance graph. This is a graph with all
bidirected (dashed) edges which has an edge i L9999K j iff D does not imply i⊥⊥ j. In this graph
i and j are not adjacent if there are only collision paths between i and j in the parent graph.
The covariance graph is also a simple example of an ancestral graph (Richardson and Spirtes
2002).

The adjacency matrix of the overall concentration and of the covariance graph are computed
by the functions inducedConGraph and inducedCovGraph.

Example 4 From the DAG in Figure 1 we compute the covariance and concentration graphs
shown in Figure 3 as follows

> inducedConGraph(dag)
Y X U Z

Y 0 1 1 0
X 1 0 1 1
U 1 1 0 1
Z 0 1 1 0

> inducedCovGraph(dag)
Y X U Z

Y 0 2 2 2
X 2 0 2 2
U 2 2 0 0
Z 2 2 0 0
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Note that from the triangular system of linear structural equations (1) associated with the
DAG (assuming for simplicity that the all the residuals have unit variances) the concentration
matrix of the variables is

Σ−1 = A>A =


1 −α −β 0
. 1 + α2 αβ − γ −δ
. . 1 + β2 + γ2 γδ
. . . 1 + δ2


where the dot notation indicates here that in a symmetric matrix the ji-element coincides with
the ij-element. Thus the concentration σY Z is zero for every choice of the parameters of the
linear structural equations and this structural zero coincides with that of the adjacency matrix
of the concentration graph of Figure 3(a). The remaining concentrations are in general not
zero. The correspondence between structural zeros in the parameter matrices derived from the
linear recursive equations associated to a DAG and the zero entries in the adjacency matrix of
the induced graphs has been exploited by Wermuth and Cox (2004) to obtain explicit matrix
expressions for the adjacency matrices of the induced graphs (see appendix).

3.2. Concentration and covariance graphs after conditioning and marginal-
ization

The above definitions of induced overall concentration and covariance graph can be extended
by considering two disjoint subsets of nodes C and M of V and by looking at the independence
structures in the system of the remaining variables S = V \ (C ∪M) ignoring the variables in
M and conditional on variables in C.

Cox and Wermuth (1996) define:

• SSS|C : the induced concentration graph of S given C, which has an edge i j, for i
and j in S, iff the DAG does not imply i⊥⊥ j | C ∪ S \ {i, j}.

• SSS|C : the induced covariance graph of S given C, which has and edge i L9999K j, for i
and j in S, iff the DAG does not imply i⊥⊥ j | C.

To derive these graphs the R functions inducedConGraph and inducedCovGraph need the
additional arguments sel and cond to specify the sets S and C, respectively.

Example 5 Let us consider the DAG in Figure 4(a) and suppose that it represents the true
data generating process, but that we cannot observe variable U . Then the covariance graph
marginalizing over U is obtained by the following commands:

> dag2 = DAG(Y ~ X+U, W ~ Z+U)
> inducedCovGraph(dag2,

sel=c("X", "Y", "Z", "W"))
X Y Z W

X 0 2 0 0
Y 2 0 0 2
Z 0 0 0 2
W 0 2 2 0
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Figure 4: A generating directed acyclic graph (a) and the covariance graph (b) after marginal-
izing over U .

see Figure 4 (b). Note that its adjacency matrix is obtained simply by deleting the row and
column associated to variable U from the overall covariance graph of Figure 3 (b). In general,
the covariance graph marginalizing over a set of nodes is the subgraph induced by these nodes.

We can find analogously the induced concentration graph for variables X, Y , Z and W ,
marginalizing over U and this turns out to be complete. In this case the adjacency matrix
cannot be obtained simply by deleting one row and one column from the overall concentration
graph.

4. Induced chain graphs

4.1. Induced regression graphs

Other types of induced graphs can be obtained by considering multivariate regression graphs.
These are graphs where the node set can be partitioned into two subsets S and C called
blocks such that S contains the response variables and C the explanatory variables. Given
a generating DAG, the induced multivariate regression graph of S given C, denoted by PS|C ,
has an arrow i → j, with i ∈ C and j ∈ S, iff the generating DAG does not imply i⊥⊥ j | C
(see Cox and Wermuth (1996)). The related ggm function is called inducedRegGraph. Note
that Cox and Wermuth (1996) use dashed arrows for this directed graph, while in ggm we
use solid arrows.

Example 6 For the DAG in Figure 4 (a) let us consider S = {W} and C = {X, Y, Z}. Then
the regression graph of S given C is shown in Figure 5. The function inducedRegGraph
returns a |C| × |S| binary matrix with elements eij equal to 1 if the induced regression graph
has an arrow i→ j and zero otherwise. Note that in this example X and Y are both parents
of W in the induced graph even if they are not directly explanatory of W in the parent graph.
This happens because they are connected by a collisionless path to W in the parent graph.
We added to the regression graph the induced covariance graph for the explanatory variables
from which we see that Z is marginally independent of (X, Y ).

By combining several univariate regression graphs in a specified order we can obtain from the
generating graph an induced DAG in the new chosen ordering of the nodes, possibly after
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> inducedRegGraph(dag2, sel="W",
cond=c("Y", "X", "Z"))

W
Y 1
X 1
Z 1

> inducedCovGraph(dag2,
sel=c("Y", "X", "Z"))

Y X Z
Y 0 2 0
X 2 0 0
Z 0 0 0

X WZY

Figure 5: The regression graph induced from the DAG of Figure 4 of S = W given C =
{X, Y, Z}, after marginalizing over U . Within the block of explanatory variables is drawn the
induced covariance graph. On the left: the R code used.

marginalizing and conditioning on some nodes. The relevant function is called inducedDAG.

Example 7 Suppose that we cannot measure variable U and that the generating process is
again specified by the graph of Figure 4 (a). Assume also that the ordering of the variables is
known and equal to (X, Y, Z,W ) (from left to right). Then, considering the regression graphs
of each variable in turn given all the preceding ones in the ordering, we obtain the DAG
shown in Figure 6. Note that this DAG fails to represent the independence relations of the
generating graph of Figure 4 (a) (cf. Richardson and Spirtes (2002)).

The previous examples considered only univariate responses, but often we would like to regard
some responses jointly.

Example 8 Consider again the DAG of Figure 4 (a), but with a selected set S = {Y, W} of
joint responses and a set of explanatory variables C = {X, Z}. The multivariate regression
graph PS|C together with a conditional concentration graph SSS|C is shown in Figure 7 and
a marginal covariance graph SCC for the block of explanatory variables X and Z, which
turn out to be independent. This graph is a chain graph, with the so called AMP Markov
property interpretation (from Andersson, Madigan, and Perlman (2001)). That is, the implied
independencies are Y ⊥⊥ Z|X, W ⊥⊥ X|Z and X ⊥⊥ Z, which in turn imply X ⊥⊥ (W,Z).

> inducedDAG(dag2, order=c("X","Y","Z","W"))
X Y Z W

X 0 1 0 1
Y 0 0 0 1
Z 0 0 0 1
W 0 0 0 0

X WZY

Figure 6: DAG induced from the generating graph of Figure 4 in the ordering (X, Y, Z,W ),
after marginalizing over U .
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> inducedRegGraph(dag2, sel=c("Y", "W"),
cond=c("X", "Z"))

Y W
X 1 0
Z 0 1

> inducedCovGraph(dag2, sel=c("Y", "W"),
cond=c("X", "Z"))

Y W
Y 1 0
W 0 1

W

YX

Z

Figure 7: Multivariate regression graph induced from the parent graph of Figure 4, for
selected responses S = {Y, W}, conditioning variables C = {X, Z}, after marginalizing over
U . The graph within the block S of responses is the concentration graph SSS|C , while the
graph within the block of explanatory variables is a covariance graph SCC .

Figure 8: (a) A DAG and (b) the induced chain graph for selected responses S = {X, Y, Z},
and conditioning variables C = {W,U} — the implied independencies follow from the LWF
Markov property. (c) A chain graph for the same sets of nodes S and C, but with the AMP
interpretation.

4.2. Different types of induced chain graphs

In general, given two disjoint sets of nodes S and C, a chain graph with components C and S,
induced from a given DAG, is defined by one undirected or bidirected graph within the block
of responses and by a directed graph between the components, in such a way that no partially
directed cycles appear. This is the minimal chain graph compatible with the blocking and
containing the set of distributions that are Markov to the generating DAG (see Lauritzen
and Richardson (2002)). However, there are two different types of directed graphs from C
to S. The first is the multivariate regression graph PS|C discussed in the previous section
and the second is (in the terminology of Wermuth and Cox (2004)) the blocked-concentration
graph, CS|C , which has an arrow i → j, with i ∈ C and j ∈ S, iff the DAG does not imply
i⊥⊥ j | C ∪ S \ {i, j}. Different types of chain graphs with different interpretations may be
defined depending on the combinations of the chosen graphs for the regression and for the
responses (see Cox and Wermuth (1996) and Lauritzen and Richardson (2002)):

(a) edge matrices of the multivariate regression chain graph: SSS|C ,PS|C ,

(b) edge matrices of the chain graph with the Lauritzen-Wermuth-Frydenberg (LWF) Markov
property: SSS|C , CS|C ,
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(c) edge matrices of the chain graph with the Andersson-Madigan-Perlman (AMP) Markov
property: SSS|C ,PS|C .

The zeros in the adjacency matrix of the induced chain graph indicate the independencies
that are logical consequences of the generating process underlying the directed acyclic graph.
With the induced chain graphs we can easily assess the consequences implied by the DAG
when some subsets of variables are considered jointly, with different conditioning set and also
in different ordering.

Example 9 Consider the DAG of Figure 8(a), with blocks of vertices C = {W,U} and S =
{X, Y, Z}. Then, the induced chain graph with the LWF Markov interpretation is shown in
Figure 8(b). The regression graph is the blocked concentration graph CS|C and the undirected
graph for S is the concentration graph of S given C. Thus, for example X ⊥⊥ Y |(Z,W,U)
and X ⊥⊥ U |(W,Z, Y ). Instead, the induced chain graph with the alternative Markov property
(AMP), shown in Figure 8(c), has an additional arrow W → Z and the entailed independencies
are, for instance, X ⊥⊥ Y |(W,U) and X ⊥⊥ U |W .

The R implementation of the above ideas is straightforward. We added to ggm a general
function inducedChainGraph with arguments the adjacency matrix of the graph, a list cc of
the chain components (with number of components > 1, and ordering from left to right) and
a string type (with possible values "MRG" (multivariate regression graph), "AMP" and "LWF")
for the required interpretation.

The required commands to obtain the chain graphs of Figure 8(b) and (c) are listed below.

> dag3 = DAG(X~W, W~Y, U~Y+Z)
> cc = list(c("W", "U"),

c("X", "Y", "Z"))
> inducedChainGraph(dag3, cc=cc, type="LWF")
W U X Y Z

W 0 1 1 1 0
U 1 0 0 1 1
X 0 0 0 0 0
Y 0 0 0 0 1
Z 0 0 0 1 0
> inducedChainGraph(dag3, cc=cc, type="AMP")
W U X Y Z

W 0 1 1 1 1
U 1 0 0 1 1
X 0 0 0 0 0
Y 0 0 0 0 1
Z 0 0 0 1 0

The function inducedChainGraph can handle general situations, when the set V of vertices
is partitioned into more than two chain components. For example, with three components a,
b and c (ordered from a to c), the induced chain graphs, with multivariate regression, LWF
and AMP interpretations have edge matrices, respectively:

MRG : Sbb|a,Pb|a,Scc|ab,Pc|ab (2)
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> cc= list(c("U"),
c("Z", "Y"),
c( "X", "W"))

> inducedChainGraph(dag3,cc,
type="MRG")

U Z Y X W
U 0 1 1 0 0
Z 0 0 2 0 0
Y 0 2 0 1 1
X 0 0 0 0 2
W 0 0 0 2 0

Y

Z W

X

U

Figure 9: Chain graph of multivariate regression type induced by the DAG of Figure 8. The
chain components are a = {U}, b = {Z, Y } and c = {W,X}. The components graphs are
listed in (2).

LWF : Sbb|a, Cb|a,Scc|ab, Cc|ab (3)

AMP : Sbb|a,Pb|a,Scc|ab,Pc|ab. (4)

Example 10 In Figure 9 it is shown a chain graph of multivariate regression type with three
components a = {U}, b = {Z, Y } and c = {W,X} induced from the DAG of Figure 8.
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A. Algorithms

All the induced graphs described in this paper can be obtained with explicit matrix expres-
sions, see Wermuth and Cox (2004). Therefore the implementation in R is straightforward.

The formulae are based on the three matrix operators In[·], anc[·] and clos[·], defined for
an edge matrix of a graph. In the following we will consider the edge matrix notation as
equivalent to the graph.

• Given a square matrix M , In[M ] is the indicator matrix of the structural zeros in the
matrix M . This may be computed in R with abs(sign(M)).

• The operator ancA computes the transitive closure of a directed acyclic graph with
edge matrix A. The transitive closure of a DAG, defines a new directed acyclic graph
by adding to the original one an edge i→ k whenever i→ j → k.

A simple close form of the transitive closure is ancA = In[(2I −A)−1].

• The operator clos is defined for undirected graphs and is similar to anc. It adds to the
original graph an edge i k whenever i j k.

A.1. Induced covariance graphs

The induced covariance graph for nodes in S given C has edge matrix

SSS|C = In[ancAC̄C̄W(ancAC̄C̄)>]SS (5)

where C̄ = V \ C, Tba = In[AbaancAaa] and W = clos[In(I + T >
CC̄
TCC̄)].

We use matrix subscripts to define subsets of matrices. For example, Aaa is the submatrix of
A obtained by selecting the rows and the columns indexed by a. We define analogously the
matrix Aab.

Note that when a is empty the matrix Aab has zero rows. Moreover, we use the convention
(standard in R and other matrix languages) that the products involving the matrix Aab return
a zero matrix. For example, if a = ∅ then we set AbaAab = Obb. With this convention, formula
(5) is correct also when C is empty. Thus, the overall covariance graph is In[ancA(ancA)>]
while the covariance graph for S marginalizing over V \ S is

SSS = In[ancA(ancA)>]SS

because the middle factor in (5) turns out to be in this case an identity matrix.

The induced covariance graph can be used to verify if two sets A and B are d-separated given
C in the DAG. For the global Markov property this happens iff A⊥⊥ B|C in the DAG that
is iff the induced covariance graph SSS|C of S = A ∪ B given C is such that the submatrix
[SSS|C ]A,B = O. Actually, the function dSep follows this approach to test d-separation.

A.2. Induced concentration graph

The edge matrix of the induced concentration graph SSS|C for S given C

SSS|C = In[A>
M̄M̄.MQAM̄M̄.M ]S,S (6)
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where M = V \ (S ∪ C), are the nodes marginalized over, M̄ = V \M , Abb.a = In[Abb +
AbaancAaaAab] and Q = clos[In(I + TM̄MT >

M̄M
)].

A.3. Induced regression graphs

The edge matrix of the induced multivariate regression graph of S given C is

PS|C = In[ancAC̄C̄T >
CC̄DACC.C̄ + FC̄C ]SC (7)

where D = clos[In(I + TCC̄T >
CC̄

)], Fab = In[ancAaaAab].

Finally, the edge matrix of the induced blocked-concentration graph is obtained from the
induced concentration graph for the nodes C ∪ S, with empty conditioning set, and then
extracting the (S, C) block:

CS|C = [S(C∪S)(C∪S)]SC . (8)
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