Authors: | Jerome H. Friedman, Trevor Hastie, Rob Tibshirani | ||||||||||||||
Title: | Regularization Paths for Generalized Linear Models via Coordinate Descent | ||||||||||||||
Abstract: | We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods. | ||||||||||||||
Page views:: 127399. Submitted: 2009-04-22. Published: 2010-02-02. |
|||||||||||||||
Paper: |
Regularization Paths for Generalized Linear Models via Coordinate Descent
Download PDF
(Downloads: 103811)
|
||||||||||||||
Supplements: |
| ||||||||||||||
DOI: |
10.18637/jss.v033.i01
|
![]() This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |