Published by the Foundation for Open Access Statistics Editors-in-chief: Bettina Grün, Torsten Hothorn, Rebecca Killick, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
Authors: A. Ian McLeod, Ying Zhang
Title: Improved Subset Autoregression: With R Package
Abstract: The FitAR R (R Development Core Team 2008) package that is available on the Comprehensive R Archive Network is described. This package provides a comprehensive approach to fitting autoregressive and subset autoregressive time series. For long time series with complicated autocorrelation behavior, such as the monthly sunspot numbers, subset autoregression may prove more feasible and/or parsimonious than using AR or ARMA models. The two principal functions in this package are SelectModel and FitAR for automatic model selection and model fitting respectively. In addition to the regular autoregressive model and the usual subset autoregressive models (Tong 1977), these functions implement a new family of models. This new family of subset autoregressive models is obtained by using the partial autocorrelations as parameters and then selecting a subset of these parameters. Further properties and results for these models are discussed in McLeod and Zhang (2006). The advantages of this approach are that not only is an efficient algorithm for exact maximum likelihood implemented but that efficient methods are derived for selecting high-order subset models that may occur in massive datasets containing long time series. A new improved extended {BIC} criterion, {UBIC}, developed by Chen and Chen (2008) is implemented for subset model selection. A complete suite of model building functions for each of the three types of autoregressive models described above are included in the package. The package includes functions for time series plots, diagnostic testing and plotting, bootstrapping, simulation, forecasting, Box-Cox analysis, spectral density estimation and other useful time series procedures. As well as methods for standard generic functions including print, plot, predict and others, some new generic functions and methods are supplied that make it easier to work with the output from FitAR for bootstrapping, simulation, spectral density estimation and Box-Cox analysis.

Page views:: 10706. Submitted: 2007-08-26. Published: 2008-10-02.
Paper: Improved Subset Autoregression: With R Package     Download PDF (Downloads: 11435)
Supplements: v28i02-figures.R: R code to reproduce all figures from the paper Download (Downloads: 1391; 1KB) v28i02-table.R: R code to reproduce all tables from the paper Download (Downloads: 1325; 1KB)

DOI: 10.18637/jss.v028.i02

This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.