SOCR Analyses: Implementation and Demonstration of a New Graphical Statistics Educational Toolkit

Annie Chu, Jenny Cui, Ivo D. Dinov

Main Article Content


The web-based, Java-written SOCR (Statistical Online Computational Resource) tools have been utilized in many undergraduate and graduate level statistics courses for seven years now (Dinov 2006; Dinov et al. 2008b). It has been proven that these resources can successfully improve students' learning (Dinov et al. 2008b). Being first published online in 2005, SOCR Analyses is a somewhat new component and it concentrate on data modeling for both parametric and non-parametric data analyses with graphical model diagnostics. One of the main purposes of SOCR Analyses is to facilitate statistical learning for high school and undergraduate students. As we have already implemented SOCR Distributions and Experiments, SOCR Analyses and Charts fulfill the rest of a standard statistics curricula. Currently, there are four core components of SOCR Analyses. Linear models included in SOCR Analyses are simple linear regression, multiple linear regression, one-way and two-way ANOVA. Tests for sample comparisons include t-test in the parametric category. Some examples of SOCR Analyses' in the non-parametric category are Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, Kolmogorov-Smirnoff test and Fligner-Killeen test. Hypothesis testing models include contingency table, Friedman's test and Fisher's exact test. The last component of Analyses is a utility for computing sample sizes for normal distribution. In this article, we present the design framework, computational implementation and the utilization of SOCR Analyses.

Article Details

Article Sidebar