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Abstract

The behavioral, educational, and social sciences are undergoing a paradigmatic shift in
methodology, from disciplines that focus on the dichotomous outcome of null hypothesis
significance tests to disciplines that report and interpret effect sizes and their correspond-
ing confidence intervals. Due to the arbitrariness of many measurement instruments used
in the behavioral, educational, and social sciences, some of the most widely reported ef-
fect sizes are standardized. Although forming confidence intervals for standardized effect
sizes can be very beneficial, such confidence interval procedures are generally difficult to
implement because they depend on noncentral t, F , and χ2 distributions. At present,
no main-stream statistical package provides exact confidence intervals for standardized
effects without the use of specialized programming scripts. Methods for the Behavioral,
Educational, and Social Sciences (MBESS) is an R package that has routines for calculat-
ing confidence intervals for noncentral t, F , and χ2 distributions, which are then used in
the calculation of exact confidence intervals for standardized effect sizes by using the con-
fidence interval transformation and inversion principles. The present article discusses the
way in which confidence intervals are formed for standardized effect sizes and illustrates
how such confidence intervals can be easily formed using MBESS in R.

Keywords: standardized effect size, effect size, confidence intervals, noncentral distributions,
null hypothesis significance test.

1. Introduction

In the behavioral, educational, and social sciences (BESS), units of measurement are many
times arbitrary, in the sense that there is no necessary reason why the measurement instrument
is based on a particular scaling. Many, but certainly not all, constructs dealt with in the
BESS are not directly observable and the instruments used to measure such constructs do
not generally have a natural scaling metric as do many measures, for example, in the physical
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sciences. The scaling generally used for such instruments in the BESS tend to be on a scale
that is thought to be reasonable, yet such scales are chosen by the developer of the instrument.
For example, there might be two scales that measure the same dimension of “attitude” with
the same psychometrically sound properties, yet one based on a scale such that N(50, 100)
and the other based on a scale such that N(100, 225), where N(µ, σ2) represents a normally
distributed quantity with population mean µ and population variance σ2. Even though scores
on the two measures are not directly comparable, they can be transformed so that (a) the first
measure is reported in terms of the second, (b) the second measure reported in terms of the
first, or (c) both measures can be transformed so that they are in a common metric different
from either of the two original measures (e.g., one where N(0, 1)). Of these transformation
possibilities, the third approach is generally taken and thus effects are reported in standardized
units where the values of the measurement scale can be regarded as a scale-free number that
represents a pure measure of the magnitude of the effect.

In the BESS, a large debate has been underway for some time about the importance of re-
porting effect sizes and confidence intervals (e.g., Schmidt 1996; Meehl 1997; Thompson 2002;
Cohen 1994; Kline 2004, and the references contained therein) rather than only the dichoto-
mous reject or fail-to-reject decision from a null hypothesis significance test (see Krantz 1999,
for a review of the tension that sometimes exists between statisticians and methodologists
regarding this debate). On the surface, it seems there is no reason not to report effect sizes
and their corresponding confidence intervals. However, effects sizes based on raw scores are
not always helpful or generalizable due to the lack of natural scaling metrics and multiple
scales existing for the same phenomenon in the BESS. A common methodological suggestion
in the BESS is to report standardized effect sizes in order to facilitate the interpretation of
results and for the cumulation of scientific knowledge across studies, which is the goal of
meta-analysis (e.g., Hunter and Schmidt 2004; Glass, McGaw, and Smith 1981; Hedges and
Olkin 1985). A standardized effect size is an effect size that describes the size of the effect
but that does not depend on any particular measurement scale. A standardized effect size
thus represents a pure number, in the sense that the magnitude of the effect is not wedded
to a particular scale. The act of standardization is not, however, generally based on a set
of known population parameters, but rather the standardization process is based on sample
statistics. This is the case for two reasons: (a) many measures have not been normed in
order to determine the population parameters of interest for the population in general or for
a subpopulation of interest and (b) it is generally desirable to base the standardized effect size
on the particular sample rather than mixing population parameters with sample statistics.

2. CI construction

Seminal work by Neyman (1935; 1937) laid the foundation for confidence interval formation.
Recall that the general procedure for a confidence interval yields an upper and lower limit,
such that the probability that the fixed parameter is contained within a random interval is
1−α, where α is the Type I error rate and 1−α is the confidence level coverage. The general
form of the confidence interval is given as

p[θL(X) ≤ θ ≤ θU(X)] = 1− α, (1)

where θ is some parameter of interest, θL(X) and θU(X) are the lower and upper random
confidence limits, respectively, which are based on the observed data, X, and p denotes
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probability. For notational ease θL(X) and θU(X) will be denoted θL and θU, respectively,
with the understanding that the lower and upper confidence limits are random because they
depend on the random data.

Two sections follow that discuss the ways in which θL and θU can be calculated for confidence
intervals for different types of effect sizes commonly used in the BESS. The first approach
is the standard approach that is generally given in applied texts and implemented in statis-
tical software programs. The second approach, however, is more difficult conceptually and
computationally than the first approach and is not generally discussed in applied texts nor
implemented in statistical software without specialized programming scripts. The second ap-
proach is ultimately what is of interest to the present work, with the first approach given to
provide a context for the second approach.

2.1. CIs for pivotal quantities

Suppose the population standard deviation is known for a normally distributed population
with some unknown mean for a sample of size N , the following inequality holds with 1 − α
probability

p

[
z(α/2) ≤

M − µ

σM
≤ z(1−α/2)

]
= 1− α (2)

where M is the sample mean and σM is the population standard deviation of the sampling
distribution of the mean, defined as σ/

√
N , and z(·) represents the quantile from the standard

normal distribution at the subscripted probability value. The inequality contained within the
brackets can be manipulated by first multiplying the inequality by σM , which removes the
value in the denominator of the inequality’s center:

p
[
z(α/2)σM ≤M − µ ≤ z(1−α/2)σM

]
= 1− α. (3)

The value of M from the center of the inequality can be removed by subtracting M from the
center and both sides:

p
[
z(α/2)σM −M ≤ −µ ≤ z(1−α/2)σM −M

]
= 1− α. (4)

Multiplying the inequality by −1 to make −µ positive—requiring the inequalities to be re-
versed as is the case when inequalities are multiplied by a negative value—the resultant
equation can be given as

p
[
−z(1−α/2)σM +M ≤ µ ≤ −z(α/2)σM +M

]
= 1− α. (5)

Further manipulation of the inequality yields

p
[
M − z(1−α/2)σM ≤ µ ≤M − z(α/2)σM

]
= 1− α. (6)

Because z(α/2) is always negative and the normal distribution is symmetric, −1 × z(α/2) is
equivalent to z(1−α/2) and the right hand side of the inequality thus reduces to M + z(1−α/2),
which implies that Equation 6 can be written as

p
[
M − z(1−α/2)σM ≤ µ ≤M + z(1−α/2)σM

]
= 1− α. (7)
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Although often optimal, in the sense that the confidence interval is as narrow as possible
(Casella and Berger 2002), there is no reason to restrict the confidence intervals to those
where the lower and upper rejection region are equal. The specified α can be conceptualized
as consisting of two parts, αL and αU, where αL is the rejection region for the lower limit and
αU the rejection region for the upper limit (i.e., the proportion of time that the parameter will
be less than the lower confidence limit or greater than the upper confidence limit, respectively).
Thus, more generally, the confidence interval formation given in Equation 7 can be written as

p
[
M + z(αL)σM ≤ µ ≤M + z(1−αU)σM

]
= 1− (αL + αU ), (8)

or for convenience

p
[
M − z(1−αL)σM ≤ µ ≤M + z(1−αU)σM

]
= 1− (αL + αU ), (9)

where αL +αU = α. The confidence interval method given in Equation 9, or a closely related
rewriting, is what is typically given in applied texts. Generally discussed is only one type of
special case of nonequal rejection regions where αL 6= αU: for one sided confidence intervals
where αL or αU is set to zero.

The equations above each assumed that σ was known. In almost all applications, σ is un-
known and it is necessary to use a (central) t-distribution with the appropriate degrees of
freedom instead of basing the confidence interval on critical values from the standard normal
distribution. With unknown σ, the analog of Equation 2 would be

p

[
t(α/2;ν) ≤

M − µ

sM
≤ t(1−α/2;ν)

]
= 1− α, (10)

where sM is the estimated standard deviation of the sampling distribution of the mean defined
as s/

√
N with s being the square root of the unbiased estimate of the variance, ν are the

degrees of freedom, which are N−1 in the context of single sample designs when σ is unknown,
and t(α/2;ν) is the α/2 quantile from a t-distribution with ν degrees of freedom. Through a set
of manipulations and reductions analogous to Equations 2 through 8, a (1−α)100% confidence
interval can be obtained for µ when σ is unknown, which is given as

p
[
M + t(αL;ν)sM ≤ µ ≤M + t(1−αU;ν)sM

]
= 1− (αL + αU ), (11)

or for convenience

p
[
M − t(1−αL;ν)sM ≤ µ ≤M + t(1−αU;ν)sM

]
= 1− (αL + αU ). (12)

Notice that in Equation 2 the quantity in the center of the inequality is simply a z-test
statistic, whereas in Equation 10 the quantity in the center of the inequality is simply a t-test
statistic. The logic of transforming a probabilistic statement for a particular z-test or t-test
statistic to a confidence interval for µ was possible in the manner done because the center
of the inequality could be reduced to only the population parameter of interest (i.e., µ) and
the interval did not depend on any unknown parameters. This procedure used to transform
the probability statement to a confidence interval is known as inverting the test statistic
(Casella and Berger 2002, Section 9.2.1; see also Kempthorne and Folks 1971, Section 13.3)
because the α100% region of implausible parameter values (i.e., where p < α under the null
hypothesis) is inverted to form the (1 − α)100% region of plausible parameter values (i.e.,
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where p > α under the null hypothesis). Confidence intervals can be formed by inverting
the test statistic when the quantity of interest is a pivotal quantity. A pivotal quantity,
sometimes termed a pivot, is a quantity whose probability distribution does not depend on
any unknown parameters (e.g., Casella and Berger 2002, Chapter 9; Stuart, Ord, and Arnold
1999, Chapter 19). When the test statistic cannot be transformed into a confidence interval by
reducing the probabilistic statement concerning the test statistic into a probabilistic statement
concerning the parameter, implying the quantity is not pivotal, a more general approaches to
confidence interval formation is required. This more general approach to confidence interval
formation is discussed in the next section.

2.2. CI formation for nonpivotal quantities

Although confidence intervals for commonly used pivotal quantities (e.g., the mean, mean
difference, variance, regression coefficients, etc) are well known, many effects of interest in
the BESS are not pivotal. In particular, standardized effect sizes (e.g., standardized mean
differences, standardized regression coefficients, coefficients of variation, etc.) and effect sizes
that are bounded (e.g., correlation coefficients, squared multiple correlation coefficients, pro-
portions, etc.), which are considered standardized since they do not depend on the particular
measurement scale are not generally pivotal quantities. Thus, confidence intervals for such ef-
fects cannot be obtained by inverting their corresponding test statistic, which was the method
discussed in the previous section for a quantity that was pivotal. Many applied statistics texts
either do not mention confidence intervals for such nonpivotal quantities or provide only ap-
proximate methods of confidence interval formation, sometimes without mentioning that the
methods are approximations.

Confidence interval formation by inverting the test statistic requires that the effect of interest
be a pivotal quantity. If not, another more general approach is required. This more general
approach to confidence interval formation has been termed pivoting the cumulative distribu-
tion function (Casella and Berger 2002, Section 9.2.3; see also Kempthorne and Folks 1971,
Section 13.4). When a quantity related to a test statistic is not pivotal, the sampling distribu-
tion of the estimate depends on an outside parameter that is almost certainly not known and
implies that the test statistic cannot be inverted. The solution to such a problem is to find
the value of the unknown parameter that leads to the observed cumulative probability of the
test statistic being 1−αL, which becomes the lower confidence limit of the parameter, and to
find the value of the unknown parameter that leads to the observed cumulative probability
of the test statistic having probability αU, which becomes the upper confidence limit of the
parameter. For effects of interest in the BESS, these unknown parameter values are generally
noncentrality parameters (e.g., Steiger and Fouladi 1997; Cumming and Finch 2001; Smithson
2003; Steiger 2004).

For example, forming a confidence interval for µ when σ is unknown was shown in Equa-
tions 11. However, suppose what is of interest is forming a confidence interval for the popu-
lation standardized mean,

M =
µ

σ
, (13)

which is estimated by replacing the parameters with their sample analogs,

m =
M

s
, (14)
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where m is the sample estimate ofM, the population standardized mean.1 Because s (or sM )
cannot be pivoted, as s is necessary to standardize M , and the center of the quantity does
not contain the population quantity, rewriting Equation 10 yields

p

[
t(α/2;ν)/

√
N ≤ M − µ

s
≤ t(1−α/2;ν)/

√
N

]
= 1− α, (15)

where the
√
N was removed from the center of the inequality by multiplying the inequality

by 1/
√
N . The lack of pivotibility of the quantity is due to s necessarily being involved in the

center of the inequality since it is what standardizes the mean and the population value not
being contained within the inequality. Furthermore, the population effect size is not contained
within the center of the inequality. Because the test statistic cannot be pivoted, it is necessary
to pivot the cumulative distribution function of the test statistic itself. Before pivoting the
cumulative distribution function, a discussion of noncentral distributions is necessary.

The widely used (central) t-distribution is a special case of the more general noncentral t dis-
tribution, when the noncentrality parameter equals zero. Johnson, Kotz, and Balakrishnan
(1995) provide a modern overview of noncentral t-distributions (see also Johnson and Welch,
1940). From Johnson et al. (1995), in the single sample situation when the distribution is nor-
mal and σ unknown, the population noncentrality parameter from a noncentral t-distribution
can be written as

λ =
µ− µ0

σ/
√
N

=
µ
√
N

σ
, (16)

where µ0 is the specified value of the null hypothesis, which will be set to zero in the present
context without loss of generality. Thus, there is a one-to-one relationship between the non-
pivotable quantity in Equation 10 and the noncentrality parameter from a t-distribution. Al-
though a known probability distribution does not literally exist for (M −µ)/s, it is indirectly
available via the noncentral t-distribution, which is denoted t(ν;λ), where ν are the degrees of
freedom and λ is the noncentrality parameter. The noncentrality parameter, which can be
conceptualized as an index of the magnitude of difference between the null and alternative
hypotheses, can be estimated as

λ̂ =
M

s

√
N, (17)

or, in terms of m,
λ̂ = m

√
N, (18)

where Equation 17 and 18 are equivalent to the observed t-test statistic:

λ̂ = t = m
√
N. (19)

Given the linkage between the test statistic, the standardized mean, and the noncentral t-
distribution, it is helpful to discuss two important principles when forming confidence intervals
for standardized effect sizes. Theses principles are the confidence interval transformation
principle and the inversion confidence interval principle, both of which will be discussed
momentarily. The names of these principles were coined and the concepts discussed in Steiger
and Fouladi (1997) with a review given in Steiger (2004). Steiger and Fouladi (1997) did not

1The character M, used to denote the population standardized mean, is the Phoenician letter mem, which
was a precursor to the Greek letter “µ” and the Latin letter “m” (Powell 1996).
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literally develop the theory behind these principles, rather their important work combined
disparate statistical theory into a formal context for forming confidence intervals. When
these principles are combined a set of powerful tools for confidence interval formation become
available for standardized effect sizes that are related to a noncentrality parameter. Almost all
of the effects commonly used in the BESS can be linked to a noncentrality parameter from t,
F , or χ2 distributions. Methods for forming confidence intervals for noncentrality parameters
from t, F , and χ2 distributions have been implemented in the Methods for the Behavioral,
Educational, and Social Sciences (MBESS; Kelley 2007b,a) R package (R Development Core
Team 2007).
The confidence interval transformation principle is beneficial for forming a confidence interval
on a parameter that is monotonically related to another parameter, when the latter has a
tractable method of obtaining the confidence interval whereas the former might not. Let f(θ)
be a monotonic transformation of θ defined by the function f(·). The (1−α)100% confidence
limits for f(θ) are f(θL) and f(θU),

p [f(θL) ≤ f(θ) ≤ f(θU)] = 1− α. (20)

Thus, for monotonically related parameters the confidence interval for the transformed popu-
lation quantity is obtained by applying the same transformation to the limits of the confidence
interval as was done to the population quantity itself (Steiger and Fouladi 1997; Steiger 2004).
The inversion confidence interval principle states that if θ̂ is an estimate of θ with a cumulative
distribution that depends on ς, some necessary outside parameter, the probability of observing
an estimate (i.e., θ̂) smaller than that obtained is given as p(θ̂|ς) (i.e., it is the cumulative
probability). Calculation of a confidence interval for θ based on the inversion confidence
interval principle involves finding θL such that p(θ̂|θL) = 1 − αL for the lower limit and θU
such that p(θ̂|θU) = αU for the upper limit. The confidence interval for θ then has coverage
of 1− (αL + αU) and is given as

p [θL ≤ θ ≤ θU] = 1− α, (21)

where θ is some parameter of interest with θL and θU being the lower and upper confidence
interval limits, where θL will be greater than θ αL100% of the time and θU100% will be less
than θ αU100% of the time. The confidence interval procedure is general and need not have
equal rejection regions. For example, the most common confidence interval without equal
rejection regions is obtained by setting αL or αU (whichever is appropriate for the specific
situation) to zero, which is simple a one sided confidence interval.
Returning to the example of confidence interval formation for the standardized mean, it
now becomes apparent that indeed, a λL value can be found such that p(t|λL) = 1 − αL

and a λU value can be found such that p(t|λU) = αU. Given the values of λL and λU, these
noncentral values can be transformed into the metric of the standardized mean. Manipulation
of Equation 18 shows that

m =
t√
N
. (22)

λL and λU can be substituted for t in Equation 22, so that the lowest and highest plausible
values of the standardized mean can be obtained given the specified values of αL and αU.
Thus, the confidence interval for the standardized mean is given as

p

[
λL√
N

≤M ≤ λU√
N

]
= 1− α. (23)
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This confidence interval is realized by first computing the confidence interval on the noncen-
trality parameter from a t-distribution and then transforming the limits of the confidence
interval into the metric of the standardized mean.

For example, suppose M = 50, s = 10, and N = 25. The estimated noncentrality param-
eter (i.e., the estimated t-test statistic for the test of the null hypothesis that µ = 0) from
Equation 18 is λ̂ = 25. A 95% confidence interval for the population noncentrality parameter
is

CI.95 = [17.68259 ≤ λ ≤ 32.6888] , (24)

where CI.95 represents the 95% confidence interval limits. Dividing the limits of the confidence
interval by

√
N will then transform the confidence limits for λ into confidence limits for M,

which is given as

CI.95 = [3.536517 ≤M ≤ 6.453777] . (25)

Although there is no cumulative distribution function developed specifically for the standard-
ized mean, by pivoting the cumulative distribution function for the noncentral t-distribution,
limits of the confidence interval for M can be calculated. These limits are those that corre-
spond to the theoretical cumulative probability distribution of the standardized mean for the
specified level of confidence.

The present section has discussed a method of obtaining an exact confidence interval for a
standardized mean that itself has no known probability distribution function. Although the
logic and method is not overly complex, determining θL and θU has been a serious issue for
some time. The difficulty in finding the necessary confidence limits, by finding noncentrality
parameters that have the obtained statistic at the specified quantile, has led to tri-entry
(probability, degrees of freedom, and noncentrality parameter) tables (see a review of such
tables in Johnson et al. 1995, chapter 31) that will almost certainly yield approximate results
in any applied situation. As will be discussed in the following section, MBESS has functions
that return the exact values of θL and θU for the most general cases of noncentral t, F , and χ2

distributions. Thus, any effect size (e.g., those that are standardized) that has a monotonic
relation to the noncentrality parameter from one of these distributions can be formed with
MBESS. Within MBESS, many commonly used standardized effect sizes have functions that
compute their respective confidence intervals directly (instead of the user forming a confidence
interval for the corresponding noncentrality parameter and then transforming to the scale of
the effect size). Some of the most popular standardized effect sizes will be discussed, and
examples using MBESS given, in the remainder of the article in the analysis of variance
(ANOVA) and regression contexts.

CIs for the standardized mean in MBESS

The ci.sm() function from MBESS can be used to form confidence intervals for the population
standardized mean (i.e.,M). Although other optional specifications exist, a basic specification
of the function ci.sm() would be of the form

ci.sm(sm=m, N=N, conf.level=1− α)

where sm is the observed standardized mean, N is the sample size, and conf.level is the
confidence level coverage.



Journal of Statistical Software 9

3. CIs for standardized effect sizes in an ANOVA context

The comparison of means is a commonly used technique in the BESS, as research questions
are many times related to issues involving means and mean differences. This section is or-
ganized with three subsections that deal with standardized effect sizes: one concerning the
mean difference of two groups, one concerning omnibus effects when several group means
are involved, and a section concerning targeted effects (i.e., comparisons) when several group
means are involved.

3.1. The standardized mean difference for two independent groups

One of the most commonly used effect sizes in the BESS is the standardized mean difference.
The population standardized mean difference is defined as

δ =
µ1 − µ2

σ
(26)

and is generally estimated by

d =
M1 −M2

s
, (27)

where µ1 and µ2 are the population means of group 1 and group 2, respectively, with M1

and M2 as their respective estimates, and s is the square root of the unbiased estimate of the
within group variance, which is estimated as

s =

√
s21(n1 − 1) + s22(n2 − 1)

n1 + n2 − 2
(28)

with per group sample sizes of n1 and n2 for group 1 and group 2, respectively, and with
s21 and s22 being the unbiased estimate of the variance for group 1 and group 2, respectively,
assuming σ2

1 = σ2
2. The typical two-group t-test is defined as

t =
M1 −M2

sM1−M2

, (29)

where sM1−M2 is the standard error of the mean difference and is given as

sM1−M2 = s

√
1
n1

+
1
n2
, (30)

which has N − 2 degrees of freedom (N = n1 + n2).

Notice that the difference between d from Equation 27 and the two-group t-test statistic from
Equation 29 is the quantity

√
1
n1

+ 1
n2

contained in the denominator of the t-test statistic
(implicit in sM1−M2), which is multiplied by s to estimate the standard error of the mean
difference. Because

√
1
n1

+ 1
n2

can be rewritten as
√

n2+n1
n1n2

, multiplying the inverse of this
quantity by d leads to an equivalent representation of the t-test statistic:

t = d

√
n1n2

n2 + n1
. (31)
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Given Equation 31, it can be seen that Equation 27 can be written as

d = t

√
n2 + n1

n1n2
. (32)

The population noncentrality parameter for the two-group t-test is given as

λ =
µ1 − µ2

σ
√

1
n1

+ 1
n2

(33)

= δ

√
n1n2

n2 + n1
, (34)

which is estimated, as in the single sample situation, with the observed t-test statistic. Thus,

λ̂ =
M1 −M2

s
√

1
n1

+ 1
n2

(35)

= d

√
n1n2

n2 + n1
(36)

= t (37)

The analog of Equation 10 in the two group situation is

p

t(αL;ν) ≤
(M1 −M2)− (µ1 − µ2)

s
√

n2+n1
n1n2

≤ t(1−αU;ν)

 = 1− α, (38)

The test statistic can be pivoted such that the confidence interval for the (unstandardized)
mean difference, which is discussed in many sources is given as

p

[
(M1 −M2)− t(1−αL;ν)s

√
n2 + n1

n1n2
≤ µ1 − µ2 ≤ (M1 −M2) + t(1−αU;ν)s

√
n2 + n1

n1n2

]
= 1−α.

(39)
However, when what is of interest is the standardized mean difference, Equation 38 cannot
be pivoted as was done in Equation 39. As discussed in the single sample situation, in order
to form a confidence interval for δ, a confidence interval for λ is found and then the limits
transformed into the scale of δ by using Equation 32. Thus, the value of λL is found such
that p(λ̂|λL) = 1 − αL and the value λU is found such that λU p(λ̂|λU) = αU, in exactly
the same manner as they were found in the single sample situation, the difference being the
noncentrality parameter is from the two-group context with corresponding degrees of freedom
N − 2.

Given λL and λU, the confidence interval for λ is given as

p [λL ≤ λ ≤ λU] = 1− α, (40)

which is generally of interest only in so much as its transformation allows for a confidence
interval to be formed for δ, as is given by the following:

p

[
λL

√
n2 + n1

n1n2
≤ δ ≤ λU

√
n2 + n1

n1n2

]
= 1− α. (41)
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Confidence intervals for the standardized mean difference were detailed in Steiger and Fouladi
(1997) and various aspects of such confidence intervals have been discussed in Cumming and
Finch (2001), Kelley (2005), Smithson (2003), Algina, Keselman, and Penfield (2006) and
Steiger (2004).

CIs for the standardized mean difference in MBESS

The ci.smd() function from MBESS can be used to form confidence intervals for the popu-
lation standardized mean difference (i.e., δ). Although other optional specifications exist, a
basic specification of the function ci.smd() would be of the form

ci.smd(smd=d, n.1=n1, n.2=n2, conf.level=1− α)

where smd is the observed standardized mean difference, n.1 and n.2 are the sample sizes for
group 1 and group 2, respectively, and conf.level is the desired confidence level coverage.

3.2. Standardized effect sizes for omnibus effects in an ANOVA context

Examining the differences among several group means is commonly done in the BESS. For
example, the depression level of mildly depressed individuals might be examined as a function
of whether or not the individuals were randomly assigned to the control group, the counseling
only group, the drug only group, or the combination of counseling and drug group. Both
targeted effects, such as the mean difference between the counseling only and the drug only
group might be of interest, and omnibus effects, such as the proportion of variance on the
depression scores is accounted for by the grouping factor, have standardized effect sizes that
have corresponding confidence intervals for their population values. Whereas a targeted effect
of interest might be a follow-up comparison, an omnibus effect of interest might be the ratio of
the group sums of squares to the total sums of squares. So as to have measures of effect that
are not wedded to a particular measurement scale, this section reviews selected standardized
effects sizes in the ANOVA context, shows their relation to the noncentrality parameter, and
illustrates how such confidence intervals for population standardized effect sizes can be easily
obtained with MBESS.
In a precursor of suggestions that were to be emphasized nearly a generation later in the
BESS, Fleishman (1980) discussed omnibus effect sizes and their corresponding confidence
intervals in an ANOVA context. Fleishman (1980) showed the relationship between certain
ANOVA effects sizes and their corresponding noncentrality parameters from noncentral F -
distributions. Given what was akin to the confidence interval inversion principle and the
inversion confidence interval principle, confidence intervals for these effect sizes can be formed
given confidence intervals for noncentral F -parameters. Such confidence intervals can easily
be obtained in MBESS, as will be illustrated momentarily for selected effect sizes.
Let Λp be the noncentrality parameter for the pth factor of a noncentral F -distribution in a
multi-factor (or single factor) fixed effects ANOVA, which is given as

Λp =

J∑
j=1

npjτ
2
pj

σ2
ε

, (42)

where npj is the sample size of the jth group of factor p (j = 1, . . . , J ;N =
∑
npj), τpj is the

effect associated with being in the jth level of factor p, which is defined as

τpj = µpj − µ, (43)



12 Confidence Intervals for Standardized Effect Sizes

with µpj being the population mean of the jth level of factor p and µ the overall population
mean, and σ2

ε is the mean square error (Fleishman 1980).2 Alternatively, Equation 42 can be
written as

Λp =
Nσ2

p

σ2
ε

, (44)

where σ2
p is the variance due to factor p:

σ2
p =

J∑
j=1

npjτ
2
pj

N
. (45)

Notice that in a single factor design the equations reduce, specifically the p subscript in each
of the equations is ignored, and J is simply the number of groups.
Two effect sizes closely related to Λp, and to one another, are the signal-to-noise ratio and
the proportion of variance in the dependent variable that is accounted for by knowing the
level of the factor (or group status in a single factor design; e.g., Fleishman 1980; Hays 1994;
Cohen 1988). Formally the signal-to-noise ratio is defined as,

φ2
p =

σ2
p

σ2
ε

(46)

=
Λp

N
(47)

and the proportion of variance in Y accounted for by knowing the level of the factor (or group
status in a single factor design) is defined as

η2
p =

σ2
p

σ2
T

(48)

=
σ2

p

σ2
ε + σ2

p

(49)

=
Λp

Λp +N
, (50)

where σ2
T is the total variance of the dependent variable. There is also a close relation between

φ2
p and η2

p:

η2
p =

1
1 + 1

φ2
p

. (51)

=
φ2

p

1 + φ2
p

. (52)

Just as in the situation of the noncentral t a ΛL value can be found such that p(F |ΛL) = 1−αL

and a ΛU value can be found such that p(F |ΛU) = αU, where F is the value of the F -test
statistic for factor p from the factorial ANOVA procedure (or simply the F -test statistic from
a single factor ANOVA). Given ΛL and ΛU, a confidence interval for Λ can be formed,

p [ΛL ≤ Λp ≤ ΛU] = 1− α, (53)
2Notice that the p representing the factor has not been italicized. This is the case to emphasize that these

methods are for fixed effect ANOVA models.
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which is generally of interest only in so much as its transformation allows for a confidence
interval to be formed for φ2

p, η
2
p, and/or possibly other effects from an ANOVA context. The

confidence intervals of interest are transformations of Equation 53 by manipulating Equa-
tions 46 and 48 in order to transform the noncentrality parameter into the effect size of
interest. Thus, a confidence interval for φ2

p is given as

p

[
ΛL

N
≤ φ2

p ≤
ΛU

N

]
= 1− α (54)

and a confidence interval for η2
p is given as

p

[
ΛL

ΛL +N
≤ η2

p ≤
ΛU

ΛL +N

]
= 1− α. (55)

The square root of the signal-to-noise ratio also has a substantively appealing interpretation,
as the standard deviation of the standardized means (e.g., p. 275 of Cohen 1988; Steiger
2004). Such a measure can easily be obtained due to the confidence interval transformation
principal simply by taking the square root of the confidence limits for φ2

p:

p

√ΛL

N
≤ φp ≤

√
ΛU

N

 = 1− α. (56)

CIs for standardized omnibus effects in ANOVA with MBESS

The ci.snr() function from MBESS can be used to form confidence intervals for the pop-
ulation signal-to-noise ratio (i.e., φ2

p) for the pth fixed effects factor in an ANOVA setting.
Although other optional specifications exist, a basic specification of the function ci.snr()
would be of the form

ci.snr(F.value=F, df.1, df.2, N=N, conf.level=1− α),

where F.value is the observed F value, df.1 is the numerator degrees of freedom for the
particular F -test statistic, df.2 is the denominator degrees of freedom of the F -test statistic,
N is the total sample size, and conf.level is the desired confidence level coverage.

The ci.pvaf() function from MBESS can be used to form confidence intervals for the pop-
ulation proportion of variance accounted for in the dependent variable by knowing group
status (i.e., η2

p) for the pth fixed effects factor in an ANOVA setting. Although other optional
specifications exist, a basic specification of the function ci.pvaf() would be of the form

ci.pvaf(F.value=F, df.1, df.2, N=N, conf.level=1− α),

where all of the input parameters are the same as for the ci.snr function.

The ci.srsnr() function from MBESS can be used to form confidence intervals for the square
root of the signal-to-noise ratio for the pth fixed effects factor (i.e., φp) in an ANOVA setting.
Although other optional specifications exist, a basic specification of the function ci.srsnr()
would be of the form

ci.srsnr(F.value=F, df.1, df.2, N=N, conf.level=1− α),

where all of the arguments are the same as for the ci.snr() and ci.pvaf() function.
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3.3. Standardized effect sizes for targeted effects in an ANOVA context

The methods discussed in the previous section have been for omnibus measures of effect.
However, targeted effects that have been standardized in an ANOVA context can also be
easily implemented with the methods that have been discussed. Like many research design
texts, Maxwell and Delaney (2004) discuss methods of forming comparisons among means to
determine if a null hypothesis that a particular contrast (e.g., µ1−µ2 = 0, (µ1+µ2)/2−µ3 = 0,
(µ1 + µ2)/2 − (µ3 + µ4)/2 = 0, etc.) equals zero can be rejected. The test statistic can be
given as

t =
Ψ̂√

s2ε
J∑

j=1

(
c2j
nj

) , (57)

where Ψ̂ is given as

Ψ̂ =
J∑

j=1

cjMj (58)

and s2ε is the mean square error

(
note that

J∑
j=1

cj = 0, as is the case with all comparisons

)
.

Notice that this is simply a t-test for a targeted contrast. The t-test in Equation 57 can be
pivoted in order to form a confidence interval for Ψ.
As detailed in Steiger (2004), hypothesis tests for comparisons of the form Equation 57 can be
standardized. As before, the process of standardization leads to a test statistic that cannot be
pivoted, implying that the confidence interval for the standardized effect (ψ) is not directly
available given the confidence limits for the unstandardized effect (Ψ). This issue is literally
just an extension of the methods discussed in the context of two independent groups, where
a confidence interval for δ was formed. The way in which Ψ̂ is standardized only involves
division by sε, the root mean square error, which yields a population standardized comparison
given as

ψ =
Ψ
σε
. (59)

The noncentrality parameter from a t-distribution in this context is thus given as

λ =
ψ√

J∑
j=1

(
c2j
nj

) , (60)

which is simply the t-test statistic if the population values replaced the sample estimates, as
was done in Equation 57. Thus, when a confidence interval is found for λ, the limits can be
transformed into a confidence interval for ψ (which is equal to δ when J = 2 because the
ANOVA reduces to an independent groups t-test) by setting Equation 60 equal to ψ:

ψ = λ

√√√√ J∑
j=1

(
c2j
nj

)
. (61)

Thus, a confidence interval for ψ is given as

p

λL

√√√√ J∑
j=1

(
c2j
nj

)
≤ ψ ≤ λU

√√√√ J∑
j=1

(
c2j
nj

) = 1− α. (62)
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CIs for standardized targeted effects in ANOVA with MBESS

The ci.sc() function from MBESS can be used to form confidence intervals for the population
standardize comparison (i.e., ψ) in an ANOVA setting. Although other optional specifications
exist, a basic specification of the function ci.sc() would be of the form

ci.sc(means=c(M1,M2, . . . ,MJ), error.variance=s2ε , c.weights=c(c1, c2, . . . , cJ),
n=c(n1, n2, . . . , nJ), N=N, conf.level=1− α).

where means is a vector of the J group means, error.variance is the mean square error,
c.weights is a vector of the J contrast weights (that must sum to zero), n is the vector of
the J levels of sample sizes (or group sample sizes in a single factor design), and N is the
total sample size (which need not be specified in single factor designs).

4. CIs for standardized effect sizes in a regression context

Multiple and simple regression are very popular methods in the BESS, especially for obser-
vational research, as research questions many times involve how a set of regressor (predic-
tor/independent/explanatory) variables influence or explain a criterion (predicted/outcome/
dependent) variable. This section is organized in two sections: one concerning the omnibus ef-
fect (i.e., the squared multiple correlation coefficient) and another section concerning targeted
effects (i.e., individual regression coefficients).

4.1. Standardized effect sizes for omnibus effects in multiple regression

In the special case of fixed regressor variables, where the values of the regressors are selected
a priori as part of the research design, the population proportion of variance in Y that is
accounted for by the K regressors is the squared multiple correlation coefficient, denoted P2.
Notice that P2 from a regression context is equivalent to the η2 statistic discussed in the
ANOVA context. This comes as no surprise, as both ANOVA and multiple regression are
special cases of the general linear model. The population proportion of variance accounted
for (in the regression context) can be written as

P2 =
σ2

Y − σ2
ε

σ2
Y

(63)

=
σ2

Y ·X
σ2

Y

(64)

=
σ′

XY Σ−1
X σXY

σ2
Y

(65)

where σ2
Y is the variance of Y , σ2

Y ·X is the variance of Y as predicted from the K X variables
(i.e., the variance of Ŷ ), σ2

ε is the error variance (i.e., the variance of Y − Ŷ ), ΣX is the
population covariance matrix of the K X variables, and σXY is the vector of population
covariances between the K X variables and Y . Of course, in addition to the omnibus effect of
P2, the targeted effects provided by the regression coefficients are also of interest. The vector
of K population regression coefficients, excluding the intercept, are obtained as

B = Σ−1
X σXY (66)
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with the population intercept given as

B0 = µY − µ′
XB. (67)

The test of the null hypothesis that P2 = 0 is given as

F =
R2/K

(1−R2)/(N −K − 1)
=

(
R2

1−R2

)(
N −K − 1

K

)
, (68)

where R2 is the sample estimate of P2 (i.e., the observed proportion of variance in Y accounted
for by the K predictors) with K and N −K − 1 degrees of freedom. A noncentral χ2 in the
numerator and a central χ2 in the denominator of an F -ratio has a sampling distribution
that follows a noncentral F -distribution with the same numerator and denominator degrees
of freedom as the χ2s and noncentrality parameter equal to that of the χ2 noncentrality
parameter in the numerator (Patel and Read 1982; Stuart et al. 1999; Rencher 2000). Thus,
when the null hypothesis is false (i.e., P2 > 0), the sampling distribution of the F -test statistic
in Equation 68 follows a noncentral F -distribution with K and N −K− 1 degrees of freedom
and noncentrality parameter Λ. It can be shown (e.g., Rencher 2000; Stuart et al. 1999)
that when the null hypothesis that P2 = 0 is false the noncentrality parameter of the F -test
statistic for the test of the null hypothesis that P2 = 0 can be written as

Λ =
B′ΣXNB
σ2

Y (1− P2)
. (69)

Substituting Σ−1
X σXY for the definition of B from Equation 66, Equation 69 can be rewritten

as

Λ =
σ′

XY Σ−1
X ΣXNΣ−1

X σXY

σ2
Y (1− P2)

. (70)

Equation 70 can itself be reduced and rewritten as

Λ =

(
σ′

XY Σ−1
X σXY

σ2
Y

)(
N

1− P2

)
, (71)

which reduces, due to Equation 65, to

Λ =

(
P2

1

)(
N

1− P2

)
, (72)

and finally

Λ =

(
P2

1− P2

)
N. (73)

The quantity in parentheses in Equation 73 is

φ2 =
P2

1− P2
, (74)

the same signal-to-noise ratio discussed in the ANOVA section (see Equation 46). Notice that
P2 can be written as a function of Λ by solving for P2 in Equation 73:

P2 =
Λ

N + Λ
. (75)
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Given that the relationship between the F -test statistic and Λ as well as the relationship
between P2 and Λ, forming confidence intervals for P2 is simply a matter of solving for ΛL

and ΛU, so that p(F |ΛL) = 1−αL and p(F |ΛU) = αU can be found. The confidence limits for
Λ can then be transformed to the units of P2 with Equation 75 in accord with the confidence
interval transformation principle as

p

[
ΛL

N + ΛL
≤ P2 ≤ ΛU

N + ΛU

]
= 1− α. (76)

Of course, the square root of the confidence limits can be taken so that the confidence interval
is for the multiple correlation coefficient, P, which would be given as

p

[√
ΛL

N + ΛL
≤ P ≤

√
ΛU

N + ΛU

]
= 1− α. (77)

Although not often discussed in applied texts, there are differences in the sampling distribution
of R2 when predictors are fixed compared to when predictors are random (e.g., Sampson 1974;
Gatsonis and Sampson 1989; Rencher 2000). Even though the sampling distributions of R2 in
the fixed and random predictor case are very similar when the null hypothesis that P2 = 0 is
true, they can be quite different when the null hypothesis is false. The method discussed thus
far for confidence interval formation assumed that the predictors were fixed. However, in most
applications of multiple regression in the BESS, regressor variables are random. Basing the
confidence interval formation procedure on fixed regressors when regressors are random will
thus lead to a nominal (specified) Type I error rate that differs from the empirical (actual)
Type I error rate, something that is never desirable.

Confidence intervals for P2 under the case of random regressors have not often been consid-
ered. Lee (1971) and Ding (1996) provide algorithms for computing various properties of the
distribution of R2 for random regressors, which can be used when forming confidence inter-
vals. The method of Lee (1971) was implemented by Steiger and Fouladi (1992) in an early
stand-alone program, R2. Algina and Olejnik (2000) provide a summary of the approach
suggested by Lee (1971) as well as a SAS script that can be used to implement the procedure
discussed in Lee (1971). MBESS also allows for confidence intervals for P2 in the context of
random predictor variables based on Lee (1971) and Algina and Olejnik (2000), which gives
results that are consistent with the R2 program of Steiger and Fouladi (1992). The confidence
interval procedure for P2 when regressors are random is conceptually similar to that discussed
in the fixed case, however, the sampling distribution of the F -test statistics does not follow
a noncentral F -distribution. Rather, Fisher (1928) showed that the sampling distribution
of R2 follows a Gauss hypergeometric distribution when predictors are random. Lee (1971)
used an approximate of the sampling distribution of R2/(1 − R2) (i.e., the sample estimate
of φ2 from Equation 74), which is monotonically related to the sampling distribution of R2

when predictors are random. The sampling distribution of the observed signal-to-noise ratio
is estimated with a three moment approximation using noncentral F -distributions based on
an iterative scheme. The method of Lee (1971) is quite accurate in terms of the empirical and
nominal level of confidence interval coverage. Although not many details have been included,
the technical underpinnings of confidence intervals for P2 when regressors are random is quite
difficult. As will be shown, MBESS allows the regressors to be regarded as fixed or random
depending on the specifications given. As might be expected due to the increased randomness
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of the design, confidence intervals tend to be wider when regressors are random compared to
when regressors are fixed, holding all other factors constant.

CIs for standardized omnibus effects in multiple regression with MBESS

The function ci.R2() from MBESS can be used to form confidence intervals for the population
squared multiple correlation coefficient (i.e., P2). Although many optional specifications exist,
when predictors were fixed (i.e., when the predictors are not random), a basic specification
would be of the form

ci.R2(R2=R2, N=N, k=k, conf.level=1− α, Random.Regressors=FALSE),

where R2 is the observed squared multiple correlation coefficient, N is the sample size, k
is the number of regressors, conf.level is the desired confidence interval coverage, and
Random.Regressors defines whether the regressors are fixed or random (with a TRUE state-
ment for random regressors and a FALSE statement for fixed regressors).

As is more typically the case in the BESS, regressors are random and as such the default for
Random.Regressors is TRUE and need not be specified. Thus, the following would provide a
confidence interval for the squared multiple correlation coefficient when regressors are random

ci.R2(R2=R2, N=N, k=k, conf.level=1− α).

Although one could easily take the square root of the confidence limits for P2 obtained from the
ci.R2() function as the confidence limits for P, due to the confidence interval transformation
principle, the function ci.R() provides such a confidence interval directly. The way in which
ci.R() is used is nearly identical to ci.R2(), with the only difference being that R is specified
instead of R2:

ci.R(R=R, N=N, k=k, conf.level=1− α).

4.2. Standardized effect sizes for targeted effects in multiple regression

Standardized regression coefficients are often used in the context of multiple regression in
the BESS. Of course, basing a multiple regression on variables that have been converted
to z-scores does not affect the overall fit of the model (i.e., R2 is left unchanged), but it
can facilitate interpretation when predictor variables are on different scales and/or when the
measurement scales are themselves arbitrary.

The process of standardizing a regression coefficient can proceed in two ways: using scores that
have been converted to z-scores or by multiplying the unstandardized regression coefficient
by the ratio of the standard deviation of Xk to the standard deviation of Y . Thus, in the
population the standardized regression coefficient is given as

βk = Bk
σXk

σY
(78)

for regressor k. As before, when an unstandardized estimate is divided or multiplied by a
random quantity the test statistic can no longer be pivoted. The test statistic for the null
hypothesis that βk = 0 is given as

t =
bk
sbk

, (79)
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where sbk
is the standard error of bk defined as

sbk
=

√√√√ 1−R2
Y ·X

(1−R2
Xk·X−k

)(N −K − 1)
, (80)

with R2
Xk·X−k

being the squared multiple correlation coefficient when predictor Xk is the
dependent variable predicted from the remaining K − 1 regressors. Alternatively R2

Xk·X−k

can be obtained indirectly from the covariance matrix of the predictors, SXX, as

R2
Xk·X−k

= 1− (s2kckk)−1 (81)

where ckk is the diagonal element of S−1
XX (Harris 2001).

Since the noncentrality parameter of a t-distribution is the value of the t-test statistic if
population values were substituted for the sample quantities, the noncentrality parameter for
a standardized regression coefficient can be written as

λk = φk

√
N (82)

where

φk = βk

√√√√1− P2
Xk·X−k

1− P2
Y ·X

. (83)

Because βk can be written (e.g., Hays 1994) as

βk =

√√√√P2
Y ·X − P2

Y ·X−k

1− P2
Xk·X−k

(84)

φk can be written as

φk =

√√√√P2
Y ·X − P2

Y ·X−k

1− P2
Y ·X

. (85)

Notice that φk is the square root of the signal-to-noise ratio for a targeted effect, which shows
the contribution of the kth effect to the overall signal-to-noise ratio, φ2.
Given the representation of λk in Equation 82, βk can be solved for such that

βk =
λk√
N

√√√√ 1− P2
Y ·X

1− P2
Xk·X−k

. (86)

Thus, forming a confidence interval for βk involves transforming the limits of the confidence
interval for λ, by way of Equation 86:

p

 λL√
N

√√√√ 1− P2
Y ·X

1− P2
Xk·X−k

≤ βk ≤
λU√
N

√√√√ 1− P2
Y ·X

1− P2
Xk·X−k

 = 1− α. (87)

CIs for targeted effects in multiple regression with MBESS

The function ci.src() from MBESS can be used to form confidence intervals for the pop-
ulation standardized regression coefficient (i.e., βk). Although many optional specifications
exist, a basic specification would be of the form
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ci.src(beta.k=bk, SE.beta.k=sbk
, N=N, k=k, conf.level=1− α),

where beta.k is the observed standardized regression coefficient, SE.beta.k is the observed
standard error of the standardized regression coefficient, N is the sample size, and k is the
number of regressor variables.3

5. General CI procedures for standardized effects

Although other standardized effects that are beneficial in the BESS and could have been
discussed, the ideas presented generalize to a wide variety of standardized effects (e.g., the
coefficient of variation, the Mahalanobis distance, the change in the squared multiple corre-
lation coefficient when one or more predictors is added (or removed) from a model, the root
mean square error of approximation (in the context of a structural equation model), etc.).
In accord with the confidence interval inversion and transformation principles, exact confi-
dence intervals for many such effects can be formed. The specific R functions from MBESS
used to form confidence intervals with conf.limits.nct() and conf.limits.ncf(). These
functions provide confidence limits for noncentral t and F parameters, respectively. The
confidence interval functions discussed in the article thus used these general functions and
applied the necessary transformation of the confidence limits so that the scale of the confi-
dence interval was in terms of the particular standardized effect size. Relatedly, the function
conf.limits.nc.chisq() is also part of MBESS, where the function is used to form con-
fidence intervals for noncentral χ2 parameters. The ability to form confidence intervals for
noncentrality parameters in MBESS is one of its most important features.

6. Discussion

The topic of confidence intervals for the general case of standardized effect sizes has not
often been considered in the general statistics literature, where parameters of interest are
almost always in an unstandardized form. Confidence intervals for standardized effects, have,
however, recently generated much interest in the BESS (e.g., Algina et al. 2006; Cumming
and Finch 2001; Kelley 2005; Kelley and Rausch 2006; Steiger and Fouladi 1997; Smithson
2001, 2003; Steiger 2004), where confidence intervals for effect sizes of primary importance are
very strongly encouraged (e.g., Wilkinson and The American Psychological Association Task
Force on Statistical Inference 1999; Task Force on Reporting of Research Methods in AERA
Publications 2006). However, software to implement confidence intervals for standardized
effect sizes has, for the most part, been in the form of specialized scripts for specific effect
sizes or stand alone software packages. MBESS, however, is a package within the R statistical
language and environment and thus can be seamlessly incorporated into data analysis in
R. Furthermore, the functions contained within MBESS are designed to be user friendly
and accept the necessary sufficient statistics as input. Thus, for those who prefer other data
analysis software programs, the MBESS functions can be used within R with only the summary
statistics provided from other software programs (as was shown in the examples). One need

3The argument beta.k and SE.beta.k should not be confused with the population standardized regres-
sion coefficient and its standard error, respectively. In the BESS “beta weight” is often used to refer to the
standardized regression coefficient, and use of beta.k and SE.beta.k in the ci.src() function helps to avoid
confusion with the unstandardized regression coefficient, b.j and SE.b.j from the function ci.rc() for forming
confidence intervals for unstandardized regression coefficients.
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not be a skilled R user in order to use R for confidence interval formation with MBESS, as the
necessary R commands are very simple and rely only on summary statistics that are easily
obtainable in R or from other programs. It is hoped that this article and the Methods for
the Behavioral, Educational, and Social Sciences (MBESS; Kelley 2007b,a) R package will
be helpful resources as the future of quantitative research (Thompson 2002) unfolds in the
behavioral, educational, and social sciences, where inferences based on dichotomous outcomes
from null hypothesis significance tests (reject or fail-to-reject) are replaced by effect sizes and
their corresponding confidence intervals.
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