
JSS Journal of Statistical Software
July 2010, Volume 35, Issue 3. http://www.jstatsoft.org/

Learning Bayesian Networks with the bnlearn

R Package

Marco Scutari
University of Padova

Abstract

bnlearn is an R package (R Development Core Team 2010) which includes several algo-
rithms for learning the structure of Bayesian networks with either discrete or continuous
variables. Both constraint-based and score-based algorithms are implemented, and can
use the functionality provided by the snow package (Tierney et al. 2008) to improve their
performance via parallel computing. Several network scores and conditional independence
algorithms are available for both the learning algorithms and independent use. Advanced
plotting options are provided by the Rgraphviz package (Gentry et al. 2010).

Keywords: bayesian networks, R, structure learning algorithms, constraint-based algorithms,
score-based algorithms, conditional independence tests.

1. Introduction

In recent years Bayesian networks have been used in many fields, from On-line Analytical
Processing (OLAP) performance enhancement (Margaritis 2003) to medical service perfor-
mance analysis (Acid et al. 2004), gene expression analysis (Friedman et al. 2000), breast
cancer prognosis and epidemiology (Holmes and Jain 2008).

The high dimensionality of the data sets common in these domains have led to the develop-
ment of several learning algorithms focused on reducing computational complexity while still
learning the correct network. Some examples are the grow-shrink algorithm in Margaritis
(2003), the incremental association algorithm and its derivatives in Tsamardinos et al. (2003)
and in Yaramakala and Margaritis (2005), the sparse candidate algorithm in Friedman et al.
(1999), the optimal reinsertion in Moore and Wong (2003) and the greedy equivalent search
in Chickering (2002).

The aim of the bnlearn package is to provide a free implementation of some of these struc-
ture learning algorithms along with the conditional independence tests and network scores

http://www.jstatsoft.org/

2 Learning Bayesian Networks with the bnlearn R Package

used to construct the Bayesian network. Both discrete and continuous data are supported.
Furthermore the learning algorithms can be chosen separately from the statistical criterion
they are based on (which is usually not possible in the reference implementation provided
by the algorithms’ authors), so that the best combination for the data at hand can be
used. The package is available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=bnlearn.

2. Bayesian networks

Bayesian networks are graphical models where nodes represent random variables (the two
terms are used interchangeably in this article) and arrows represent probabilistic dependencies
between them (Korb and Nicholson 2004).

The graphical structure G = (V, A) of a Bayesian network is a directed acyclic graph (DAG),
where V is the node (or vertex) set and A is the arc (or edge) set. The DAG defines a
factorization of the joint probability distribution of V = {X1, X2, . . . , Xv}, often called the
global probability distribution, into a set of local probability distributions, one for each variable.
The form of the factorization is given by the Markov property of Bayesian networks (Korb and
Nicholson 2004, Section 2.2.4), which states that every random variable Xi directly depends
only on its parents ΠXi :

P(X1, . . . , Xv) =
v∏

i=1

P(Xi |ΠXi) (for discrete variables) (1)

f(X1, . . . , Xv) =
v∏

i=1

f(Xi |ΠXi) (for continuous variables). (2)

The correspondence between conditional independence (of the random variables) and graph-
ical separation (of the corresponding nodes of the graph) has been extended to an arbitrary
triplet of disjoint subsets of V by Pearl (1988) with the d-separation (from direction-dependent
separation). Therefore model selection algorithms first try to learn the graphical structure of
the Bayesian network (hence the name of structure learning algorithms) and then estimate
the parameters of the local distribution functions conditional on the learned structure. This
two-step approach has the advantage that it considers one local distribution function at a
time, and it does not require to model the global distribution function explicitly. Another
advantage is that learning algorithms are able to scale to fit high-dimensional models without
incurring in the so-called curse of dimensionality.

Although there are many possible choices for both the global and the local distribution func-
tions, literature have focused mostly on two cases:

� Multinomial data (the discrete case): Both the global and the local distributions are
multinomial, and are represented as probability or contingency tables. This is by far
the most common assumption, and the corresponding Bayesian networks are usually
referred to as discrete Bayesian networks (or simply as Bayesian networks).

� Multivariate normal data (the continuous case): The global distribution is multivari-
ate normal, and the local distributions are normal random variables linked by linear
constraints. These Bayesian networks are called Gaussian Bayesian networks in Geiger
and Heckerman (1994), Neapolitan (2003) and most recent literature on the subject.

http://CRAN.R-project.org/package=bnlearn

Journal of Statistical Software 3

Other distributional assumptions lead to more complex learning algorithms (such as the non-
parametric approach proposed by Bach and Jordan 2003) or present various limitations due
to the difficulty of specifying the distribution functions in closed form (such as the approach
to learn Bayesian network with mixed variables by Boettcher and Dethlefsen 2003, which does
not allow a node associated with a continuous variable to be the parent of a node associated
with a discrete variable).

3. Structure learning algorithms

Bayesian network structure learning algorithms can be grouped in two categories:

� Constraint-based algorithms: These algorithms learn the network structure by analyz-
ing the probabilistic relations entailed by the Markov property of Bayesian networks
with conditional independence tests and then constructing a graph which satisfies the
corresponding d-separation statements. The resulting models are often interpreted as
causal models even when learned from observational data (Pearl 1988).

� Score-based algorithms: These algorithms assign a score to each candidate Bayesian
network and try to maximize it with some heuristic search algorithm. Greedy search
algorithms (such as hill-climbing or tabu search) are a common choice, but almost any
kind of search procedure can be used.

Constraint-based algorithms are all based on the inductive causation (IC) algorithm by Verma
and Pearl (1991), which provides a theoretical framework for learning the structure causal
models. It can be summarized in three steps:

1. First the skeleton of the network (the undirected graph underlying the network struc-
ture) is learned. Since an exhaustive search is computationally unfeasible for all but
the most simple data sets, all learning algorithms use some kind of optimization such as
restricting the search to the Markov blanket of each node (which includes the parents,
the children and all the nodes that share a child with that particular node).

2. Set all direction of the arcs that are part of a v-structure (a triplet of nodes incident on
a converging connection Xj → Xi ← Xk).

3. Set the directions of the other arcs as needed to satisfy the acyclicity constraint.

Score-based algorithms on the other hand are simply applications of various general purpose
heuristic search algorithms, such as hill-climbing, tabu search, simulated annealing and various
genetic algorithms. The score function is usually score-equivalent (Chickering 1995), so that
networks that define the same probability distribution are assigned the same score.

4. Package implementation

4.1. Structure learning algorithms

bnlearn implements the following constraint-based learning algorithms (the respective func-
tion names are reported in parenthesis):

4 Learning Bayesian Networks with the bnlearn R Package

� Grow-shrink (gs): Based on the grow-shrink Markov blanket, the simplest Markov blan-
ket detection algorithm (Margaritis 2003) used in a structure learning algorithm.

� Incremental association (iamb): Based on the incremental association Markov blanket
(IAMB) algorithm (Tsamardinos et al. 2003), which is based on a two-phase selection
scheme (a forward selection followed by an attempt to remove false positives).

� Fast incremental association (fast.iamb): A variant of IAMB which uses specula-
tive stepwise forward selection to reduce the number of conditional independence tests
(Yaramakala and Margaritis 2005).

� Interleaved incremental association (inter.iamb): Another variant of IAMB which
uses forward stepwise selection (Tsamardinos et al. 2003) to avoid false positives in the
Markov blanket detection phase.

� Max-min parents and children (mmpc): A forward selection technique for neighbourhood
detection based on the maximization of the minimum association measure observed with
any subset of the nodes selected in the previous iterations (Tsamardinos et al. 2006). It
learns the underlying structure of the Bayesian network (all the arcs are undirected, no
attempt is made to detect their orientation).

Three implementations are provided for each algorithm:

� An optimized implementation (used by default) which uses backtracking to roughly
halve the number of independence tests.

� An unoptimized implementation (used when the optimized argument is set to FALSE)
which is faithful to the original description of the algorithm. This implementation is
particularly useful for comparing the behaviour of different combinations of learning
algorithms and statistical tests.

� A parallel implementation. It requires a running cluster set up with the makeCluster

function from the snow package (Tierney et al. 2008, see also Schmidberger et al. 2009),
which is passed to the function via the cluster argument.

The only available score-based learning algorithm is a Hill-Climbing (hc) greedy search on the
space of directed graphs. The optimized implementation (again used by default) uses score
caching, score decomposability and score equivalence to reduce the number of duplicated tests
(Daly and Shen 2007). Random restarts, a configurable number of perturbing operations and
a preseeded initial network structure can be used to avoid poor local maxima (with the
restart, perturb and start arguments, respectively).

4.2. Conditional independence tests

Several conditional independence tests from information theory and classical statistics are
available for use in constraint-based learning algorithms and the ci.test function. In both
cases the test to be used is specified with the test argument (the label associated with each
test is reported in parenthesis).

Conditional independence tests for discrete data are functions of the conditional probability
tables implied by the graphical structure of the network through the observed frequencies

Journal of Statistical Software 5

{nijk, i = 1, . . . , R, j = 1, . . . , C, k = 1, . . . , L} for the random variables X and Y and all the
configurations of the conditioning variables Z:

� Mutual information: An information-theoretic distance measure (Kullback 1959), de-
fined as

MI(X,Y |Z) =
R∑
i=1

C∑
j=1

L∑
k=1

nijk
n

log
nijkn++k

ni+kn+jk
. (3)

It is proportional to the log-likelihood ratio test G2 (they differ by a 2n factor, where
n is the sample size) and it is related to the deviance of the tested models. Both the
asymptotic χ2 test (mi) and the Monte Carlo permutation test (mc-mi) described in
Good (2005) are available.

� Pearson’s X2: The classical Pearson’s X2 test for contingency tables,

X2(X,Y |Z) =

R∑
i=1

C∑
j=1

L∑
k=1

(nijk −mijk)2

mijk
, mijk =

ni+kn+jk

n++k
(4)

Again both the asymptotic χ2 test (x2) and a Monte Carlo permutation test (mc-x2)
from Good (2005) are available.

� Fast mutual information (fmi): A variant of the mutual information which is set to
zero when there aren’t at least five data per parameter, which is the usual threshold for
establishing the correctness of the asymptotic χ2 distribution. This is the same heuristic
defined for the Fast-IAMB algorithm in Yaramakala and Margaritis (2005).

� Akaike information criterion (aict): An experimental AIC-based independence test,
computed comparing the mutual information and the expected information gain. It
rejects the null hypothesis if

MI(X,Y |Z) >
(R− 1)(C − 1)L

n
, (5)

which corresponds to an increase in the AIC score of the network.

In the continuous case conditional independence tests are functions of the partial correlation
coefficients ρXY |Z of X and Y given Z:

� Linear correlation: The linear correlation coefficient ρXY |Z. Both the asymptotic Stu-
dent’s t test (cor) and the Monte Carlo permutation test (mc-cor) described in Legendre
(2000) are available.

� Fisher’s Z : A transformation of the linear correlation coefficient used by commercial
software (such as TETRAD) and the pcalg package (Kalisch and Bühlmann 2007),
which implements the PC constraint-based learning algorithm (Spirtes et al. 2001). It
is defined as

Z(X,Y |Z) =
1

2

√
n− |Z| − 3 log

1 + ρXY |Z

1− ρXY |Z
. (6)

Both the asymptotic normal test (zf) and the Monte Carlo permutation test (mc-zf)
are available.

6 Learning Bayesian Networks with the bnlearn R Package

� Mutual information (mi-g): An information-theoretic distance measure (Kullback 1959),
defined as

MIg(X,Y |Z) = −1

2
log(1− ρ2XY |Z). (7)

It has the same relationship with the log-likelihood ratio as the corresponding test
defined in the discrete case.

4.3. Network scores

Several score functions are available for use in the hill-climbing algorithm and the score

function. The score to be used is specified with the score argument in hc and with the
type argument in the score function (the label associated with each score is reported in
parenthesis).

In the discrete case the following score functions are implemented:

� The likelihood (lik) and log-likelihood (loglik) scores, which are equivalent to the
entropy measure used by Weka (Witten and Frank 2005).

� The Akaike (aic) and Bayesian (bic) information criterion scores, defined as

AIC = log L(X1, . . . , Xv)− d BIC = log L(X1, . . . , Xv)− d

2
log n (8)

The latter is equivalent to the minimum description length described by Rissanen (1978)
and used as a Bayesian network score in Lam and Bacchus (1994).

� The logarithm of the Bayesian Dirichlet equivalent score (bde), a score equivalent Dirich-
let posterior density (Heckerman et al. 1995).

� The logarithm of the K2 score (k2), another Dirichlet posterior density (Cooper and
Herskovits 1992) defined as

K2 =

v∏
i=1

K2(Xi), K2(Xi) =

Li∏
j=1

(Ri − 1)!(∑Ri
k=1 nijk +Ri − 1

)
!

Ri∏
k=1

nijk! (9)

and originally used in the structure learning algorithm of the same name. Unlike the
bde score k2 is not score equivalent.

The only score available for the continuous case is a score equivalent Gaussian posterior
density (bge), which follows a Wishart distribution (Geiger and Heckerman 1994).

4.4. Arc whitelisting and blacklisting

Prior information on the data, such as the ones elicited from experts in the relevant fields, can
be integrated in all learning algorithms by means of the blacklist and whitelist arguments.
Both of them accept a set of arcs which is guaranteed to be either present (for the former) or
missing (for the latter) from the Bayesian network; any arc whitelisted and blacklisted at the
same time is assumed to be whitelisted, and is thus removed from the blacklist.

This combination represents a very flexible way to describe any arbitrary set of assumptions
on the data, and is also able to deal with partially directed graphs:

Journal of Statistical Software 7

� Any arc whitelisted in both directions (i.e., both A → B and B → A are whitelisted)
is present in the graph, but the choice of its direction is left to the learning algorithm.
Therefore one of A→ B, B → A and A−B is guaranteed to be in the Bayesian network.

� Any arc blacklisted in both directions, as well as the corresponding undirected arc, is
never present in the graph. Therefore if both A → B and B → A are blacklisted, also
A−B is considered blacklisted.

� Any arc whitelisted in one of its possible directions (i.e., A → B is whitelisted, but
B → A is not) is guaranteed to be present in the graph in the specified direction. This
effectively amounts to blacklisting both the corresponding undirected arc (A− B) and
its reverse (B → A).

� Any arc blacklisted in one of its possible directions (i.e., A → B is blacklisted, but
B → A is not) is never present in the graph. The same holds for A − B, but not for
B → A.

5. A simple example

In this section bnlearn will be used to analyze a small data set, learning.test. It’s included
in the package itself along with other real word and synthetic data sets, and is used in the
example sections throughout the manual pages due to its simple structure.

5.1. Loading the package

bnlearn and its dependencies (the utils package, which is bundled with R) are available from
CRAN, as are the suggested packages snow and graph (Gentleman et al. 2010). The other
suggested package, Rgraphviz (Gentry et al. 2010), can be installed from Bioconductor and
is loaded along with bnlearn if present.

R> library("bnlearn")

Loading required package: Rgraphviz

Loading required package: graph

Loading required package: grid

Package Rgraphviz loaded successfully.

5.2. Learning a Bayesian network from data

Once bnlearn is loaded, learning.test itself can be loaded into a data frame of the same
name with a call to data.

R> data(learning.test)

R> str(learning.test)

'data.frame': 5000 obs. of 6 variables:

$ A: Factor w/ 3 levels "a","b","c": 2 2 1 1 1 3 3 2 2 2 ...

$ B: Factor w/ 3 levels "a","b","c": 3 1 1 1 1 3 3 2 2 1 ...

$ C: Factor w/ 3 levels "a","b","c": 2 3 1 1 2 1 2 1 2 2 ...

8 Learning Bayesian Networks with the bnlearn R Package

$ D: Factor w/ 3 levels "a","b","c": 1 1 1 1 3 3 3 2 1 1 ...

$ E: Factor w/ 3 levels "a","b","c": 2 2 1 2 1 3 3 2 3 1 ...

$ F: Factor w/ 2 levels "a","b": 2 2 1 2 1 1 1 2 1 1 ...

learning.test contains six discrete variables, stored as factors, each with 2 (for F) or 3 (for
A, B, C, D and E) levels. The structure of the Bayesian network associated with this data set
can be learned for example with the grow-shrink algorithm, implemented in the gs function,
and stored in an object of class bn.

R> bn.gs <- gs(learning.test)

R> bn.gs

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 6

arcs: 5

undirected arcs: 1

directed arcs: 4

average markov blanket size: 2.33

average neighbourhood size: 1.67

average branching factor: 0.67

learning algorithm: Grow-Shrink

conditional independence test: Mutual Information (discrete)

alpha threshold: 0.05

tests used in the learning procedure: 43

optimized: TRUE

Other constraint-based algorithms return the same partially directed network structure (again
as an object of class bn), as can be readily seen with compare.

R> bn2 <- iamb(learning.test)

R> bn3 <- fast.iamb(learning.test)

R> bn4 <- inter.iamb(learning.test)

R> compare(bn.gs, bn2)

[1] TRUE

R> compare(bn.gs, bn3)

[1] TRUE

R> compare(bn.gs, bn4)

[1] TRUE

On the other hand hill-climbing results in a completely directed network, which differs from
the previous one because the arc between A and B is directed (A→ B instead of A−B).

Journal of Statistical Software 9

R> bn.hc <- hc(learning.test, score = "aic")

R> bn.hc

Bayesian network learned via Score-based methods

model:

[A][C][F][B|A][D|A:C][E|B:F]

nodes: 6

arcs: 5

undirected arcs: 0

directed arcs: 5

average markov blanket size: 2.33

average neighbourhood size: 1.67

average branching factor: 0.83

learning algorithm: Hill-Climbing

score: Akaike Information Criterion

penalization coefficient: 1

tests used in the learning procedure: 40

optimized: TRUE

R> compare(bn.hc, bn.gs)

[1] FALSE

Another way to compare the two network structures is to plot them side by side and highlight
the differing arcs. This can be done either with the plot function (see Figure 1):

R> par(mfrow = c(1, 2))

R> plot(bn.gs, main = "Constraint-based algorithms", highlight = c("A", "B"))

R> plot(bn.hc, main = "Hill-Climbing", highlight = c("A", "B"))

or with the more versatile graphviz.plot:

R> par(mfrow = c(1, 2))

R> highlight.opts <- list(nodes = c("A", "B"), arcs = c("A", "B"),

+ col = "red", fill = "grey")

R> graphviz.plot(bn.hc, highlight = highlight.opts)

R> graphviz.plot(bn.gs, highlight = highlight.opts)

which produces a better output for large graphs thanks to the functionality provided by the
Rgraphviz package.

The network structure learned by gs, iamb, fast.iamb and inter.iamb is equivalent to
the one learned by hc; changing the arc A − B to either A → B or to B → A results in
networks with the same score because of the score equivalence property (which holds for
all the implemented score functions with the exception of K2). Therefore if there is any
prior information about the relationship between A and B the appropriate direction can be
whitelisted (or its reverse can blacklisted, which is equivalent in this case).

10 Learning Bayesian Networks with the bnlearn R Package

Constraint−based algorithms

A

B

C

D

E

F

Hill−Climbing

A

B

C

D

E

F

Figure 1: side by side comparison of the Bayesian network structures learned by constraint-
based (gs, iamb, fast.iamb and inter.iamb) and score-based (hc) algorithms. Arcs which
differ between the two network structures are plotted in red.

R> bn.AB <- gs(learning.test, blacklist = c("B", "A"))

R> compare(bn.AB, bn.hc)

[1] TRUE

R> score(bn.AB, learning.test, type = "bde")

[1] -24002.36

R> bn.BA <- gs(learning.test, blacklist = c("A", "B"))

R> score(bn.BA, learning.test, type = "bde")

[1] -24002.36

5.3. Network analysis and manipulation

The structure of a Bayesian network is uniquely specified if its graph is completely directed.
In that case it can be represented as a string with the modelstring function

R> modelstring(bn.hc)

[1] "[A][C][F][B|A][D|A:C][E|B:F]"

whose output is also included in the print method for the objects of class bn. Each node
is printed in square brackets along with all its parents (which are reported after a pipe as a
colon-separated list), and its position in the string depends on the partial ordering defined by
the network structure. The same syntax is used in deal (Boettcher and Dethlefsen 2003), an
R package for learning Bayesian networks from mixed data.

Partially directed graphs can be transformed into completely directed ones with the set.arc,
drop.arc and reverse.arc functions. For example the direction of the arc A − B in the

Journal of Statistical Software 11

bn.gs object can be set to A→ B, so that the resulting network structure is identical to the
one learned by the hill-climbing algorithm.

R> undirected.arcs(bn.gs)

from to

[1,] "A" "B"

[2,] "B" "A"

R> bn.dag <- set.arc(bn.gs, "A", "B")

R> modelstring(bn.dag)

[1] "[A][C][F][B|A][D|A:C][E|B:F]"

R> compare(bn.dag, bn.hc)

[1] TRUE

Acyclicity is always preserved, as these commands return an error if the requested changes
would result in a cyclic graph.

R> set.arc(bn.hc, "E", "A")

Error in arc.operations(x = x, from = from, to = to, op = "set",

check.cycles = check.cycles, :

the resulting graph contains cycles.

Further information on the network structure can be extracted from any bn object with the
following functions:

� whether the network structure is acyclic (acyclic) or completely directed (directed);

� the labels of the nodes (nodes), of the root nodes (root.nodes) and of the leaf nodes
(leaf.nodes);

� the directed arcs (directed.arcs) of the network, the undirected ones (undirected.arcs)
or both of them (arcs);

� the adjacency matrix (amat) and the number of parameters (nparams) associated with
the network structure;

� the parents (parents), children (children), Markov blanket (mb), and neighbourhood
(nbr) of each node.

The arcs, amat and modelstring functions can also be used in combination with empty.graph

to create a bn object with a specific structure from scratch:

R> other <- empty.graph(nodes = nodes(bn.hc))

R> arcs(other) <- data.frame(

+ from = c("A", "A", "B", "D"),

+ to = c("E", "F", "C", "E"))

R> other

Randomly generated Bayesian network

12 Learning Bayesian Networks with the bnlearn R Package

model:

[A][B][D][C|B][E|A:D][F|A]

nodes: 6

arcs: 4

undirected arcs: 0

directed arcs: 4

average markov blanket size: 1.67

average neighbourhood size: 1.33

average branching factor: 0.67

generation algorithm: Empty

This is particularly useful to compare different network structures for the same data, for
example to verify the goodness of fit of the learned network with respect to a particular score
function.

R> score(other, data = learning.test, type = "aic")

[1] -28019.79

R> score(bn.hc, data = learning.test, type = "aic")

[1] -23873.13

5.4. Debugging utilities and diagnostics

Many of the functions of the bnlearn package are able to print additional diagnostic messages
if called with the debug argument set to TRUE. This is especially useful to study the behaviour
of the learning algorithms in specific settings and to investigate anomalies in their results
(which may be due to an insufficient sample size for the asymptotic distribution of the tests
to be valid, for example). For example the debugging output of the call to gs previously used
to produce the bn.gs object reports the exact sequence of conditional independence tests
performed by the learning algorithm, along with the effects of the backtracking optimizations
(some parts are omitted for brevity).

R> gs(learning.test, debug = TRUE)

--

* learning markov blanket of A .

* checking node B for inclusion.

> node B included in the markov blanket (p-value: 0).

> markov blanket now is ' B '.

* checking node C for inclusion.

> A indep. C given ' B ' (p-value: 0.8743202).

* checking node D for inclusion.

> node D included in the markov blanket (p-value: 0).

> markov blanket now is ' B D '.

* checking node E for inclusion.

> A indep. E given ' B D ' (p-value: 0.5193303).

Journal of Statistical Software 13

* checking node F for inclusion.

> A indep. F given ' B D ' (p-value: 0.07368042).

* checking node C for inclusion.

> node C included in the markov blanket (p-value: 1.023194e-254).

> markov blanket now is ' B D C '.

* checking node E for inclusion.

> A indep. E given ' B D C ' (p-value: 0.5091863).

* checking node F for inclusion.

> A indep. F given ' B D C ' (p-value: 0.3318902).

* checking node B for exclusion (shrinking phase).

> node B remains in the markov blanket. (p-value: 9.224694e-291)

* checking node D for exclusion (shrinking phase).

> node D remains in the markov blanket. (p-value: 0)

--

* learning markov blanket of B .

[...]

--

* learning markov blanket of F .

* known good (backtracking): ' B E '.

* known bad (backtracking): ' A C D '.

* nodes still to be tested for inclusion: ' '.

--

* checking consistency of markov blankets.

[...]

--

* learning neighbourhood of A .

* blacklisted nodes: ' '

* whitelisted nodes: ' '

* starting with neighbourhood: ' B D C '

* checking node B for neighbourhood.

> dsep.set = ' E F '

> trying conditioning subset ' '.

> node B is still a neighbour of A . (p-value: 0)

> trying conditioning subset ' E '.

> node B is still a neighbour of A . (p-value: 0)

> trying conditioning subset ' F '.

> node B is still a neighbour of A . (p-value: 0)

> trying conditioning subset ' E F '.

> node B is still a neighbour of A . (p-value: 0)

* checking node D for neighbourhood.

> dsep.set = ' C '

> trying conditioning subset ' '.

> node D is still a neighbour of A . (p-value: 0)

> trying conditioning subset ' C '.

> node D is still a neighbour of A . (p-value: 0)

* checking node C for neighbourhood.

> dsep.set = ' D '

14 Learning Bayesian Networks with the bnlearn R Package

> trying conditioning subset ' '.

> node C is not a neighbour of A . (p-value: 0.8598334)

--

* learning neighbourhood of B .

[...]

--

* learning neighbourhood of F .

* blacklisted nodes: ' '

* whitelisted nodes: ' '

* starting with neighbourhood: ' E '

* known good (backtracking): ' E '.

* known bad (backtracking): ' A B C D '.

--

* checking consistency of neighbourhood sets.

[...]

--

* v-structures centered on D .

* checking A -> D <- C

> chosen d-separating set: ' '

> testing A vs C given D (0)

@ detected v-structure A -> D <- C

--

* v-structures centered on E .

* checking B -> E <- F

> chosen d-separating set: ' '

> testing B vs F given E (1.354269e-50)

@ detected v-structure B -> E <- F

--

* v-structures centered on F .

--

* applying v-structure A -> D <- C (0.000000e+00)

* applying v-structure B -> E <- F (1.354269e-50)

--

* detecting cycles ...

[...]

--

* propagating directions for the following undirected arcs:

[...]

Other functions which provide useful diagnostics include (but are not limited to) compare

(which reports the differences between the two network structures with respect to arcs, parents
and children for each node), score and nparams (which report the number of parameters and
the contribution of each node to the network score, respectively).

Journal of Statistical Software 15

6. Practical examples

6.1. The ALARM network

The ALARM (“A Logical Alarm Reduction Mechanism”) network from Beinlich et al. (1989)
is a Bayesian network designed to provide an alarm message system for patient monitoring.
It has been widely used (see for example Tsamardinos et al. 2006 and Friedman et al. 1999)
as a case study to evaluate the performance of new structure learning algorithms.

ACO2

ANES

APL

BP

CCHL

COCVP

DISC

ECO2

ERCAERLO

FIO2

HIST HR

HRBP HREKHRSA

HYP

INT KINK

LVF

LVV

MINV

MVS

PAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

●●

●

●

●

●

●

● ●

●

●

●

●●●

●

●● ●●

●

●

●

●

● ● ●

●●

●

●●

●

●● ●

●

CVPPCWP

HIST

TPR

BP

CO

HRBP

HREK HRSA

PAP

SAO2

FIO2

PRSSECO2MINV

MVS

HYPLVF APLANES

PMB

INT

KINK

DISC

LVV STKV CCHL

ERLOHR

ERCA

SHNTPVS

ACO2

VALVVLNG VTUB

VMCH

CVP PCWP

HIST

TPR

BP

CO HRBP HREK HRSA

PAP

SAO2

FIO2 PRSS

ECO2MINV

MVS

HYPLVF

APL

ANES

PMB

INTKINK

DISC

LVVSTKV

CCHL

ERLO HR ERCA

SHNT PVS

ACO2

VALV VLNG

VTUB

VMCH

CVP

PCWP

HIST

TPR

BP

CO

HRBP

HREK HRSA

PAP

SAO2

FIO2

PRSS

ECO2

MINV

MVS

HYP

LVF

APL

ANES

PMBINT

KINK

DISC

LVV

STKV

CCHL

ERLO

HR ERCA

SHNT

PVSACO2

VALV

VLNG

VTUB

VMCH

Figure 2: The ALARM data set: the original network structure (top left) and the network
structures learned by gs (top right), inter.iamb (bottom left) and hc (bottom right).

16 Learning Bayesian Networks with the bnlearn R Package

gs iamb fast.iamb inter.iamb hc

independence tests / 1727 2874 2398 3106 2841
network comparisons

learned arcs 42 43 45 43 53
(directed/undirected) (29/13) (29/14) (32/13) (30/13) (53/0)

execution time 13.54360 17.63735 14.80890 18.59825 72.38705

Table 1: Performance of implemented learning algorithms with the alarm data set, measured
in the number of conditional independence tests (for constraint-based algorithms) or network
score comparisons (for score-based algorithms), the number of arcs and the execution time
on an Intel Core 2 Duo machine with 1GB of RAM.

The alarm data set includes a sample of size 20000 generated from this network, which
contains 37 discrete variables (with two to four levels each) and 46 arcs. Every learning
algorithm implemented in bnlearn (except mmpc) is capable of recovering the ALARM network
to within a few arcs and arc directions (see Figure 2).

R> alarm.gs <- gs(alarm)

R> alarm.iamb <- iamb(alarm)

R> alarm.fast.iamb <- fast.iamb(alarm)

R> alarm.inter.iamb <- inter.iamb(alarm)

R> alarm.mmpc <- mmpc(alarm)

R> alarm.hc <- hc(alarm, score = "bic")

The number of conditional independence tests, which provides an implementation independent
performance indicator, is similar in all constraint-based algorithms (see Table 1); the same
holds for the number of network score comparisons performed by hc, even though the learned
network has about ten more arcs than the other ones.

The quality of the learned network improves significantly if the Monte Carlo versions of the
tests are used instead of the parametric ones, as probability structure of the ALARM network
results in many sparse contingency tables. For example a side by side comparison of the two
versions of Pearson’s X2 test shows that the use of the nonparametric tests leads to the correct
identification of all but five arcs, instead of the 12 missed with the parametric tests.

R> dag <- empty.graph(names(alarm))

R> modelstring(dag) <- paste("[HIST|LVF][CVP|LVV][PCWP|LVV][HYP][LVV|HYP:LVF]",

+ "[LVF][STKV|HYP:LVF][ERLO][HRBP|ERLO:HR][HREK|ERCA:HR][ERCA][HRSA|ERCA:HR]",

+ "[ANES][APL][TPR|APL][ECO2|ACO2:VLNG][KINK][MINV|INT:VLNG][FIO2]",

+ "[PVS|FIO2:VALV][SAO2|PVS:SHNT][PAP|PMB][PMB][SHNT|INT:PMB][INT]",

+ "[PRSS|INT:KINK:VTUB][DISC][MVS][VMCH|MVS][VTUB|DISC:VMCH]",

+ "[VLNG|INT:KINK:VTUB][VALV|INT:VLNG][ACO2|VALV][CCHL|ACO2:ANES:SAO2:TPR]",

+ "[HR|CCHL][CO|HR:STKV][BP|CO:TPR]", sep = "")

R> alarm.gs <- gs(alarm, test = "x2")

R> alarm.mc <- gs(alarm, test = "mc-x2", B = 10000)

R> par(mfrow = c(1,2), omi = rep(0, 4), mar = c(1, 0, 1, 0))

R> graphviz.plot(dag, highlight = list(arcs = arcs(alarm.gs)))

R> graphviz.plot(dag, highlight = list(arcs = arcs(alarm.mc)))

Journal of Statistical Software 17

●
●

●

●

●

●●

●

●

●●

●

● ●
● ●●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

ACO2

ANES

APL

BP

CCHL

COCVP

DISC

ECO2

ERCAERLO

FIO2

HIST HR

HRBP HREKHRSA

HYP

INT KINK

LVF

LVV

MINV

MVS

PAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

●
●

●

●

●

●●

●

●

●●

●

● ●
● ●●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

ACO2

ANES

APL

BP

CCHL

COCVP

DISC

ECO2

ERCAERLO

FIO2

HIST HR

HRBP HREKHRSA

HYP

INT KINK

LVF

LVV

MINV

MVS

PAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

Figure 3: Side by side comparison of the network structures learned from the alarm data set
by the grow-shrink algorithm with the parametric (on the left) and nonparametric (on the
right) versions of Pearson’s X2 test. The arcs of the true network structure present in each
case are highlighted in red.

6.2. The examination marks data set

The marks data set is a small data set studied in Mardia et al. (1979), Whittaker (1990) and
Edwards (2000). It contains five continuous variables, the examination marks for 88 students
in five different subjects (mechanics, vectors, algebra, analysis and statistics).

R> data(marks)

R> str(marks)

'data.frame': 88 obs. of 5 variables:

$ MECH: num 77 63 75 55 63 53 51 59 62 64 ...

$ VECT: num 82 78 73 72 63 61 67 70 60 72 ...

$ ALG : num 67 80 71 63 65 72 65 68 58 60 ...

$ ANL : num 67 70 66 70 70 64 65 62 62 62 ...

$ STAT: num 81 81 81 68 63 73 68 56 70 45 ...

The purpose of the analysis was to find a suitable way to combine or average these marks.
Since they are obviously correlated, the exact weights they are assigned depend on the esti-
mated dependence structure of the data.

Under the assumption of multivariate normality this analysis requires the examination of the
partial correlation coefficients, some of which are clearly not significative:

R> ci.test("MECH", "ANL", "ALG", data = marks)

Pearson's Linear Correlation

data: MECH ~ ANL | ALG

cor = 0.0352, df = 85, p-value = 0.7459

alternative hypothesis: true value is not equal to 0

18 Learning Bayesian Networks with the bnlearn R Package

MECH

VECT

ALG

ANL

STAT MECH

VECT

ALG

ANL

STAT

MECH

VECT

ALG

ANL

STAT

Figure 4: Graphical models learned from the marks data set. From left to right: the network
learned by mmpc (which is identical to the Gaussian graphical model in Edwards 2000), the
one learned by the other constraint-based algorithms and the one learned by hc.

R> ci.test("STAT", "VECT", "ALG", data = marks)

Pearson's Linear Correlation

data: STAT ~ VECT | ALG

cor = 0.0527, df = 85, p-value = 0.628

alternative hypothesis: true value is not equal to 0

This is confirmed by the other conditional independence tests, both parametric and nonpara-
metric; for example:

R> ci.test("STAT", "VECT", "ALG", data = marks, test = "zf")$p.value

[1] 0.6289112

R> ci.test("STAT", "VECT", "ALG", data = marks, test = "mc-cor")$p.value

[1] 0.6332

R> ci.test("STAT", "VECT", "ALG", data = marks, test = "mi-g")$p.value

[1] 0.6209406

R> ci.test("STAT", "VECT", "ALG", data = marks, test = "mc-mi-g")$p.value

[1] 0.6226

All learning algorithms result in very similar network structures, which agree up to the direc-
tion of the arcs (see Figure 4). In all models the marks for analysis and statistics are condi-
tionally independent from the ones for mechanics and vectors, given algebra. The structure
of the graph suggests that the latter is essential in the overall evaluation of the examination.

7. Other packages for learning Bayesian networks

There exist other packages in R which are able to either learn the structure of a Bayesian net-
work or fit and manipulate its parameters. Some examples are pcalg (Kalisch and Bühlmann

Journal of Statistical Software 19

2007), which implements the PC algorithm and focuses on the causal interpretation of Bayesian
networks; deal (Boettcher and Dethlefsen 2003), which implements a hill-climbing search for
mixed data; and the suite composed by gRbase (Dethlefsen and Højsgaard 2005), gRain
(Højsgaard 2010), gRc (Højsgaard and Lauritzen 2007), which implements various exact and
approximate inference procedures.

However, none of these packages is as versatile as bnlearn for learning the structure of Bayesian
networks. deal and pcalg implement a single learning algorithm, even though are able to
handle both discrete and continuous data. Furthermore, the PC algorithm has a poor perfor-
mance in terms of speed and accuracy compared to newer constraint-based algorithms such
as grow-shrink and IAMB (Tsamardinos et al. 2003). bnlearn also offers a wider selection of
network scores and conditional independence tests; in particular it’s the only R package able
to learn the structure of Bayesian networks using permutation tests, which are superior to
the corresponding asymptotic tests at low sample sizes.

8. Conclusions

bnlearn is an R package which provides a free implementation of some Bayesian network struc-
ture learning algorithms appeared in recent literature, enhanced with algorithmic optimiza-
tions and support for parallel computing. Many score functions and conditional independence
tests are provided for both independent use and the learning algorithms themselves.

bnlearn is designed to provide the versatility needed to handle experimental data analy-
sis. It handles both discrete and continuous data, and it supports any combination of the
implemented learning algorithms and either network scores (for score-based algorithms) or
conditional independence tests (for constraints-based algorithms). Furthermore it simplifies
the analysis of the learned networks by providing a single object class (bn) for all the al-
gorithms and a set of utility functions to perform descriptive statistics and basic inference
procedures.

Acknowledgments

Many thanks to Prof. Adriana Brogini, my supervisor at the Ph.D. School in Statistical
Sciences (University of Padova), for proofreading this article and giving many useful comments
and suggestions. I would also like to thank Radhakrishnan Nagarajan (University of Arkansas
for Medical Sciences) and Suhaila Zainudin (Universiti Teknologi Malaysia) for their support,
which encouraged me in the development of this package.

References

Acid S, de Campos LM, Fernandez-Luna J, Rodriguez S, Rodriguez J, Salcedo J (2004). “A
Comparison of Learning Algorithms for Bayesian Networks: A Case Study Based on Data
from An Emergency Medical Service.” Artificial Intelligence in Medicine, 30, 215–232.

Bach FR, Jordan MI (2003). “Learning Graphical Models with Mercer Kernels.” In Advances
in Neural Information Processing Systems (NIPS) 15, pp. 1009–1016. MIT Press.

20 Learning Bayesian Networks with the bnlearn R Package

Beinlich IA, Suermondt HJ, Chavez RM, Cooper GF (1989). “The ALARM Monitoring
System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks.”
In Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, pp.
247–256. Springer-Verlag. URL http://www.cs.huji.ac.il/labs/compbio/Repository/

Datasets/alarm/alarm.htm.

Boettcher SG, Dethlefsen C (2003). “deal: A Package for Learning Bayesian Networks.”
Journal of Statistical Software, 8(20), 1–40. URL http://www.jstatsoft.org/v08/i20/.

Chickering DM (1995). “A Transformational Characterization of Equivalent Bayesian Network
Structures.” In UAI ’95: Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence, pp. 87–98. Morgan Kaufmann.

Chickering DM (2002). “Optimal Structure Identification with Greedy Search.” Journal of
Machine Learning Research, 3, 507–554.

Cooper GF, Herskovits E (1992). “A Bayesian Method for the Induction of Probabilistic
Networks from Data.” Machine Learning, 9(4), 309–347.

Daly R, Shen Q (2007). “Methods to Accelerate the Learning of Bayesian Network Structures.”
In Proceedings of the 2007 UK Workshop on Computational Intelligence. Imperial College,
London.

Dethlefsen C, Højsgaard S (2005). “A Common Platform for Graphical Models in R: The gR-
base Package.” Journal of Statistical Software, 14(17), 1–12. URL http://www.jstatsoft.

org/v14/i17/.

Edwards DI (2000). Introduction to Graphical Modelling. Springer-Verlag, New York.

Friedman N, Linial M, Nachman I (2000). “Using Bayesian Networks to Analyze Expression
Data.” Journal of Computational Biology, 7, 601–620.

Friedman N, Pe’er D, Nachman I (1999). “Learning Bayesian Network Structure from Massive
Datasets: The ”Sparse Candidate” Algorithm.” In Proceedings of Fifteenth Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 206–221. Morgan Kaufmann.

Geiger D, Heckerman D (1994). “Learning Gaussian Networks.” Technical report, Microsoft
Research, Redmond, Washington. Available as Technical Report MSR-TR-94-10.

Gentleman R, Whalen E, Huber W, Falcon S (2010). graph: A Package to Handle Graph
Data Structures. R package version 1.26.0, URL http://CRAN.R-project.org/.

Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2010). Rgraphviz: Provides
Plotting Capabilities for R Graph Objects. R package version 1.26.0, URL http://www.

bioconductor.org/packages/2.6/bioc/html/Rgraphviz.html.

Good P (2005). Permutation, Parametric and Bootstrap Tests of Hypotheses. 3rd edition.
Springer-Verlag, New York.

Heckerman D, Geiger D, Chickering DM (1995). “Learning Bayesian Networks: The Combi-
nation of Knowledge and Statistical Data.” Machine Learning, 20(3), 197–243. Available
as Technical Report MSR-TR-94-09.

http://www.cs.huji.ac.il/labs/compbio/Repository/Datasets/alarm/alarm.htm
http://www.cs.huji.ac.il/labs/compbio/Repository/Datasets/alarm/alarm.htm
http://www.jstatsoft.org/v08/i20/
http://www.jstatsoft.org/v14/i17/
http://www.jstatsoft.org/v14/i17/
http://CRAN.R-project.org/
http://www.bioconductor.org/packages/2.6/bioc/html/Rgraphviz.html
http://www.bioconductor.org/packages/2.6/bioc/html/Rgraphviz.html

Journal of Statistical Software 21

Højsgaard S (2010). gRain: Graphical Independence Networks. R package version 0.8.5, URL
http://CRAN.R-project.org/package=gRain.

Højsgaard S, Lauritzen SL (2007). “Inference in Graphical Gaussian Models with Edge and
Vertex Symmetries with the gRc Package for R.” Journal of Statistical Software, 23(6),
1–26. URL http://www.jstatsoft.org/v23/i06/.

Holmes DE, Jain LC (eds.) (2008). Innovations in Bayesian Networks: Theory and Applica-
tions, volume 156 of Studies in Computational Intelligence. Springer-Verlag, New York.

Kalisch M, Bühlmann P (2007). “Estimating High-Dimensional Directed Acyclic Graphs with
the PC-Algorithm.” Journal of Machine Learning Research, 8, 613–66.

Korb K, Nicholson A (2004). Bayesian Artificial Intelligence. Chapman and Hall.

Kullback S (1959). Information Theory and Statistics. John Wiley & Sons, Hoboken.

Lam W, Bacchus F (1994). “Learning Bayesian Belief Networks: An Approach Based on the
MDL Principle.” Computational Intelligence, 10, 269–293.

Legendre P (2000). “Comparison of Permutation Methods for the Partial Correlation and
Partial Mantel Tests.” Journal of Statistical Computation and Simulation, 67, 37–73.

Mardia KV, Kent JT, Bibby JM (1979). Multivariate Analysis. Academic Press.

Margaritis D (2003). Learning Bayesian Network Model Structure from Data. Ph.D. thesis,
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA. Available as
Technical Report CMU-CS-03-153.

Moore A, Wong W (2003). “Optimal Reinsertion: A New Search Operator for Accelerated
and More Accurate Bayesian Network Structure Learning.” In Proceedings of the 20th
International Conference on Machine Learning (ICML ’03), pp. 552–559. AAAI Press.

Neapolitan RE (2003). Learning Bayesian Networks. Prentice Hall.

Pearl J (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Rissanen J (1978). “Modeling by Shortest Data Description.” Automatica, 14, 465–471.

Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, Mansmann U (2009). “State
of the Art in Parallel Computing with R.” Journal of Statistical Software, 31(1), 1–27.
URL http://www.jstatsoft.org/v31/i01/.

Spirtes P, Glymour C, Scheines R (2001). Causation, Prediction and Search. MIT Press.

Tierney L, Rossini AJ, Li N, Sevcikova H (2008). snow: Simple Network of Workstations.
R package version 0.3-3, URL http://CRAN.R-project.org/package=snow.

http://CRAN.R-project.org/package=gRain
http://www.jstatsoft.org/v23/i06/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v31/i01/
http://CRAN.R-project.org/package=snow

22 Learning Bayesian Networks with the bnlearn R Package

Tsamardinos I, Aliferis CF, Statnikov A (2003). “Algorithms for Large Scale Markov Blanket
Discovery.” In Proceedings of the Sixteenth International Florida Artificial Intelligence
Research Society Conference, pp. 376–381. AAAI Press.

Tsamardinos I, Brown LE, Aliferis CF (2006). “The Max-Min Hill-Climbing Bayesian Network
Structure Learning Algorithm.” Machine Learning, 65(1), 31–78.

Verma TS, Pearl J (1991). “Equivalence and Synthesis of Causal Models.” Uncertainty in
Artificial Intelligence, 6, 255–268.

Whittaker J (1990). Graphical Models in Applied Multivariate Statistics. John Wiley & Sons,
Hoboken.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd edition. Morgan Kaufmann.

Yaramakala S, Margaritis D (2005). “Speculative Markov Blanket Discovery for Optimal
Feature Selection.” In ICDM ’05: Proceedings of the Fifth IEEE International Conference
on Data Mining, pp. 809–812. IEEE Computer Society, Washington, DC.

Affiliation:

Marco Scutari
Department of Statistical Sciences
University of Padova
Via Cesare Battisti 241, 35121 Padova, Italy
E-mail: marco.scutari@stat.unipd.it

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 35, Issue 3 Submitted: 2009-09-30
July 2010 Accepted: 2010-05-13

mailto:marco.scutari@stat.unipd.it
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Bayesian networks
	Structure learning algorithms
	Package implementation
	Structure learning algorithms
	Conditional independence tests
	Network scores
	Arc whitelisting and blacklisting

	A simple example
	Loading the package
	Learning a Bayesian network from data
	Network analysis and manipulation
	Debugging utilities and diagnostics

	Practical examples
	The ALARM network
	The examination marks data set

	Other packages for learning Bayesian networks
	Conclusions

