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Abstract

Packaged statistical software for analyzing categorical, repeated measures marginal
models on sample survey data with binary covariates does not appear to be available.
Consequently, this report describes a customized SAS program which accomplishes such
an analysis on survey data with jackknifed replicate weights for which the primary sam-
pling unit information has been suppressed for respondent confidentiality. First, the pro-
gram employs the Macro Language and the Output Delivery System (ODS) to estimate
the means and covariances of indicator variables for the response variables, taking the
design into account. Then, it uses PROC CATMOD and ODS, ignoring the survey design, to
obtain the design matrix and hypothesis test specifications. Finally, it enters these results
into another run of CATMOD, which performs automated direct input of the survey design
specifications and accomplishes the appropriate analysis. This customized SAS program
can be employed, with minor editing, to analyze general categorical, repeated measures
marginal models on sample surveys with replicate weights. Finally, the results of our
analysis accounting for the survey design are compared to the results of two alternate
analyses of the same data. This comparison confirms that such alternate analyses, which
do not properly account for the design, do not produce useful results.

Keywords: categorical data, repeated measures marginal models, sample survey data, resam-
pling designs, jackknifed replicate weights, SAS.

1. Introduction

A linear regression analysis of a nominal, polychotomous, repeated measures marginal model
(Koch and Reinfurt 1971; Koch, Landis, Freeman, Freeman, and Lehnen 1977) with simple,
random sample data can be performed with the SAS procedure CATMOD (SAS Institute Inc
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1999). Fitting such a model with two assessments of the response variable and a single binary
covariate is discussed in Stokes, Davis, and Koch (2000, Section 14.2.4). This discussion can
be generalized to p binary covariates. The following SAS instructions fit such a model with
four covariates to a response variable with four categories and two repeated levels:

proc catmod;

response marginals;

population Age Educ Sex (uit;

model Respl * Resp2 = Age Educ Sex|Quit Quit|_response_
/ noparm nodesign noprofile;

repeated Response 2;

The repeated response variable for this model is the intensity of cigarette smoking, coded as
1, 2, 3, or 4. Respondents, who were all current cigarette smokers, were asked the intensity
of their smoking, one year ago and now. These variables are named Respl and Resp2 in the
dataset. The generic variable in the repeated statement can be given any name; Response
is simply what we chose to use. The two other uses of this word in these instructions, the
response statement and the special variable _response_, are required SAS constructs. The
covariates, Age, Educ (education), Sex, and Quit (whether an attempt to quit was made in
the past year), were all binary and coded as 1 or 2. (Note that the SAS construct A|B in
the model statement tells the procedure to include the main effects for A and B and their
interaction.) These instructions created the following output:

The CATMOD Procedure

Data Summary

Response Respl*Resp2 Response Levels 16
Weight Variable None Populations 16
Data Set TWO Total Frequency 14237
Frequency Missing O Observations 14237

Analysis of Variance

Source DF  Chi-Square Pr > ChiSq
Intercept 3 51615.40 <.0001
Age 3 235.67 <.0001
Educ 3 119.22 <.0001
Sex 3 411.47 <.0001
Quit 3 722.47 <.0001
Sex*Quit 3 22.60 <.0001
Response 3 455.08 <.0001
Quit* Response 3 91.52 <.0001

Residual 72 167.64 <.0001
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Certain minimum sample sizes are necessary for this analysis to produce a non-degenerate,
approximately (multivariate) normal distribution with a stable, non-singular estimate of the
covariance matrix. Ideally, there should be at least 10 observations in each of the populations
defined by the 16 combinations of the four binary covariates. Several of the 16 cells of the
bivariate distribution of the repeated response variable (each with four levels) should also
have at least two observations, for each of the 16 populations (Koch et al. 1977). The sample
size for this example is sufficiently large (n = 14,237) for these considerations not to be a
concern. Users with smaller sample sizes, however, should be careful not break their data
down into so many populations that these sample size recommendations are violated.

The results of an analysis of this particular model, on sample survey data with jackknife repli-
cate weights, are discussed in Knoke, Anderson, and Burns (2006). Sets of jackknife replicate
weights were provided for these data to allow for variance estimation while suppressing pri-
mary sampling unit (PSU) information from the data set for respondent confidentiality. While
the residual statistic indicates a highly significant lack of fit, the significances of the terms
not included in this model are substantially less than those of the included terms. Our other
report (Knoke et al. 2006) also presents a full model that includes all possible terms. The
reduced model was chosen for convenience of presentation in this report.

Ideally, sample survey data would be analyzed by statistical software specifically designed to
incorporate the survey design, such as SUDAAN (Research Triangle Institute 2001) or WesVar
(Westat 2002). Unfortunately, neither of these software packages, nor any others known to
the authors, has a procedure that analyzes categorical, repeated measures marginal models.
However, CATMOD does accept direct input of the design matrix, the desired hypothesis tests,
estimated indicator variables for the response variables, and the estimated covariance matrix
of the indicator variables. Mean values of the indicator variables and their variances, but
not their covariances, can be correctly estimated by SUDAAN. Consequently, we prepared a
customized SAS program, using the ODS (Output Delivery System) and the Macro Facility,
to automate the assembly of the direct input for CATMOD necessary to take the survey design
into account.

In this report we discuss the analysis of sample surveys based on resampling methods, describe
the preparation of direct input for CATMOD for a simple example, and present a customized SAS
program. This program analyzes a general categorical, repeated measures marginal model on
sample survey data with jackknife replicate weights, via automated direct input to CATMOD.
Simple modifications to this program for sample surveys with other types of resampling plans
are discussed. We conclude with a comparison of the results of an analysis correctly accounting
for the survey design to the results of two alternate analyses of the same data.

2. Sample surveys incorporating resampling methods

Resampling is frequently incorporated in a sample survey to facilitate the suppression of PSU
information for subject confidentially. In lieu of this basic design information, sets of replicate
weights, in addition to the set of full sample weights, are provided for variance estimation
(Shao 1996). Our data were from California Tobacco Surveys (CTSs) conducted in 1990,
1996, and 1999 (http://ssdc.ucsd.edu/tobacco/), which provide delete-cluster, jackknifed
replicate weights. In this implementation, for the rth set of replicate weights, the rth cluster
has been left out (assigned a weight of zero) and the weights for the remaining clusters have
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been adjusted upwards to account for the deleted cluster. For the 1990 survey there were
33 sets of replicate weights provided, and for the 1996 and 1999 surveys there were 51 sets
provided. Variance estimation with these unequal numbers of replicate weights was accom-
modated by the technique described by Messer and Gamst (2006). This technique involved
creating 84 sets of pseudo-replicate weights for all observations. For observations coming
from the 1990 survey, the 33 sets of actual replicate weights were carried over unchanged into
the first 33 sets of pseudo-replicate weights. The final 51 sets were all given the full sample
weights. Conversely, for the 1996 and 1999 surveys, the 51 sets of actual replicate weights
were carried over unchanged into the last 51 sets of pseudo-replicate weights; the remaining
sets were given the full sample weights. The pseudo-replicate weights were inputted to our
customized SAS program for marginal model analysis.

We also generalized the formula for the jackknife estimate of the variance (Shao 1996) to a
formula for estimating the covariance matrix:

where
e 0 is the estimate of the indicator variable vector, weighted by the full sample weights,
e 0, is the estimate of the indicator variable vector, weighted by the rth replicate weights,
e R is the number of sets of replicate weights, and
o M, is the multiplier, for the rth set of replicate weights.

Had surveys not been combined, the multiplier would not have depended on r and would
simply have been (R-1)/R. For our situation, however, M, was taken to be 32/33 for the first
33 sets of pseudo-replicate weights (arising from the 1990 survey) and 50/51 for the last 51
sets of pseudo-replicate weights (arising from the 1996 and 1999 surveys) (Messer and Gamst
2006). Only a subsample of the respondents of the CTSs was analyzed, those who were current
smokers at the time of the survey. Fortunately, replication methods of variance estimation
are robust to subsample analyses (Brick, Morganstein, and Valliant 2000). However, the
multiplier is only approximately correct for subsample analysis, because the proportion of
smokers varies slightly over clusters.

Besides the delete-cluster jackknife, there are other forms of the jackknife and other survey
methods based on resampling, including balanced repeated replications and its variants (Fay
1989). All resampling methods of variance estimation for sample surveys entail sets of replicate
weights, and covariance estimation for other resampling methods is analogous to that for the
jackknife design, with only the multiplier needing modification Westat (2002, Appendix A).
In addition, surveys that have not had the PSU information suppressed can be analyzed by
resampling methods. In this situation, the user will have to construct his own sets of replicate
weights using the PSU information.

3. A simple example: One covariate, two populations

There are several steps in the preparation of direct input for CATMOD. These steps will be
illustrated by a simple example derived from the example discussed in the Introduction,
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involving only a single covariate, Quit. This single binary covariate is said to result in two
populations, in SAS terminology (SAS Institute Inc 1999; Stokes et al. 2000). As before, the
response variable has four categories and is assessed at two points in time. Each response
variable requires three indicator variables to represent its four categories.

The first step is the creation of a special dataset that contains estimates of the indicator
variable means and covariances, taking the sample survey design into account. Although the
SAS documentation refers to these as response functions, we call them indicator variables,
to avoid confusion with the categorical response variables from which they are derived and
which were used in the unweighted analysis described in the Introduction. For a response
variable with four categories, two replications, and one binary covariate (i.e., two populations),
12 indicator variables are needed. Using a portion of the SAS program described in the
next section, we obtained estimates of the mean values of these indicator variables and their
covariance matrix, accounting for the sample survey design, and assembled them in the SAS
dataset forcat. This dataset must follow a special format to be used as direct input for
CATMOD.

The dataset forcat contains 13 observations. The first observation contains the weighted
estimates of the means of the indicator variables. The second through 13th observations
contain the estimated covariance matrix of the indicator variables. The dataset also includes
two special variables, _name_ and _type_, that are required by SAS. _name_ is a character
variable which must be blank for the observation with the mean estimates; the user must
specify values for the observations corresponding to the rows of the covariance matrix. We
simply chose values b1-b12; these values must in turn be used in the SAS dataset as the
names for the indicator variables. _type_ must be a character variable with the value parms,
for the observation with the indicator variable estimates, and with the value cov, for each
observation corresponding to a row of the covariance matrix. Note that the covariance matrix
is block diagonal, with the blocks being of dimension six (the number of indicator variables
per population). The off-diagonal blocks would be exactly zero in the case of independent
sampling. They were assumed to be approximately zero for this analysis, which seems a
reasonable assumption given the robustness of replication methods of variance estimation to
subsample survey data analysis (Brick et al. 2000).

We then ran an unweighted CATMOD analysis with the design and parm options enabled. The
instructions for this run were:

proc catmod;

response marginals;

population Quit;

model Respl * Resp2 = Quit|_response_ / design noprofile;
repeated Response 2;

Selected output from this run is given in Table 1; it includes the 12 x 12 design matrix. The
12 rows of the design matrix correspond to the 12 indicator variables and occur in blocks of
three. There are three rows for each response variable for each population. The 12 columns
of the design matrix correspond to the 12 parameters included in the model specifications.
These also occur in blocks of three, corresponding to the hypotheses to be tested, each of
which has three degrees of freedom. The blocks of three rows and columns result in the
design matrix consisting of blocks of 3 x 3 submatrices, each of which is either the identity
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SAS Dataset forcat
_name_ bl b2 b3 b4 b5 b6 b7 b8 b9 b10 bl1 bl2 _type_

0.245 0.197 0.368 0.253 0.245 0.362 0.106 0.147 0.447 0.093 0.179 0.452 parms
bl 5.99-05 -2.53-05 -1.89-05 4.30-05 -1.43-05 -1.68-05 0.000 0.000 0.000 0.000 0.000 0.000 cov
b2 -2.53-05 6.12-05 -2.07-05 -1.31-05 3.52-05 -1.63-05 0.000 0.000 0.000 0.000 0.000 0.000 cov
b3 -1.89-05 -2.07-05 5.69-05 -2.04-05 -1.01-05 4.40-05 0.000 0.000 0.000 0.000 0.000 0.00 cov
b4 4.30-05 -1.31-05 -2.04-05 5.90-05 -2.54-05 -2.56-05 0.000 0.000 0.000 0.000 0.000 0.000 cov
b5 -1.43-05 3.52-05 -1.01-05 -2.54-05 5.92-05 -2.57-05 0.000 0.000 0.000 0.000 0.000 0.000 cov
b6 -1.68-05 -1.63-05 4.40-05 -2.56-05 -2.57-05 7.56-05 0.000 0.000 0.000 0.000 0.000 0.000 cov
b7 0.000 0.000 0.000 0.000 0.000 0.000 2.38-05 -8.89-06 -4.66-06 1.84-05 -4.58-06 -6.85-06 cov
b8 0.000 0.000 0.000 0.000 0.000 0.000 -8.89-06 2.45-05 -1.58-05 -7.61-06 2.20-05 -1.14-05 cov
b9 0.000 0.000 0.000 0.000 0.000 0.000 -4.66-06 -1.58-05 4.36-05 -3.11-06 -1.88-05 3.73-05 cov

b10 0.000 0.000 0.000 0.000 0.000 0.000 1.84-05 -7.61-06 -3.11-06 1.88-05 -6.38-06 -7.71-06 cov
bi1l 0.000 0.000 0.000 0.000 0.000 0.000 -4.58-06 2.20-05 -1.88-05 -6.38-06 3.11-05 -2.02-05 cov
b12 0.000 0.000 0.000 0.000 0.000 0.000 -6.85-06 -1.14-05 3.73-05 -7.71-06 -2.02-05 4.83-05 cov

Table 1: The forcat data set.
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matrix or its negation. The parameter estimates at the bottom of Table 1 indicate which
of the ordered parameters correspond to the effects included in the model. The first three
parameters correspond to the intercept, which is automatically included by CATMOD, although
not explicitly listed in the model statement. The remaining parameters, three at a time,
correspond to the effects included in the model statement in the order they were listed. There
are zero residual degrees of freedom for this analysis because a full model is specified in the
model statement, unlike the reduced model specified in the example given in the Introduction,
which included only a subset of all possible effects.

CATMOD Output, Illustrating The Design Matrix and Hypothesis Tests
The CATMOD Procedure

Data Summary

Response Respl*Resp2 Response Levels 16
Weight Variable None Populations 2
Data Set ONE Total Frequency 14238
Frequency Missing O Observations 14238

Response Functions and Design Matrix

Function Response
Sample  Number Function

.22413
.19070
.38836
.23583
.24194
.37954

U W
O O O O O o

.09767
.14633
.45506
.08629
.17689
.45997

O U WN -
O O O O O O

Response Functions and Design Matrix

Function Design Matrix
Sample  Number 1 2 3 4 5 6 7 8 9 10 11 12
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Analysis of Weighted Least Squares Estimates

3 0 0
4 1 0
5 o 1
6 0 0
2 1 1 0
2 o 1
3 0 0
4 1 0
5 o 1
6 0 O
Anal
Source
Intercept
Quit
Response
Quit*Response
Residual
Effect Parame
Intercept 1
2
3
Quit 4
5
6
Response 7
8
9
Quit*Response 10
11
12

i o0 o 1 o0 o 1
0 1 0 0 -1 O

0 O 1 0 0 -1 0
i o0 o0 1 o0 o0 -1

=, O O+~ O O
(@]
o
|
[

ysis of Variance

DF  Chi-Square Pr > ChiSq

3 55087 .26 <.0001
3 835.07 <.0001
3 483.81 <.0001
3 88.70 <.0001

Standard

ter Estimate Error
0.1610 0.00290
0.1890 0.00305
0.4207 0.00387
0.0690 0.00290
0.0274 0.00305
-0.0368 0.00387
-0.00008 0.00127
-0.0204 0.00139
0.000977 0.00159
-0.00577 0.00127
-0.00517 0.00139
0.00343 0.00159

0 O
-1 0
o0 -1
0 O
-1 0
0o -1
0 O
1 0
0 1
0O ©O

Chi-
Square

3087.
3847 .
11845.
567.
80.
90.
0.
216.
0.
20.
13.
4.

85
02
39
27
61
53
00
32
38
59
82
67

Pr > ChiSq

O O AN O ANOAANANANNANANNAN

.0001
.0001
.0001
.0001
.0001
.0001
. 9496
.0001
.5385
.0001
.0002
.0307

Finally, using the output of the unweighted analysis, we assembled the following SAS instruc-
tions and ran them on the forcat data set:

proc catmod data =
response read bl-bl2;
model _f_ = (

forcat;
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1 0 01 0 01 0 0 1 0 O,
01 0 01 0 0 1 0 0 1 0,
0o 01 0 01 0 0 1 0 0 1,
i1 0 01 0 0-1 0 0-1 0 O,
01 0 01 0 0-1 0 0-1 0,
0o 01 0 01 0 0-1 0 0-1,
i1 0 0-1 0 0 1 0 0-1 0 O,
01 0 0-1 0 0 1 0 0-1 0,
o 01 0 0-1 0 0 1 0 0-1,
1 0 0-1 0 0-1 0 0 1 0 O,
01 0 0-1 0 0-1 0 0 1 O,
0 01 0 0-1 0 0-1 0 0 1
) (

1 2 3 = ’Intercept’,

456 = ’Quit’,

7 8 9 = ’Response’,

10 11 12 = ’Quit*Response’

)/ nodesign noparm noprofile;

The response statement with the read function tells CATMOD to directly read the estimated
indicator variable means and covariances and to expect there to be 12 indicator variables
named bl through b12. The model statement with the _f_ specification indicates that there
will be direct input. The output from these instructions is:

The CATMOD Procedure

Response Functions Directly Input from Data Set forcat

Analysis of Variance

Source DF  Chi-Square Pr > ChiSq
Intercept 3 36429.12 <.0001
Quit 3 568.13 <.0001
Response 3 224 .13 <.0001
Quit*Response 3 40.95 <.0001
Residual 0

This output contains an ANOVA table, as does the unweighted analysis output reported ear-
lier in this section, except that instead of giving the Data Summary at the top of output,
SAS merely says Response Functions Directly Input from Data Set forcat. With direct input,
CATMOD does not have access to the information normally given in the Data Summary; it per-
forms an analysis simply based on the directly-inputted design matrix and test specifications.
Notice that the magnitude of all the chi-squares statistics reported in this output are less
than the corresponding unweighted values and those for Response and Quit*Response are
less than 50% of their corresponding unweighted values in the earlier output.
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4. The general case

If a covariate is polychotomous (with ¢ categories, say), it can be represented by ¢ — 1 binary
covariates. With an overall total of p binary covariates there will be k& = 2P populations. If
the response variable has m categories, it can be represented by m — 1 indicator variables.
If the response variable is repeated r times, there will be a total of s = rk(m — 1) indicator
variables, which can become quite a large number. For the example in the Introduction,
which has p = 4, £k = 16, m = 4, and r = 2, we have s = 96. Thus, the overall covariance
matrix is of dimension s, and the design matrix has s rows. The design matrix for a full model
would also have s columns. However, if not all effects are included (a reduced model) there
will be fewer columns than rows. Even for reduced models, however, the design matrix can
become unwieldy. For the reduced model described in the Introduction, the design matrix
has dimension 96 x 24.

The SAS program ‘WtdCatmod.sas’, provided as a separate text file, analyzes a general cat-
egorical, repeated measures marginal model on survey data with delete-cluster, jackknifed
replicate weights. The user merely needs to specify the dataset and the other parameters de-
tailed in the program’s opening comment. The parameter values specified in ‘WtdCatmod . sas’
are specific to the example described in the Introduction and should be edited by the user to
reflect the specifics of his dataset. Note the required coding of the categorical variables and
naming of the weights.

The parameter estimates produced by this program were verified by comparison to the avail-
able parameter estimates from the DESCRIPT procedure of SUDAAN. The estimates of the
mean values of the indicator variables and their variances from the two programs were iden-
tical.

5. Other resampling methods

Minor modifications to ‘WtdCatmod.sas’ are required to analyze survey data employing other
resampling methods. Our example, which combines surveys with differing numbers of sets
of replicate weights, requires a change to the VarMult variable in the VectorProd data step.
The existing instruction:

VarMult = (&NRepWts - 1) / &NRepWts;
should be replaced by:

if rep <= 51 then VarMult = (51-1)/51;
else VarMult = (33-1)/33;

to implement this particular jackknife scheme (Messer and Gamst 2006).

Other resampling plans similarly require modifications to the VarMult variable. For example,
for the balanced repeated replicate (BRR) or half-sample plan, replace the existing instruction
by:

VarMult = 1 / NRepWts;
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The appropriate multiplier for other resampling methods is discussed in Westat (2002), Ap-
pendix A, where VarMult is denoted ¢ (page A-5) and the delete-cluster jackknife is termed
JK1.

6. Effects of the failure to account for the survey design

It is well known that if the sample survey design is ignored and an unweighted analysis
is performed, neither means nor variances will be correctly estimated. If an analysis with
normed weights (full sample weights divided by their mean, which results in frequencies
summing to the sample size instead of to the population size) is performed, means will be
correctly estimated, but variances will not (Brogan 1998). Since variance estimates follow
a x? distribution, it is unlikely that y? statistics would be accurately evaluated unless the
design is incorporated in the analysis. Table 2 reports results of an unweighted analysis, a
normed weighted analysis, and the analysis accounting for the survey design, for the reduced
model of the Introduction, and confirms this presumption.

Although the results of all three analyses reported in Table 2 are qualitatively similar (the
empirical significance levels of all included variables were < 0.0001), the values of the x? statis-
tics themselves differ widely, by as much as a factor of 2. The empirical significance levels
from both the unweighted analysis and the analysis with normed weights consistently (with
one exception) underestimate the empirical significance levels which account for the survey
design. In other words, the alternate analyses generally overstate the significance of an effect.
It is also apparent that the results of the analysis with normed weights are not generally
closer to the results correctly accounting for the design than are the results of the unweighted
analysis.

In Knoke et al. (2006), we also fit a simple model for which the design matrix contained only
12 columns and the full model for which the design matrix contained 96 columns. The reduced
model was simply chosen for convenience of presentation in this report. The differences in
the values of the x? statistics were more critical for the full model than for the reduced model,
because there were a few statistics with borderline significance (P ~ 0.05) in the full model.

We conclude, as did Brogan (1998), that the normed weighted approach to the analysis of
sample survey data cannot generally be recommended. It appears that an analysis that
properly takes the design of a sample survey into account, whether the survey has the PSU

Effect Unweighted x> Weighted x? Jackknifed y?
Age 35.7 218.2 140.6
Educ 119.2 107.1 58.8
Sex 411.5 389.3 280.1
Quit 722.5 789.2 527.5
Sex*Quit 22.7 38.5 26.6
Response 455.1 404.9 319.9
Quit*Response 91.5 69.3 64.3

All x? statistics have 3 degrees of freedom and P < 0.0001

Table 2: Results of three different analyses of the same sample survey data.

11
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information intentionally suppressed or not, is necessary for correct interpretation of the data.
Until packaged statistical software for survey data analysis incorporates a wider selection of
statistical analyses, the need for customized software for categorical marginal (linear) model
analysis will continue. It is noteworthy that packaged statistical software for log-linear model
analysis of categorical data, which takes sample survey design into account, is available in the
current release (8.0) of SUDAAN, via the LOGLINK procedure.

7. Comment

It appears that the analysis of surveys based on resampling methods could be relatively easily
incorporated into a broad range of packaged statistical analysis routines by the inclusion of a
module that computes the covariance matrix based on sets of replicate weights. This module
could be substituted for the usual covariance estimation module when a resampling method
is specified by the user. We urge the developers of packaged statistical software to expand the
breadth of statistical analyses that can be performed with automated control of the sample
survey design. This need is especially apparent for surveys which employ resampling methods,
which have become common in recent years due to the heightened need to protect respondent
anonymity.
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