Authors: | Hai Liu, Kung-Sik Chan | ||||
Title: | Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis | ||||
Abstract: | Zero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM), which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM) for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the packageare useful for model prediction and model selection. We demonstrate the use ofthe COZIGAM package via some simulation studies and a real application. | ||||
Page views:: 7403. Submitted: 2009-02-25. Published: 2010-07-26. |
|||||
Paper: |
Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis
Download PDF
(Downloads: 7565)
|
||||
Supplements: |
| ||||
DOI: |
10.18637/jss.v035.i11
|
![]() This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |