
JSS Journal of Statistical Software
December 2010, Volume 37, Issue 8. http://www.jstatsoft.org/

RGtk2: A Graphical User Interface Toolkit for R

Michael Lawrence
Fred Hutchinson Cancer Research Center

Duncan Temple Lang
University of California, Davis

Abstract

Graphical user interfaces (GUIs) are growing in popularity as a complement or alter-
native to the traditional command line interfaces to R. RGtk2 is an R package for creating
GUIs in R. The package provides programmatic access to GTK+ 2.0, an open-source GUI
toolkit written in C. To construct a GUI, the R programmer calls RGtk2 functions that
map to functions in the underlying GTK+ library. This paper introduces the basic con-
cepts underlying GTK+ and explains how to use RGtk2 to construct GUIs from R. The
tutorial is based on simple and pratical programming examples. We also provide more
complex examples illustrating the advanced features of the package. The design of the
RGtk2 API and the low-level interface from R to GTK+ are discussed at length. We
compare RGtk2 to alternative GUI toolkits for R.

Keywords: graphical user interface, GUI, R, GTK+.

1. Introduction

An interface, in the most general sense, is the boundary across which two entities commu-
nicate. In most cases, the communication is bidirectional, involving input and output from
both of the interfaced entities. In computing, there are two general types of interfaces: ma-
chine interfaces and user interfaces (Unwin and Hofmann 1999). A machine interface does
not involve humans, while a user interface is between a human and a machine. This paper
discusses a machine interface between two software components, the R platform for statistical
computing (R Development Core Team 2010) and GTK+, a library for constructing graphical
user interfaces (GTK+ Development Team 2010; Krause 2007).

Two common types of user interface in statistical computing are the command line interface
(CLI) and the graphical user interface (GUI). The usual CLI consists of a textual console
where the user types a sequence of commands at a prompt. The R console is an example of
a CLI. A GUI is the primary means of interacting with desktops, like Windows and Mac OS,
and statistical software like JMP (SAS Institute Inc. 2007). These interfaces are based on the

http://www.jstatsoft.org/

2 RGtk2: A Graphical User Interface Toolkit for R

WIMP (window, icon, menu, and pointer) paradigm (Penners 2005). WIMP was developed
at Xerox PARC in the 1970’s and was popularized by the Apple Macintosh. On a WIMP
desktop, application GUIs are contained within windows, and resources, such as documents,
are represented by graphical icons. User controls are packed into hierarchical drop-down
menus, buttons, sliders, etc. The user manipulates the windows, icons and menus with a
pointer device, such as a mouse. The windows, icons, and menus, as well as other graphical
controls such as buttons, sliders and text fields, have come to be known as widgets. The
graphical event-driven, non-procedural nature and overall complexity of widgets makes their
implementation a non-trivial task. To alleviate the burden on the application programmer,
reusable widgets are collected into widget toolkits.

There is often debate over the relative merits of a CLI and a GUI lacking a console. The
comparison largely depends on the skills and needs of the user (Unwin and Hofmann 1999).
Effective use of a CLI requires the user to be proficient in the command language under-
stood by the interface. For example, with a CLI, R users need to understand the R language.
Learning a computer language often demands a significant commitment of time and energy;
however, given a small amount of knowledge, one can use the language to perform arbitrary,
rich tasks. A graphical interface is much less general and restrictive, but typically makes
performing a specific task easier. It does this two different ways: a) stream-lining the steps
involved in the task by providing a constrained context, and b) removing the need to re-
member function names and syntax. Different users benefit from the two different interfaces
for different tasks. And there is little doubt that for occasional users of a language and for
users focused a specific task, a well-designed GUI is easier to learn and more accessible than
a general purpose programming language.

Considering the widespread use and popular appeal of the R platform and the rich set of state-
of-the-art statistical methodology it provides, it is desirable to try to make these available to
a broader set of users by simplifying the knowledge needed to use such methods. The CLI
has always been the most popular interface to R as it is the generic interface provided on
all platforms and there has been much less focus in the R community on providing graphical
interfaces for specific tasks. On some platforms, a CLI is a component of a larger GUI with
menus containing various utilities for working with R. Examples of CLI-based R GUIs include
the official Windows and Mac OS X GUIs, as well as the cross-platform Java GUI for R
(JGR, Helbig et al. 2005). Although these interfaces are GUIs, they are still very much in
essence CLIs, in that the primary mode of interacting with R is the same. Thus, these GUIs
appeal mostly to the power users of R. A separate set of GUIs targets the second group of
users, those learning the R language. Since this group includes many students, these GUIs
are often designed to teach general statistical concepts in addition to R. A CLI component
is usually present in the interface, though it is deemphasized by the surrounding GUI, which
is analogous to a set of “training wheels” on a bicycle. Examples of these GUIs include Poor
Man’s GUI (pmg, Verzani 2010) and R Commander (Fox 2005). The third group of users,
those who only require R for certain tasks and do not wish to learn the language, are targeted
by task-specific GUIs. These interfaces usually do not contain a command line, as the limited
scope of the task does not require it. If a task-specific GUI fits a task particularly well, it
may even appeal to an experienced user. There are many examples of task-specific GUIs in
R, including explorase (Cook et al. 2008), limmaGUI (Smyth 2005), and Rattle (Williams
2010).

The task-specific GUIs, as well as more general R GUIs, are often implemented in the R

Journal of Statistical Software 3

language. The main advantage to writing a GUI in R is direct access to its statistical analysis
functionality. The extensible nature of the R language and its support for rapid prototyping
particularly faciliate the construction of task-specific GUIs. Building a GUI in R, as in any
language, is made easier through the use of a widget toolkit. The tcltk package (Dalgaard
2001, 2002), which provides access to Tcl/Tk (Ousterhout 1994; Welch 2003), is the most often
used GUI toolkit for R. Others include RGtk (Temple Lang 2001-2005), based on GTK+;
RwxWidgets (Temple Lang 2008b), based on wxWidgets (Smart et al. 2005); and gWidgets
(Verzani 2009), a simplified, common interface to several toolkits, including GTK+, Tcl/Tk
and Java Swing. There are also packages for embedding R graphics in custom interfaces,
such as cairoDevice (Lawrence 2009) and (the now defunct) gtkDevice (Drake et al. 2005) for
GTK+ and tkrplot (Tierney 2008) for Tcl/Tk.

RGtk2 is a GUI toolkit for R derived from the RGtk package. Like RGtk, RGtk2 provides
programmatic access to GTK+, a cross-platform (Windows, Mac, and Linux) widget toolkit.
The letters GTK stand for the GIMP ToolKit, with the word GIMP recording the origin of
the library as part of the GNU Image Manipulation Program. GTK+ is written in C, which
facilitates access from languages like R that are also implemented in C. It is licensed under the
Lesser GNU Public License (LGPL). GTK+ provides the same widgets on every platform,
though it can be customized to emulate platform-specific look and feel. The original RGtk
is bound to the previous generation of GTK+, version 1.2. RGtk2 is based on GTK+ 2.0,
the current generation. Henceforth, this paper will only refer to RGtk2, although many of
the fundamental features of RGtk2 are inherited from RGtk. The package is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
RGtk2.

We continue with the fundamentals of the GTK+ GUI and the RGtk2 package. This is
followed by a tutorial, including examples, on using RGtk2 to construct basic to intermediate
GUIs. The paper then moves into a more technical domain, introducing the advanced features
of the interface, including the creation of new types of widgets. We then present a technical
description of the design and generation of the interface, which is followed by a discussion
of more general binding issues. Next, we compare RGtk2 to existing GUI toolkits in R.
We conclude by mentioning some applications of RGtk2 and explore directions for future
development.

2. Fundamentals

This section begins with an introduction to the basic widgets and elements of the of the
GTK+ library. We then turn our attention to the RGtk2 interface to GTK+, explaining how
to create and manipulate widgets and how to respond to user input. The section concludes
by introducing widget layout, the process of determining the size and position of each widget
on the screen.

2.1. GTK+ widgets

Widget type hierarchy

The left panel of Figure 1 shows a GTK+ GUI that allows the user to select a CRAN mirror
for downloading R packages. This GUI is likely familiar to many R users, since a similar

http://CRAN.R-project.org/package=RGtk2
http://CRAN.R-project.org/package=RGtk2

4 RGtk2: A Graphical User Interface Toolkit for R

Window

Vertical Box

Horizontal Box

Image Label

Horizontal Button Box

Button Button

Scrolled Window

List View

Figure 1: A dialog for selecting a CRAN mirror constructed using the RGtk2 package. The
screenshot of the dialog is shown on the left. The user selects a mirror from the list and clicks
the OK button to confirm the choice. In the image on the right, each rectangle corresponds
to a widget in the GUI. The window is at the top-level, and each of the other widgets is
geometrically contained within its parent. Many of the container widgets are invisible in the
screenshot.

GtkContainer

GtkWidget

GtkBin

GtkWindow

GtkNotebook

GtkMisc

GtkLabel

GObject

Figure 2: A small portion of the GTK+ class hierarchy. All widgets are derived from the
GtkWidget class, which is derived, indirectly, from the GObject base class.

Journal of Statistical Software 5

interface is present in the official Windows and Mac OS X R GUIs, among others. There are
several different types of widgets in the CRAN mirrors GUI. A text label instructs the user
to choose a mirror. A list control/widget contains the names of the available mirrors, and
there are buttons for confirming or canceling the choice. The interface is enclosed by another
type of widget, a window.

All of these widget types have functionality in common. For example, they are all drawn on
the screen in a consistent style. To formalize this relationship and to simplify implementation
by sharing code between widgets, GTK+ defines an inheritance hierarchy for its widget types,
or classes. A small portion of the GTK+ class hierarchy is shown in Figure 2. For specifying
the hierarchy, GTK+ relies on GObject, a C library that implements a class-based, single-
inheritance object-oriented system. Each type of GTK+ widget is a GObject class that
inherits from the base GtkWidget class which provides the general characteristics shared by
all widget classes, e.g., properties giving the location, color; methods for hiding, showing and
painting the widget. A GObject class encapsulates behaviors that all instances of the class
share. Each class has a single parent from which it inherits the behaviors of its ancestors. A
class can override some specific inherited behaviors. A more detailed and technical explanation
of GObject is available in Section 5.2.

Widget container hierarchy

There is another tree hierarchy that is orthogonal to the class inheritance hierarchy. This
hierarchy involves widget instances rather than widget classes. Each widget instance has a
single parent instance in which it is contained, except for a top-level window which has no
parent and serves as the root of the tree. Child widgets are contained within the rectangular
region of their parents. In Figure 1, for example, the label, list of mirrors, and buttons are all
contained within the top-level window, meaning that the window is the common ancestor of
the other widgets. The right panel of Figure 1 shows, in a simplified way, the two dimensional
nesting of the widgets in the mirror selection example. Widgets that can contain other widgets
are called containers and their classes are derived from the GtkContainer class. Windows
and tabbed notebooks are examples of containers. Combining primitive widgets like labels
and icons within containers leads to more complex displays, such as menus, tool bars and even
buttons which contain labels to display the text. A container is responsible for allocating its
space to its children. This process is called layout management and is described in Section 2.3.

2.2. GTK+ widgets in R

RGtk2 provides an Application Programming Interface (API) to the GTK+ library. A pro-
grammer uses an API to create an application based on functions implemented within a
separate module. It is a contract that specifies in detail the functionality available to a
programmer without specifying how that functionality is implemented.

As with other user interfaces, an API should be consistent and efficient to use. As an R pack-
age, RGtk2 primarily aims to be consistent with R conventions. This means hiding aspects
of the GTK+ API that are foreign to R, such as explicit memory management. A secondary
concern is consistency with the underlying GTK+ API. The developers of GTK+ have in-
vested a significant amount of thought into its design. Thus, RGtk2 endeavors to interface
R to the virtual entirety of GTK+, without leaving any gaps that may be unanticipated by
the user. The only omissions are those that would violate consistency with R. For example,

6 RGtk2: A Graphical User Interface Toolkit for R

Figure 3: “Hello World” in GTK+. A window containing a single button displaying a label
with the text Hello World.

functions related to explicit memory management were excluded, as memory in R is managed
by a garbage collector. Array length parameters are also excluded, as the length of a vector is
always known in R. The RGtk2 API has also been designed for ease/efficiency of use. Towards
this end, it specifies a default value for a function parameter whenever sensible and uses a
special object-oriented syntax, as introduced by the SJava package (Temple Lang 2006b).

To demonstrate the basic syntax and features of the RGtk2 API, we will construct a simple
“Hello World” GUI, shown in Figure 3.

We will gradually progress from this trivial GUI to the aforementioned CRAN mirrors GUI
and beyond. The first step is to create a top-level window to contain our GUI. Creating an
instance of a GTK+ widget requires calling a single R function, known as a constructor. The
constructor for a class has the same name as the class, except the first character is lowercase.
The following statement constructs an instance of the GtkWindow class:

R> window <- gtkWindow("toplevel", show = FALSE)

The first argument to the constructor for GtkWindow corresponds to the type of the top-
level window. The set of possible window types is specified by what in C is known as an
enumeration. Since enumerations are foreign to R, RGtk2 accepts string representations of
enumeration values, like "toplevel". For every GTK+ enumeration, RGtk2 provides an R
vector that maps the nicknames to the underlying numeric values. In the above case, the
vector is named GtkWindowType. The expression names(GtkWindowType) returns the names
of the possible values of the GtkWindowType enumeration, and the same applies to all other
enumerations. It is rarely necessary to explicitly use the enumeration vectors; specifying the
nickname will work in most cases, including all method invocations and is preferable as it is
easier for human readers to comprehend.

The show argument is the last argument for every widget constructor. It indicates whether
the widget should be made visible immediately after construction. The default value of show
is TRUE. In this case we want to defer showing the window until after we finish constructing
our simple GUI.

Journal of Statistical Software 7

The next steps are to create a“Hello World”button and to place the button in the window that
we have already created. This depends on an understanding of how of one programmatically
manipulates widgets. Each widget class defines an API consisting of methods, properties,
fields and signals. Methods are functions that take an instance of their class as the first
argument and are used to instruct the widget to perform an action. Properties and fields
store the public state of a widget. Examples of properties include the title of a window, the
label on a button, and whether a widget has the keyboard focus. Signals are emitted as a
result of events, such as user interaction with a widget. By attaching an R handler function
to a widget’s signal, we can perform an action in response to all user inputs that generate
that signal. We explain how one can interface R functions with each of these in the following
sections as we continue with our “Hello World” example.

Invoking methods

Methods are functions that operate on widgets inheriting from a particular class. The RGtk2
function for each GTK+ method is named according to the classNameMethodName pat-
tern. For example, to add a child to a container, we need to invoke the add method on the
GtkContainer class. The corresponding function name would be gtkContainerAdd. How-
ever, this introduces an inefficiency in that the user needs to remember the class to which a
method belongs. To circumvent this problem, we introduce a syntax that is similar to that
found in various object-oriented languages. The widget variable is given first, followed by the $
operator, then the method name and its arguments. This syntax for calling gtkContainerAdd

is demonstrated below as we add a button with the label Hello World to our window. The
third statement calls gtkWindowSetDefaultSize to specify our desired size for the window
when it is first shown. The code for these method invocations is below:

R> button <- gtkButton("Hello World")

R> window$add(button)

R> window$setDefaultSize(200, 200)

Each method belongs to a separate class, but the syntax frees the user from the need to
remember the exact classes and also saves some typing as the $ operator finds the most
specific/appropriate method based on the class inheritance of the widget. Note that we use
the lower case form of the first letter when using the $ syntax, but the upper case form in the
classNameMethodName function name. The $ acts as a word separator and we use lower case
at the beginning of new words.

Accessing properties and fields

Properties are self-describing elements that store the state of an aspect of a widget. Examples
of properties include the title of a window, whether a checkbox is checked, and the length in
characters of a text entry box. The R subset function [may be used to get the value of a
widget property by name. Below we access the value of the visible property of our window:

R> window["visible"]

[1] FALSE

8 RGtk2: A Graphical User Interface Toolkit for R

We find that the value is FALSE, since we specified it not to be shown at construction and
have not made it visible since then.

GTK+ properties may be set, given that they are writable, using the regular R assignment
operator (<- or =). This is actually implemented via the [<- method for GTK+ widgets in
RGtk2. The example below makes the window created above visible, using both property-
setting methods, the second corresponding to a call to gtkWidgetShow, which is more con-
ventional:

R> window["visible"] <- TRUE

R> window$show()

For convenience, one might desire to set multiple properties with a single statement. This is
possible using the gObjectSet method, which behaves similarly to the R options function,
in that the argument name indicates the property to set to the argument value. In the single
statement below, we set the window icon to the RGtk logo image and set the title to "Hello

World 1.0":

R> image <- gdkPixbuf(filename = imagefile("rgtk-logo.gif"))[[1]]

R> window$set(icon = image, title = "Hello World 1.0")

The imagefile function retrieves an image from the RGtk2 installation. gdkPixbuf returns
a list, where the first element is a GdkPixbuf, an image object, and the second is a description
of an error encountered when reading the file or NULL if the operation was successful. Here
we assume that there is no error.

In rare cases, it is necessary to access a field in the widget data structure. Fields are different
from properties in several ways. Most importantly, it is never possible to set the value of a
field. The user can retrieve the value of a field using the [[function. For example, now that
our window has been shown, it has been allocated a rectangle on the screen. This is stored
in the allocation field of GtkWidget. It returns a list representing a GtkAllocation with
elements x, y, width and height, as in the code segment below:

R> window[["allocation"]]

$x

[1] 0

$y

[1] 0

$width

[1] 200

$height

[1] 200

attr(,"class")

[1] "GtkAllocation"

Journal of Statistical Software 9

Handling signals/events

Once a GUI is displayed on the screen, the user is generally free to interact with it. Examples
of user actions include clicking on buttons, dragging a slider and typing text into an entry
box. In the CRAN mirrors example, possible user actions include selecting a mirror in the
list, clicking the OK or Cancel buttons and pressing a keyboard shortcut, such as Alt-O for
OK. An application may wish to respond in a certain way to one or more of such actions.
The CRAN mirrors application, for example, should respond to an OK response by saving the
chosen mirror in the session options.

So far, we have created and manipulated widgets by calling a list of procedures in a fixed
order. This is convenient as long as the application is ignoring the user. Listening to the
user would require a loop which continuously checks for user input. It is not desirable to
implement such a loop for every application, so GTK+ provides one for all GUI applications
to use within the same R session. When an application initializes the GTK+ event processing
loop, there is an inversion of control. The application no longer has primary control of its
flow; instead, GTK+ asynchronously informs the application of events through the invocation
of functions provided by the application to handle a specific type of event. These handlers
are known as callbacks, because GTK+ is calling back into the application.

GTK+ widgets represent event types as signals. One or more callbacks can be connected to
a signal for each widget instance. When the event corresponding to the signal occurs, the
signal is emitted and the callbacks are executed in an order depending on how they were
connected. In order to execute R code in response to a user action on a widget, we connect an
R function to the appropriate signal on the widget. The gSignalConnect function performs
this connection. The following code will make our “Hello World” example from above more
interactive:

R> gSignalConnect(button, "clicked", function(widget) print("Hello world!"))

The call to gSignalConnect will cause "Hello world!" to be printed upon emission of the
clicked signal from the button in our window. The clicked signal is emitted when the user
clicks the button with a pointer device or activates the button with a keyboard shortcut.

Widget documentation

Documentation for widgets is available using the conventional R help command. It is derived
from the documentation of GTK+ itself. To see the methods, properties, fields, and signals
available for a particular class, the user should access the help topic matching the class name.
For example, to read the documentation on GtkWindow we enter:

R> help("GtkWindow")

Similarly, the detailed help for a specific method is stored under the full name of the function.
For example, to learn about the add method on GtkContainer, we enter:

R> help("gtkContainerAdd")

10 RGtk2: A Graphical User Interface Toolkit for R

2.3. Widget layout

In our “Hello World” example, we added only a single widget, a button, to the top-level
window. In contrast, the CRAN mirrors window contains multiple widgets, which introduces
the problem of appropriately allocating the space in a window to each of its descendents in
the container hierarchy. This problem is often called layout management. Laying out a GUI
requires specifying the position and size of each widget below the top-level window. The
simplest type of layout management is static; the position and size of each widget are fixed
to specific values. This is possible with GTK+, but it often yields undesirable results. A
GUI is interactive and changes in response to user input. The quality of a fixed layout tends
to decrease with certain events, such as the user resizing the window, a widget changing its
size requirement, or the application adding or removing widgets. For this reason, most layout
management is dynamic.

In GTK+, containers are responsible for the layout of their children. The right panel in
Figure 1 shows how the nesting of layout containers results in the CRAN mirrors GUI shown
in Figure 1. The example employs several important types of GTK+ layout containers.

First, there is the top-level GtkWindow that is derived from GtkBin, which in turn derives
from GtkContainer. A GtkBin holds only a single child, and GtkWindow simply fills all of its
allocated space with its child.

The most commonly used container for holding multiple children is the general GtkBox class,
which stacks its children in a specified order and in a single direction, vertical or horizontal.
The children of a GtkBox always fill the space allocated to the box in the direction orthogonal
to that of the stacking, e.g., fill the available width when stacked vertically on top of each
other.

The GtkBox class is abstract (or virtual), meaning that one cannot create instances of it.
Instead, we instantiate one of its non-abstract subclassses. For example, in the CRAN mirror
GUI, a vertical box, GtkVBox, stacks the label above the list, and a horizontal button box,
GtkHButtonBox, arranges the two buttons. GtkVBox and its horizontal analog GtkHBox are
general layout containers, while the button boxes GtkVButtonBox and GtkHButtonBox offer
facilities specific to the layout of sets of buttons.

Here we will explain and demonstrate the use of GtkHBox, the general horizontal box layout
container. GtkVBox can be used exactly the same way; only the direction of stacking is
different. Figure 4 illustrates a sampling of the possible layouts that are possible with a
GtkHBox.

The code for some of these layouts is presented here. We begin by creating a GtkHBox widget.
We pass TRUE for the first parameter, homogeneous. This means that the horizontal allocation
of the box will be evenly distributed between the children. The second parameter directs the
box to leave 5 pixels of space between each child. The following code constructs the GtkHBox:

R> box <- gtkHBox(TRUE, 5)

The equal distribution of available space is strictly enforced; the minimum size requirement
of a homogeneous box is set such that the box always satisfies this assertion, as well as the
minimum size requirements of its children.

The gtkBoxPackStart and gtkBoxPackEnd methods pack a widget into a box with left and
right justification (top and bottom for a GtkVBox), respectively. For this explanation, we

Journal of Statistical Software 11

Figure 4: A screenshot demonstrating the effect of packing two buttons into GtkHBox instances
using the gtkBoxPackStart method with different combinations of the expand and fill

settings. The effect of the homogeneous spacing setting on the GtkHBox is also shown.

restrict ourselves to gtkBoxPackStart, since gtkBoxPackEnd works the same except for the
justification. Below, we pack two buttons, button_a and button_b using left justification:

R> button_a <- gtkButton("Button A")

R> button_b <- gtkButton("Button B")

R> box$packStart(button_a, fill = FALSE)

R> box$packStart(button_b, fill = FALSE)

First, button_a is packed against the left side of the box, and then we pack button_b against
the right side of button_a. The space distribution is homogeneous, but the extra space for
each widget is not filled. This results in the first row in Figure 4.

Making the space available to a child does not mean that the child will fill it. That depends
on the minimum size requirement of the child, as well as the value of the fill parameter
passed to gtkBoxPackStart. When a widget is packed with the fill parameter set to TRUE,
the widget is sized to consume the available space. This results in rows 2 and 3 in Figure 4.

In many cases, it is desirable to give children unequal amounts of available space, as in
rows 4–9 in Figure 4. This is evident in the CRAN mirrors dialog, where the mirror list is
given more space than the Please choose a mirror label. To create an inhomogeneously
spaced GtkHBox, we pass FALSE as the first argument to the constructor, as in the following
code:

R> box <- gtkHBox(FALSE, 5)

An inhomongeneous layout is freed of the restriction that all widgets must be given the same
amount of available space; it only needs to ensure that each child has enough space to meet
its minimum size requirement. After satisfying this constraint, a box is often left with extra
space. The programmer may control the distribution of this extra space through the expand

parameter to gtkBoxPackStart. When a widget is packed with expand set to TRUE, we will
call the widget an expanding widget. All expanding widgets in a box are given an equal

12 RGtk2: A Graphical User Interface Toolkit for R

portion of the entirety of the extra space. If no widgets in a box are expanding, as in row 5
of Figure 4, the extra space is left undistributed. It is common to mix expanding and non-
expanding widgets in the same box. For example, in the CRAN mirrors dialog, the box first
ensures that the mirror list and the label above it are given enough space to satisfy their
minimum requirement. Then, since the mirror list is expanding, all of the extra space is
made available to it, while the label is left only with its minimum requirement (i.e., enough
space to show its text). Another example is given below, where button_a is expanding, while
button_b is not:

R> box$packStart(button_a, expand = TRUE, fill = FALSE)

R> box$packStart(button_b, expand = FALSE, fill = FALSE)

The result is shown in row 6 of Figure 4. The figure contains several other permutations of
the homogeneous, expand and fill settings.

GTK+ contains many types of layout containers besides boxes, including a grid layout
(GtkTable), a user-adjustable split pane (GtkHPaned and GtkVPaned), and a tabbed note-
book (GtkNotebook). More types of layout containers will be demonstrated later in the
tutorial.

3. Basic GUI construction

Thus far, we have reviewed the fundamentals of GTK+, working with GTK+ widgets from
R, and widget layout management. In this section, we will build on this foundation to create
some basic but potentially useful GUIs.

Constructing a GUI may be conceptually divided into two basic steps. First, one must
create the individual widgets, specify their properties, and organize them into containers.
This defines the physical aspect of the GUI: the appearance of the widgets and their spatial
organization. The second step defines the behavior or the logical aspect of the interface.
It involves registering handlers for signals that are emitted by the widgets, for example in
response to a user pressing a button. The signal handlers encapsulate the logic beneath the
interface. In this section, we will demonstrate these two steps and show how their integration
results in functional GUIs.

3.1. A dialog with the user

A user interface is the conduit for a conversation between the machine and the user. This
conversation may be broken down into a series of exchanges called dialogs. An application
often needs to make a specific request for user input, such as the desired CRAN mirror. This
type of dialog is initiated by the machine posing a question to the user. The machine then
waits for the user to respond. Usually, the application is unable to continue until receiving the
user response, so the rest of the GUI is blocked until the dialog is concluded. This is called
a modal dialog. A dialog is described as non-modal when the user can continue to perform
other tasks even when the dialog is displayed.

GTK+ explicitly supports modal and non-modal requests for user input with a dialog widget,
a top-level window that emits the response signal when the user has responded to the query.
All dialogs in GTK+ are derived from the GtkDialog class. The CRAN mirrors GUI is

Journal of Statistical Software 13

Figure 5: A screenshot of a message dialog requesting a “Yes” or “No” response from the user.

an instance of GtkDialog. In the simpler example below, we will create a dialog that asks
whether the user wants to upgrade the RGtk2 package installed on the system. Although
we could build such a dialog using GtkDialog directly, GtkMessageDialog, an extension of
GtkDialog, reduces the amount of necessary code for queries that can be expressed with a
textual message and a set of buttons for the response. The dialog is constructed with a single
function call:

R> main_application_window <- NULL

R> dialog <- gtkMessageDialog(main_application_window, "destroy-with-parent",

+ "question", "yes-no", "Do you want to upgrade RGtk2?")

In the above invocation, the first parameter of the call to gtkMessageDialog indicates the
parent window for the dialog. It is assumed that the main window of the application is stored
as main_application_window. The second parameter indicates that the dialog should be
destroyed when its parent, the main window, is destroyed. The next parameter specifies that
this is a question dialog, which causes the dialog to display a question mark icon to the left of
the text. The predefined set of buttons, in this case consisting of Yes and No, is given by the
next parameter. The final parameter specifies the text of the message. The resulting dialog
is shown in Figure 5.

It is desirable for this dialog to be modal, meaning that user interaction is restricted to the
dialog window until the user responds to the question. By invoking the gtkDialogRun func-
tion, the dialog becomes modal and execution is blocked until the user gives a response, which
is returned from the function. The following code demonstrates the use of gtkDialogRun:

R> if (dialog$run() == GtkResponseType["yes"]) install.packages("RGtk2")

R> dialog$destroy()

If the user answered “Yes”, our callback will install the latest version of the RGtk2 package.
The call to gtkWidgetDestroy closes the dialog window and renders it unusable, i.e., if the
object is used in subsequent computations, an error will be raised, because the dialog widget
is no longer valid.

The reference to GtkResponseType above is one of the rare cases in which it is necessary to
access an enumeration vector to retrieve the numeric value for a nickname. The reason for
this is that gtkDialogGetResponse returns a plain numeric value to avoid an unnecessary
restriction on the number of possible response types from a dialog. This allows programmers to
introduce response types that do not exist within the GtkResponseType enumeration. In this

14 RGtk2: A Graphical User Interface Toolkit for R

Figure 6: A screenshot of a message dialog with a check box for requesting additional input
on top of the original dialog in Figure 5.

case, it is known from the documentation of GtkMessageDialog that the value corresponding
to the user clicking the Yes button will equal the yes value in GtkResponseType.

3.2. Giving the user more options

Applications often need to ask questions for which a simple “Yes” or “No” answer does not
suffice. As the number of possible responses to a query increases, enumerating every response
with a button would place a burden on the user with a lengthy sequence of binary questions.
It is easy to make a mistake when choosing one response from many and hard to go back to
correct such errors. An interface should be forgiving and allow the user to confirm the choice
before proceeding. This is how the CRAN mirrors dialog behaves: if the user accidentally
chooses a mirror on the other side of the world, the user can correct the choice before clicking
the OK button and starting the installation process. This relates to the common need for
a program to issue a set of queries to the user. Separating each query into its own dialog
of buttons may unnecessarily force the user to answer the questions in a fixed, linear order
and may not be very forgiving. It would also leave the user without a sense of context. If
there were many actions and choices available to the user, a dialog-based interface would be
tedious to use, requiring the user to click through dialog after dialog. Instead, a less assertive,
non-linear interface is desired. In the examples below, we demonstrate widgets that present
options in a passive way, meaning that there is usually no significant, immediate consequence
to user interaction with the widget and the user has to conclude the interaction by clicking
either the OK or Cancel button.

The simplest user-level choice is binary and is usually represented in a passive way via a
checkbox with a checked/unchecked or on/off state. In GTK+, the checkbox class is the
GtkCheckButton. We may wish to extend our dialog confirming the upgrade of RGtk2 to
include the option of also upgrading the underlying GTK+ C library. In the snippet below,
we achieve this by adding a check button to the dialog. The area above the buttons in the
GtkDialog is contained within a GtkVBox, which is stored as a field named vbox in the dialog
object. Figure 6 shows our custom checkbox dialog and the following code is how to create
it:

R> dialog <- gtkMessageDialog(main_application_window, "destroy-with-parent",

Journal of Statistical Software 15

Figure 7: A screenshot of a message dialog with a set of radio buttons on top of the base
dialog shown in Figure 5.

+ "question", "yes-no", "Do you want to upgrade RGtk2?")

R> check <- gtkCheckButton("Upgrade GTK+ system library")

R> dialog[["vbox"]]$add(check)

Let us now suppose that we would like to give the user the additional option of installing a
development (experimental) version of GTK+. When an option has several choices, a check
button is no longer adequate. A simple approach is to create a set of toggle buttons where
only one button may be active at once. The buttons in this set are known as radio buttons,
corresponding to the pre-programed channel selection buttons on old-style radios. Below, we
create a new dialog that asks the user to specify the version of GTK+ C libraries to install,
if any:

R> dialog <- gtkMessageDialog(main_application_window, "destroy-with-parent",

+ "question", "yes-no", "Do you want to upgrade RGtk2?")

R> choices <- c("None", "Stable version", "Unstable version")

R> radio_buttons <- NULL

R> vbox <- gtkVBox(FALSE, 0)

R> for (choice in choices) {

+ button <- gtkRadioButton(radio_buttons, choice)

+ vbox$add(button)

+ radio_buttons <- c(radio_buttons, button)

+ }

When each radio button is created, it needs to be given the existing collection of buttons
already in the group. For creating the first button, NULL should be passed as the group. Each
button is added to a vertical box.

A group of radio buttons are often graphically enclosed by a drawn border with a text label
indicating the purpose of the buttons. This widget is a container called GtkFrame and is
generally used for graphically grouping widgets that are logically related. The code below
adds the box containing the radio buttons to a newly created frame:

16 RGtk2: A Graphical User Interface Toolkit for R

Figure 8: A screenshot of a message dialog with a combobox for selecting an option from a
drop-down menu before responding to the dialog.

R> frame <- gtkFrame("Install GTK+ system library")

R> frame$add(vbox)

R> dialog[["vbox"]]$add(frame)

The final result is shown in Figure 7.

Now we would like to go a step further and allow the user to choose the exact version of
GTK+ to install, as RGtk2 is source compatible with any version from 2.8.0 onwards. As the
number of options increases, however, radio buttons tend to consume too much space on the
screen. In this case, a label displaying the current selection with a drop down menu allowing
for selecting from a list of alternatives may be appropriate. This is known as a GtkComboBox

in GTK+. The following snippet illustrates its use. Each call to gtkComboBoxAppendText

adds a text item to the drop-down menu. The call to gtkComboBoxSetActive makes the first
item (0 due to zero-based counting in C) the currently selected one. Figure 8 shows the result
and below is the corresponding code:

R> dialog <- gtkMessageDialog(main_application_window, "destroy-with-parent",

+ "question", "yes-no", "Do you want to upgrade RGtk2?")

R> choices <- c("None", "GTK+ 2.8.x", "GTK+ 2.10.x", "GTK+ 2.12.x")

R> combo <- gtkComboBoxNewText()

R> combo$show()

R> for (choice in choices) combo$appendText(choice)

R> combo$setActive(0)

R> frame <- gtkFrame("Install GTK+ system library")

R> frame$add(combo)

R> dialog[["vbox"]]$add(frame)

3.3. The CRAN mirrors dialog

Having demonstrated the creation some basic dialogs, we are now prepared to construct the
CRAN mirror selection dialog, shown in Figure 1. Given the large number of CRAN mirrors,
one strategy would be to borrow the combobox dialog created above; however, there may be

Journal of Statistical Software 17

a better alternative. Since there is no reasonable default CRAN mirror, the user always needs
to pick a mirror. Packing the mirrors into a combo box would only force the user to make an
extra click. Instead, we want to display a reasonable number of CRAN mirrors immediately
after the dialog is opened. It may not be possible to display every mirror at once on the
screen, but, as seen in the screenshot, we can embed the list in a scrolled box, so that only
one part of the list is visible at a given time.

We begin with the construction of the dialog window, as below:

R> dialog <- gtkMessageDialog(NULL, 0, "question", "ok-cancel",

+ "Choose a mirror:", show = FALSE)

For this dialog, we assume that there is no main application window (see Section 4) to serve
as the parent. Instead, we pass NULL for the parent and 0 for the second argument rather
than "destroy-with-parent". We use the literal 0 here instead of a value name, because
GtkDialogFlags, like all flag enumerations in GTK+, lacks a value for 0.

Next, we create a list for holding the mirror names using the GtkTreeView widget (so named
because the rows in the list may be organized hierarchically, but we will not discuss this
feature). The RGtk2 package provides a facility for creating a tabular data structure based on
an R data.frame, called RGtkDataFrame. RGtkDataFrame is an extension of GtkTreeModel,
which is the data structure viewed by GtkTreeView. Below, we create an RGtkDataFrame for
our list of CRAN mirrors and construct a GtkTreeView based on it:

R> mirrors <- read.csv(file.path(R.home("doc"), "CRAN_mirrors.csv"),

+ as.is = TRUE)

R> model <- rGtkDataFrame(mirrors)

R> view <- gtkTreeView(model)

R> view$getSelection()$setMode("browse")

The final line configures the GtkTreeView so that exactly one item is always selected in the
view. This prevents the user from providing invalid input (i.e., a multiple or empty selection).

Initially, the tree view does not contain any columns. We need to create a GtkTreeViewColumn

to list the mirror names, and we do so with the following code:

R> column <- gtkTreeViewColumn("Mirror", gtkCellRendererText(), text = 0)

R> view$appendColumn(column)

The first parameter to gtkTreeViewColumn specifies the title of the new column. Since
we are displaying text (the names of the mirrors) in the column, we pass an instance of
GtkCellRendererText which draws the values in our data.frame as text in the GtkTreeView.
The parameter named text specifies that the first column of the data.frame contains the
values to draw as text. Note that the index is zero-based (for historical reasons).

Given the large number of CRAN mirrors, the list would take up excessive space if not
embedded into a scrolled window. GtkScrolledWindow is a container widget that provides a
scrolled view of its child when the child requests more space than is available. In the following
code, we add the tree view to a GtkScrolledWindow instance that requests a minimum vertical
size sufficient for showing several mirrors at once:

18 RGtk2: A Graphical User Interface Toolkit for R

R> scrolled_window <- gtkScrolledWindow()

R> scrolled_window$setSizeRequest(-1, 150)

R> scrolled_window$add(view)

The size of scrolled_window is set using gtkWidgetSetSizeRequest, which takes values in
pixel units.

It only remains to add the scrolled window to the dialog, run the dialog, and set the selected
CRAN mirror if the user confirms the selection. This is achieved by the following code:

R> dialog[["vbox"]]$add(scrolled_window)

R> if (dialog$run() == GtkResponseType["ok"]) {

+ selection <- view$getSelection()

+ sel_paths <- selection$getSelectedRows()$retval

+ sel_row <- sel_paths[[1]]$getIndices()[[1]]

+ options(repos = mirrors[sel_row, "URL"])

+ }

R> dialog$destroy()

The selection of a tree view is stored in a separate GtkTreeSelection object retrieved by
gtkTreeViewGetSelection. The getSelectedRows method returns a list containing the tree
paths for the selected rows and the tree model. The list of tree paths is stored under the
name retval as it is the actual return value from the C function. Finally, we retrieve the
row index from the GtkTreePath for the first (and only) selected row and set its URL as the
repository.

3.4. Embedded R graphics

In a statistical graphical interface, it is often beneficial or necessary to display statistical
graphics within the interface. As an example, we consider the contemporary problem of
visualizing micoarray data. The large number of genes leads to a significant amount of
overplotting when, for example, plotting the expression levels from two chips in a scatterplot.
One solution to the problem of overplotting is alpha blending. However, choosing the ideal
alpha level may be time-consuming and tedious. Linking a slider widget to the alpha level of
an R scatterplot may accelerate the search (See Figures 9 and 10).

As a preliminary step, we use a 2D mixture distribution of correlated variables to simulate
expression values for two microarray chips. The following code generates the data:

R> n <- 5000

R> backbone <- rnorm(n)

R> ma_data <- cbind(backbone + c(rnorm(3 * (n / 4), sd = 0.1), rt(n/4, 80)),

+ backbone + c(rnorm(3 * (n / 4), , 0.1), rt(n / 4, 80)))

R> ma_data <- apply(ma_data, 2, function(col) col - min(col))

The first step towards making our GUI is to create the window that will contain the graphics
device and slider widgets:

R> win <- gtkWindow(show = FALSE)

Journal of Statistical Software 19

Figure 9: Scatterplot of two microarray replicates, with a slider widget underneath that
controls the alpha level of the points. This screenshot shows the initial alpha of 0.7. This
value does not lead to a clear display of the density at each location.

Figure 10: The same scatterplot from 9, except the alpha parameter has been set to to 0.1.

20 RGtk2: A Graphical User Interface Toolkit for R

One may embed R graphics within an RGtk2 GUI using the cairoDevice (Lawrence 2009)
package. The cairoDevice package draws R graphics using Cairo (The Cairo Project 2010),
a library for vector-based, antialiased graphics. When cairoDevice draws to the screen it
is actually drawing to a GTK+ widget of type GtkDrawingArea. A GtkDrawingArea is an
empty widget meant for drawing arbitrary graphics in an interface. Here we construct a
drawing area in which the R graphics will be drawn:

R> graphics <- gtkDrawingArea()

Now that we have a widget for displaying R graphics, we need the slider that controls the
alpha level. A slider is a widget, much like a scroll bar, for choosing a number at a certain
precision from a certain range. Here, a horizontal slider, called GtkHScale, is created with a
range from 0.1 to 1.0, with a step size of 0.1:

R> slider <- gtkHScale(min = 0.1, max = 1.00, step = 0.1)

When the user moves the slider, the plot should be updated so that its alpha level reflects
the slider value. This is achieved by connecting an R callback function to the value-changed

signal of the slider, as in the code below:

R> scale_cb <- function(range) {

+ par(pty = "s")

+ plot(ma_data[, 1], ma_data[, 2],

+ col = rgb(0, 0, 0, alpha = range$getValue()),

+ xlab = "Replicate 1", ylab = "Replicate 2",

+ main = "Mock expression data", pch = 19)

+ }

R> gSignalConnect(slider, "value-changed", scale_cb)

The callback function, scale_cb, replots the microarray data, ma_data, using an alpha level
equal to the current value of the slider.

The next steps are to add the drawing area and the slider to the window and then to show
the window on the screen. Although the window is a container, it inherits from GtkBin,
meaning that it can hold only a single child widget. Thus, we will pack our widgets into a
vertical stacking box container, GtkVBox, and add our box to the window. Here, we would
like the graphics to take up all of the space not consumed by the slider, so the graphics device
is packed to expand and fill, while the slider is not (see Section 2.3). The following code
performs the packing operation:

R> vbox <- gtkVBox()

R> vbox$packStart(graphics, expand = TRUE, fill = TRUE, padding = 0)

R> vbox$packStart(slider, expand = FALSE, fill = FALSE, padding = 0)

R> win$add(vbox)

As a final step, we set the default size of the window and show it and all of its children:

R> win$setDefaultSize(400,400)

R> win$showAll()

Journal of Statistical Software 21

Now that the window is visible on screen, we can instruct R to draw its graphics to the
drawing area using the asCairoDevice function in the cairoDevice package:

R> require("cairoDevice")

R> asCairoDevice(graphics)

The call to asCairoDevice creates an R graphics device from our drawing area widget and
makes the device active, so that it is the target of R plotting commands.

Finally, the value of the slider is initialized to 0.7,

R> slider$setValue(0.7)

which in turn activates the callback, generating the initial plot. The initial state of the
interface is shown in Figure 9. Figure 10 shows the plot after the user has moved the slider
to set the value of alpha to 0.1.

4. Sample application

The interfaces presented thus far are each designed for a singular, focused task, such as
choosing a CRAN mirror or viewing a scatterplot at different alpha levels. However, an
interface often supports a larger collection of separate operations, and the user is in control
of initiating different tasks from the general interface. These interfaces for broader, more
complex applications are typically based on what is called an application window, which often
contains a menu bar, tool bar, application-specific area, and status bar in order from top
to bottom. The menu bar and tool bar are widgets designed to facilitate the user selecting
different actions, each of which represents an option or operation in the application. The
status bar at the bottom commonly reports information about the activities or state of the
application or information for the user as a text message and may be adjacent to a progress
bar that displays the continuing progress of long running operations. This layout and design
is a common convention which helps users navigate a new GUI.

The following example demonstrates how one might construct a reasonably complex applica-
tion using RGtk2. We aim to build a viewer for one or more R data.frames that is capable
of sorting and filtering the rows in each data.frame. We also give it facilities to load and
save a data.frame to and from a CSV file.

The resulting GUI is shown in Figure 11. Each data.frame frame is displayed in a table,
using a GtkTreeView widget. As we would like to support multiple spreadsheets at once,
we embed each table in a tabbed notebook, GtkNotebook. Below each spreadsheet is a text
entry (a GtkEntry widget), in which the user may enter an expression for filtering the table
view. Below this is a status bar (a GtkStatusbar widget) that communicates the status of
the application to the user, such as whether the loading of a dataset is complete. At the top
are a menu bar (a GtkMenubar widget) and tool bar (a GtkToolbar widget) that allow the
user to invoke various actions, such as loading a new dataset or quitting the application.

4.1. Main window

We begin by creating the main window for the application and setting its default size, specified
in number of screen pixels:

22 RGtk2: A Graphical User Interface Toolkit for R

Figure 11: Screenshot of a spreadsheet application constructed with RGtk2. The current
sheet is from the mtcars dataset. The table is filtered by the expression mpg > 20 and sorted
by in decreasing order of the values of the mpg variable.

R> main_window <- gtkWindow(show = FALSE)

R> main_window["title"] <- "RGtk2 Spreadsheet"

R> main_window$setDefaultSize(600, 600)

4.2. Menu bar and tool bar

Our spreadsheet application will support three user actions: open, save and quit. All three
actions will be made available in both the menu bar and tool bar. Providing a user ac-
tion requires (1) implementing a callback function, (2) defining the action properties, and
(3) manifesting the action as a widget in the GUI. We consider each of these steps in turn.

Journal of Statistical Software 23

Implementing the callbacks

We begin by implementing the callbacks corresponding to the user actions. operations for
the menu items and corresponding callbacks to load and save a data.frame and to quit the
“application”:

R> open_cb <- function(widget, window) {

+ dialog <- gtkFileChooserDialog("Choose a CSV file", window, "open",

+ "gtk-cancel", GtkResponseType["cancel"], "gtk-open",

+ GtkResponseType["accept"])

+ if (dialog$run() == GtkResponseType["accept"]) {

+ df <- read.csv(dialog$getFilename())

+ load_spreadsheet(df, basename(dialog$getFilename()))

+ }

+ dialog$destroy()

+ }

R> save_cb <- function(widget, window) {

+ dialog <- gtkFileChooserDialog("Enter a name for the file", window,

+ "save", "gtk-cancel", GtkResponseType["cancel"], "gtk-save",

+ GtkResponseType["accept"])

+ if (dialog$run() == GtkResponseType["accept"])

+ save_file(dialog$getFilename())

+ dialog$destroy()

+ }

R> quit_cb <- function(widget, window) window$destroy()

Each of these functions is a callback which takes the widget associated with the action as its
first argument and the top-level window as its second. The load and save operations leverage
the GtkFileChooserDialog widget type, a dialog that contains a graphical file browser for
specifying the path to a file. GtkFileChooserDialog has several modes corresponding to
common file selection tasks. In this case, we use the open mode for the reading action and
the save mode for the writing action. The accept response from the dialog indicates that
the user has confirmed the file selection by clicking the Open or Save button.

Defining the actions

We now define the actions that will delegate to the callbacks implemented above. The
GtkAction class represents an operation that a user may request an application to perform.
A GtkAction instance may be manifested as a widget in multiple ways, such as an item in
a menu or a button in a tool bar. The widgets are synchronized with the properties of the
GtkAction. For example, if an action is disabled, the menu items and tool bar buttons will
also be disabled. Extensions of GtkAction exist for toggle and radio options, but those are
not described here. For details, see help(GtkToggleAction) and help(GtkRadioAction),
respectively. A GtkActionGroup is a container for GtkAction objects.

In the following code, we define the actions for our application and bundle them into a
GtkActionGroup:

R> actions <- list(

+ list("FileMenu", NULL, "_File"),

24 RGtk2: A Graphical User Interface Toolkit for R

+ list("Open", "gtk-open", "_Open File", "<control>O",

+ "Select a CSV file to load as a spreadsheet", open_cb),

+ list("Save", "gtk-save", "_Save", "<control>S",

+ "Save the current spreadsheet to a CSV file", save_cb),

+ list("Quit", "gtk-quit", "_Quit", "<control>Q",

+ "Quit the application", quit_cb)

+)

R> action_group <- gtkActionGroup("spreadsheetActions")

R> action_group$addActions(actions, main_window)

Above, each action is defined with a list, containing the action ID (for referring to the action
later in the code), icon ID, label, keyboard shortcut, tooltip, and callback. The first action
will serve as the basic menu container for the rest of the items and actions. Since it performs
no function, it is not necessary to specify all of the fields, such as the callback.

Specifying the action definitions as R lists is an example of high-level type conversion, where
a native R structure is implicitly converted to a complex GTK+ object. In this case, an R list
is being converted to a set of GtkAction objects. See Section 6.3 for a technical explanation
and justification.

Creating widgets for the actions

In order to make these actions available to the user, they need to be mapped to a widget in
the GUI. GTK+ provides a class known as GtkUIManager to facilitate this operation. In the
following code, we create a GtkUIManager instance and register our actions with it:

R> ui_manager <- gtkUIManager()

R> ui_manager$insertActionGroup(action_group, 0)

Next, we specify the layout of the menu bar and tool bar containing the actions defined above,
by calling the gtkUIManagerAddUi method:

R> merge <- ui_manager$newMergeId()

R> ui_manager$addUi(merge.id = merge, path = "/", name = "menubar",

+ action = NULL, type = "menubar", top = FALSE)

R> ui_manager$addUi(merge, "/menubar", "file", "FileMenu", "menu", FALSE)

R> ui_manager$addUi(merge, "/menubar/file", "open", "Open", "menuitem", FALSE)

R> ui_manager$addUi(merge, "/menubar/file", "save", "Save", "menuitem", FALSE)

R> ui_manager$addUi(merge, "/menubar/file", "sep", NULL, "menuitem", FALSE)

R> ui_manager$addUi(merge, "/menubar/file", "quit", "Quit", "menuitem", FALSE)

R> ui_manager$addUi(merge, "/", "toolbar", NULL, "toolbar", FALSE)

R> ui_manager$addUi(merge, "/toolbar", "open", "Open", "toolitem", FALSE)

R> ui_manager$addUi(merge, "/toolbar", "save", "Save", "toolitem", FALSE)

R> ui_manager$addUi(merge, "/toolbar", "quit", "Quit", "toolitem", FALSE)

Each piece of the user interface added to a GtkUIManager instance must be associated with a
merge id, as retrieved from gtkUIManagerNewMergeId. It is passed to gtkUIManagerAddUi as
the merge_id parameter. This allows removing (unmerging) the UI in batch at a later time.
The path parameter indicates where the UI element should be merged. Similar to a path in a

Journal of Statistical Software 25

file system or URL, each element name in the path is delimited by a forward slash (“/”). The
name parameter identifies the element to the manager, and action is the ID of the action in
the provided action group. The ID can be NULL in the case of containers (menu bars and tool
bars) and separators. Finally, type indicates the type of UI element, such as a tool bar or
menu bar. The default is auto, which asks the GtkUIManager to guess based on the path.

The next step is to use the GtkUIManager to create the actual menu bar and tool bar widgets
from the action definitions and layout.

R> menubar <- ui_manager$getWidget("/menubar")

R> toolbar <- ui_manager$getWidget("/toolbar")

R> main_window$addAccelGroup(ui_manager$getAccelGroup())

The final line above enables keyboard shortcuts in the main window.

4.3. Status bar

To report information from and about the application, we will use a GtkStatusbar widget.
A status bar maintains a stack of text messages and displays the message on top of the stack.
When a message is added to the status bar stack, it is immediately displayed, and when the
message is removed, the previous one is displayed. Each message is associated with a context,
and each context has its own ID. A context ID is a number that is generated in a consistent
way from any user-supplied string that serves as the human-readable context name. A context
ID may be created using the gtkStatusbarGetContextId function. Here we create a status
bar and push the message "Ready" onto the top of the stack within the context named "info"

(other contexts could be named, e.g., "warning" or "error"):

R> statusbar <- gtkStatusbar()

R> info <- statusbar$getContextId("info")

R> statusbar$push(info, "Ready")

4.4. Spreadsheet panel

Next, we need to create the GtkTreeView that will display a given data.frame as a table. The
data is first loaded into a GtkTreeModel, from which the GtkTreeView retrieves the values
it displays. Below each sheet is a text entry box for entering an expression for filtering the
spreadsheet rows. All of the open sheets will be placed within notebook-style container.

Data model

The following function, create_tree_model, will create a GtkTreeModel object that obtains
its data from an R data.frame, passed as an argument to the function:

R> create_tree_model <- function(df) {

+ df <- cbind(rownames = rownames(df), df)

+ filter_df <- cbind(filter = TRUE, df)

+ model <- rGtkDataFrame(filter_df)

+ filter_model <- gtkTreeModelFilterNew(model)

26 RGtk2: A Graphical User Interface Toolkit for R

+ filter_model$setVisibleColumn(0)

+ sort_model <- gtkTreeModelSort(filter_model)

+ sort_model

+ }

The function employs the RGtkDataFrame utility that allows the GtkTreeView to use an
R data.frame as its data source. term. In order to support filtering and sorting of the
displayed data, the RGtkDataFrame is proxied by a GtkTreeModelFilter model, which in
turn is proxied by a GtkTreeModelSort model. A proxy data model sits between a source
data model and a client, such as a GtkTreeView. The data provided by a proxy model results
from the modification of the data in the source model.

Table view

The next function, create_tree_view, will create the GtkTreeView given the GtkTreeModel

created by create_tree_model above:

R> create_tree_view <- function(model) {

+ tree_view <- gtkTreeView(model)

+ rdf <- model$getModel()$getModel()

+ sapply(tail(seq_len(ncol(rdf)), -1), function(j) {

+ renderer <- gtkCellRendererText()

+ column <- gtkTreeViewColumn(colnames(rdf)[j], renderer, text = j - 1)

+ column$setSortColumnId(j - 1)

+ column$setCellDataFunc(renderer,

+ function(column, renderer, model, iter)

+ {

+ iter <- model$convertIterToChildIter(iter)$child.iter

+ child <- model$getModel()

+ iter <- child$convertIterToChildIter(iter)$child.iter

+ i <- rdf$getPath(iter)$getIndices()[[1]] + 1

+ renderer["text"] <- as.character(rdf[i, j])

+ })

+ tree_view$appendColumn(column)

+ })

+ tree_view$setHeadersClickable(TRUE)

+ if (is.null(gtkCheckVersion(2, 10, 0))) tree_view$setGridLines("both")

+ tree_view

+ }

Above, each column of the data.frame, provided as the second argument, is displayed by a
column in the tree view. We configure the tree view so that it shows grid lines (if the user
has GTK+ 2.10.0 or higher) and supports sorting on a column when the user clicks on the
column header. The call to setCellDataFunc attaches a callback that formats the text values
as R does by default (GTK+ takes a simpler approach that gives each number 6 significant
figures). Note that this callback is called each time a cell is rendered, so it could negatively
impact performance, especially when scrolling. For large spreadsheets, we recommend using
a dedicated spreadsheet application.

Journal of Statistical Software 27

Filter text entry

Next, we define a function that creates the text box for the user to enter a filter expression:

R> create_entry <- function(model) {

+ entry <- gtkEntry()

+ gSignalConnect(entry, "activate", function(entry) {

+ model[, "filter"] <<- eval(parse(text = entry$text),

+ as.data.frame(model))

+ })

+ entry

+ }

This uses the GtkEntry widget. Whenever the GtkEntry is “activated,” e.g., by the user
pressing the ENTER key, we update the filter by the result of the R expression.

Notebook of sheets

In order to handle multiple spreadsheets simultaneously but display only one at a time, we
will use a special type of container called GtkNotebook. This provides tabs on the border
of the notebook like a ring binder which the user can select to switch between the different
widgets within the notebook. This is used in Excel to present several work sheets within a
single window, and also within certain Web browsers to allow the user to view multiple Web
pages without opening multiple windows.

Below, we create the notebook:

R> notebook <- gtkNotebook()

R> notebook$setTabPos("bottom")

4.5. Integrating the components

The menu bar, tool bar, spreadsheet notebook and status bar all need to be contained within
the main window. In the code below, we add each of these components to the GUI by placing
them inside a GtkVBox:

R> vbox <- gtkVBox(homogeneous = FALSE, spacing = 0)

R> vbox$packStart(menubar, expand = FALSE, fill = FALSE, padding = 0)

R> vbox$packStart(toolbar, FALSE, FALSE, 0)

R> vbox$packStart(notebook, TRUE, TRUE, 0)

R> vbox$packStart(statusbar, FALSE, FALSE, 0)

R> main_window$add(vbox)

R> main_window$show()

4.6. Loading a spreadsheet

Finally, we define the load_spreadsheet function, as called from the open_cb callback above,
that loads a data.frame into the GUI:

28 RGtk2: A Graphical User Interface Toolkit for R

R> load_spreadsheet <- function(df, name) {

+ model <- create_tree_model(df)

+ tree_view <- create_tree_view(model)

+ entry <- create_entry(model$getModel()$getModel())

+

+ hbox <- gtkHBox(FALSE, 5)

+ hbox$packStart(gtkLabel("Filter expression:"), FALSE, FALSE, 0)

+ hbox$packStart(entry, TRUE, TRUE, 0)

+ vbox <- gtkVBox(FALSE, 5)

+ scrolled_window <- gtkScrolledWindow()

+ scrolled_window$add(tree_view)

+ vbox$packStart(scrolled_window, TRUE, TRUE, 0)

+ vbox$packStart(hbox, FALSE, FALSE, 0)

+

+ if (missing(name)) name <- deparse(substitute(df))

+ notebook$appendPage(vbox, gtkLabel(name))

+

+ statusbar$push(info, paste("Dataset", name, "loaded."))

+ }

This function creates the necessary widgets and packs them into a notebook page. To limit
its visible size, the data grid/table is added to a GtkScrolledWindow. The function concludes
by updating the status bar to indicate that the dataset has been successfully loaded.

An example of using the above function to add a spreadsheet is given below:

R> load_spreadsheet(mtcars)

This application is obviously missing many important features. For example, there is no easy
way to return to the complete data.frame after subsetting, and it is not possible to edit the
cells. The main purpose of the example is to introduce the process of building an application
window.

5. Advanced features

This section describes features of RGtk2 that are beyond the construction of basic and inter-
mediate GUIs. It is meant for readers interested in advanced and specialized RGtk2 features
such as the ability to extend GTK+ classes and interface with low-level and third-party li-
braries that are integrated with GTK+. Much of this functionality is applicable outside of
GUI construction.

First, we describe the additional libraries (other than GTK+) bound by RGtk2 that are
meant to support the construction of advanced, graphically-intensive interfaces. The focus
then shifts to the low-level support for the GObject object-oriented programming library.
The RGtk2 user is able to manipulate objects in external GObject-based applications (i.e.,
top-level GUIs running within the same R session) that are bound to R by code outside of
the RGtk2 package. RGtk2 also supports defining new GObject classes in R.

Journal of Statistical Software 29

5.1. Additional library support

The GTK+ 2.0 library incorporates several other libraries: Cairo, GDK, GdkPixbuf, Pango
and ATK. The RGtk2 package provides R-level bindings for these libraries, in addition to
GTK+ itself. The following sections describe the purpose and functionality of each library.

Cairo

Cairo is a 2D vector graphics library with which GTK+ widgets are drawn. It is possible
to use Cairo directly to draw custom graphics within a GtkDrawingArea. The library is also
useful outside of GUI construction, in that one can draw vector graphics to off-screen surfaces
in common formats such as PNG, SVG, PS, and PDF files.

GDK

The GIMP Drawing Kit, GDK, is the low-level hardware access and drawing layer for GTK+.
It is most useful for raster-based (non-vector) drawing of graphical primitives like lines, rect-
angles and circles and for handling raw mouse and keyboard events. It also provides access
to windowing system resources, such as screens in a multi-headed environment. Although
the drawing functions of GDK overlap somewhat with Cairo, Cairo is for drawing vectors,
while GDK is for direct drawing of pixels. Another reason for the redundancy is that GDK
predates Cairo, and thus the GDK drawing routines are present for backwards compatibility.

GdkPixbuf

GdkPixbuf is an image manipulation library based on GDK. Its features include rendering,
scaling, and compositing of images. GdkPixbuf can read and write several image formats,
including JPEG, PNG, and GIF. Like Cairo, GdkPixbuf could be used independently of a
GUI for working with arbitrary graphics in R.

Pango

Pango provides facilities for rendering and formatting text with rich capabilities for handling
international characters. It also provides cross-platform access to the font configuration of a
system. Pango is most often used directly for embedding text in graphics when drawing to a
GtkDrawingArea or an off-screen destination, e.g., image.

ATK

The Accessibility ToolKit (ATK) supports accessibility technologies to make GUIs amenable
to users with “disabilities”. It allows accessibility devices to interact with GTK+ GUIs. ATK
is not likely to be very useful from R. Its binding is included for the sake of completion, since
ATK types are present in the GTK+ API.

Libglade

Libglade constructs GTK+ GUIs from XML descriptions. The XML descriptions are output
from Glade, which is a GUI tool for interactively designing other GUIs. As of GTK+ 2.12.0,
which includes native support for constructing widgets from XML descriptions, Libglade is
essentially obsolete. The bindings are still included for backwards compatibility.

30 RGtk2: A Graphical User Interface Toolkit for R

5.2. GObject primer

GTK+, as well as the libraries described in the previous section, except for Cairo, are based
on the GObject library for object-oriented programming in C. GObject forms the basis of
many other open-source projects, including the GNOME (Warkus 2004) and XFCE (Fourdan
2000) desktops and the GStreamer multimedia framework (Walthinsen 2001).

RGtk2 interfaces with parts of GObject and permits the R programmer to create new GObject
classes in R. Understanding this functionality depends on a familiarity with the concepts
underlying GObject. This section introduces those concepts.

GObject is organized as a collection of modules. The fundamental modules are GType,
GSignal, and the base GObject class. Each of these modules is described in the following
sections. For further details, please see the GObject documentation (Breuer et al. 2010).

GType

GType is at the core of GObject. Its basic purpose is to manage the definition, registration
and introspection of types at run-time. The main commonality between all GTypes is that
they define a method for copying their values. This allows generic memory management for
every value with a GType. Those GTypes that directly define a copy mechanism, instead of
inheriting one, are known as fundamental GTypes.

The set of fundamental GTypes includes many of the built-in C data types. For example,
“primitive” types like integers, doubles, and strings (character pointers) are all fundamental
GTypes.

Arbitrary C structures are adapted to the GType framework by providing a copy function
and free function for the structure. Such GTypes are said to be boxed and inherit from the
fundamental GType called GBoxed. For example, RGtk2 registers a boxed GType for the R
SEXP structure, which is used to represent all R objects in C.

The GType module also supports the definition of object types (the main purpose of GOb-
ject). Like all GTypes, object GTypes must be or inherit from a fundamental GType. GObject
provides a fundamental GType, GObject, that may be extended to define a new type of object.
Every GType derived from GObject has a C structure representing its class. Inheritance of
class structures is accomplished through the standard C idiom for object-oriented program-
ming: prefixing a structure with the structure of the parent class, so that fields are aligned.
The use of the structure prefixing idiom restricts GObject to single inheritance. The class
structure contains class-wide fields, including function pointers called virtual functions that
may be overriden by changing the value of the corresponding field in the class structure during
intialization. This is the primary mechanism in GObject for changing class behavior through
inheritance. Each object GType also has a registered structure with instance-level members
(i.e., fields). The instance structure of a GType inherits from the parent instance structure
using the same idiom as the class structures. An instance of an object GType is manifested as
a value of the corresponding instance structure. In order to link an instance to its class, each
instance structure holds a reference to the shared value of the class structure for the GType.

Like many object-oriented languages, GObject supports the definition and implementation of
interfaces. An interface specifies a set of methods that represent a role performed by one or
more classes, where the role is shared independently of the class hierarchy. If a class plays a
role represented by an interface, it may formally declare the contract by registering itself as

Journal of Statistical Software 31

an implementation of the interface. As a result, the type is required to provide values (imple-
mentations) for the methods declared by the interface. Any object GType, such as GObject,
may implement multiple interfaces. Like a GObject-derived GType, an interface has a class
structure that declares its virtual functions (i.e., methods). Every interface class structure
may only be prefixed by GTypeInterface, so there is no inheritance between interfaces in
GObject. This is a significant difference from many object-oriented languages. However, an
interface can be made to require the implementation of one or more other interfaces by any
GType that implements it. Unlike GObject, GTypeInterface is non-instanciable, so there is
no instance-level structure and it is not possible to create instances of interfaces directly.

Two other fundamental GTypes are GEnum and GFlags, both of which are registered with a class
structure. The GEnumClass structure stores metadata about a particular enumeration, such
as the names and nicknames of its values. GFlags is similar as it represents an enumeration
where the values are intended to be combined bitwise (via AND and OR operations) to represent
the presence of one or more settings.

GSignal

One of the defining characteristics of GObject is its emphasis on signals, which were introduced
earlier in this paper in the context of notification of user events in a GTK+ GUI. Any instance
of a GType can have registered signals. Each signal is defined by its name and the types of
its arguments and return value. A class inherits signals from its parents.

GObject base class

GObject is the basic/fundamental classed and instanciable GType provided by the GObject
library. The key feature provided by the GObject class, from the perspective of the RGtk2
user, are properties. Properties may be thought of as introspectable and encapsulated public
fields. Like instance fields of a GObject-derived GType, properties are inherited. They support
automated validation of their values at runtime, and a change in a property value emits
the notify signal from its instance, allowing objects to respond to changes in the state of
other objects. It is possible to control whether a property is readable, writeable, and more.
Depending on the options specified in the declaration of a property, one may be able to or
even restricted to set a property at construction time, using the generic GObject constructor,
gObject().

A property is defined by a GParamSpec structure that specifies a name, nickname, description,
value GType, and other options. There are subclasses of GParamSpec for particular GTypes
that permit specification of further constraints. For example, GParamSpecInt is specific to
integers and can be configured to restrict its valid range of integer values between a minimum
and maximum. Many GParamSpec subclasses also permit default values.

5.3. Interfacing with external GObject-based applications

Many of the RGtk2 functions developed for the creation of GUIs using GTK+ are applicable
to other libraries and applications based on GObject. There are several such packages of
interest to staticians, including Gnumeric, a spreadsheet application, and GGobi, software
for multivariate interactive graphics. The rggobi package (Temple Lang and Swayne 2001)
provides a high-level interface to GGobi from R. Although it is somewhat hidden, rggobi

32 RGtk2: A Graphical User Interface Toolkit for R

objects are externalptrs that reference the underlying GGobi objects, which extend GObject.
RGtk2 uses the same R representation, so many RGtk2 functions can operate on rggobi objects
directly without additional interface code.

As an example, we consider the problem of displaying an R plot in response to a user “iden-
tifying” a point in a GGobi plot with the mouse. When a GGobi point is identified, the
main GGobi context emits the identify-point signal. If we connect an R function to this
signal, using gSignalConnect, the function will be executed whenever a point is identified.
The following code displays data within a GGobi window and draws a fit of the simple linear
model in a separate R graphics window in response to the user identifying a point:

R> library("rggobi")

R> attach(mtcars)

R> gg <- ggobi(mtcars)

R> model <- lm(mpg ~ hp)

R> plot(hp, mpg)

R> abline(model)

R> gSignalConnect(gg, "identify-point",

+ function(gg, plot, id, dataset) {

+ plot(hp, mpg)

+ points(hp[id + 1], mpg[id + 1], pch = 19)

+ abline(model)

+ })

The GGobi instance is initialized with the mtcars dataset. A linear model is fit with lm

and the line is drawn on an R plot. The important step is connecting a handler to the
identify-point signal. The handler regenerates the R plot, and, for the identified point,
replaces the empty circle glyph with a filled circle. In this way, we have created a simple
integration of the interactive graphics of GGobi with an R graphic that displays a linear
model fit, which GGobi cannot display. Since the GGobi GUI is based on GTK+, it would
also be possible to embed the GGobi plot into an RGtk2 GUI. More interesting integration
uses the same basic tools. Please see the rggobi documentation for more details.

5.4. Defining GObject classes

All of the above examples utilize objects that are implemented in C. RGtk2 supports the
definition of GObject-derived classes from within R. The gClass function in R registers a
class, given the name of the new class, the name of the parent class, and the class definition.
The class definition is a series of arguments that specify the new fields, new methods, methods
that override inherited methods, signals, properties, and initialization function for the class.
The name of a parameter specifies its role in the definition.

Example of defining a class

The example below illustrates the definition of a new GObject-derived class by revisiting the
example in Section 3.4 involving the embedded plotting of microarray data. The slider in that
example controls the alpha level of the points in the scatterplot in a linear fashion. Given
the large amount of overplotting, the alpha level does not have a strong visual effect until it

Journal of Statistical Software 33

approaches its lower limit. One may desire greater control in this region, without limiting the
range of the slider.

A possible solution would be to map the slider value to an alpha value using a non-linear
function. All that is required is to change the slider callback so that it computes the alpha
value as a non-linear function of the slider value. However, the label on the slider would be
inaccurate; it would still report the original value. Overriding how the label is computed is
possible by connecting a handler to the format-value signal on the GtkScale class. Let us
assume, however, that we would like to create a reusable type of slider that mapped its value
using a specified R expression.

Below is our invocation of gClass that defines RTransformedHScale, an extension of
GtkHScale, the horizontal slider:

R> tform_scale_type <- gClass("RTransformedHScale", "GtkHScale",

+ .props = list(

+ gParamSpec(type = "R", name = "expr", nick = "e",

+ blurb = "Transformation of scale value",

+ default.value = expression(x))

+),

+ .public = list(

+ getExpr = function(self) self["expr"],

+ getTransformedValue = function(self)

+ self$transformValue(self$value)

+),

+ .private = list(

+ transformValue = function(self, x) eval(self$expr, list(x = x))

+),

+ GtkScale = list(

+ format_value = function(self, x) as.character(self$transformValue(x))

+)

+)

The third argument to gClass, .props, is a list containing property definitions. Each property
is defined by a GParamSpec structure created using the gParamSpec function.
RGtkTransformedHScale defines a single property named expr for holding the R expression

that performs the transformation, e.g., x^3. Definitions of properties may refer to any GType

by name. The names of primitive R types, like integer and character are mapped to the
corresponding (scalar) GType, if available. It is also possible to specify the RGtkSexp type, as
we have done for RGtkTransformedHScale using the shorthand alias R. The Values of type
RGtkSexp are left as native R objects instead of being converted to a C type, allowing the
storage of R types that do not have a conventional C analog, like expressions, data frames,
fitted models and S4 objects. For RGtkSexp properties, it is possible to specify the underlying
R type for validation purposes. In our example, that type is inferred from the default value,
which is of mode expression. The any type allows an RGtkSexp property to hold any R
type. Normally, the class definining a property is responsible for handling the getting and
setting of it. In order to override the management of a property defined by a parent class, the
name of the property should be included in a character vector passed as an argument named
.prop_overrides to the gClass function.

34 RGtk2: A Graphical User Interface Toolkit for R

Methods and fields may be encapsulated at the public, protected or private level. Public
members may be accessed by any code, while protected members are restricted to methods
belonging to the same class or a subclass. Access to private members is the most restricted
as they are only available to methods in the same class. gClass has a separate parameter
for each level of encapsulation. The values should be lists and are named according to their
level of encapsulation: .public, .protected or .private. The functions for the methods
and the initial assignments for the fields should be passed in the relevant parameter. The
name of a member in a list serves as its identifier. In our example above, we define two public
methods, getExpr and getTransformedValue, for retrieving the transformation expression
and the transformed value, respectively. There is one private method, transformValue that
is a utility for evaluating the expression on the current value.

Any virtual function defined by an inherited class or registered interface may be overriden.
Like methods, virtual functions are implemented as R functions. In the
RGtkTransformedHScale example, we override the format_value virtual function in the
GtkScale class to display the transformed value in the label above the slider. We first define
the R function that implements the new behavior. Next, since the gClass function requires
all overrides of methods from a particular class to be grouped together in a list, we create a
list for GtkScale. We then add our R function to the list as an element named format_value.
This informs gClass that we are overriding the format_value method.

Any public or protected method defined in R may be overridden in R as if it were a virtual
function. This is useful when the new class extends a class that itself is defined in R. Methods
external to R may only be overridden if they are virtual functions.

A function implementing a virtual function may delegate to the function that it overrides
from an ancestor class. This is achieved by calling the parentHandler function and pass-
ing it the name of the method and the arguments to forward to the method. For exam-
ple, in the override of format_value in the RGtkTransformedHScale class, we could call
parentHandler("format_value", self, x) to delegate to the implementation of
format_value in GtkScale.

Two elements of the class definition that are not in the example above are the list of signal
definitions and the initialization function. The signal definition list is passed as a parameter
named .signals and contains lists that each define a signal for the class. Each list includes
the name, return type, and parameter types of the signal. The types may be specified in
the same format as used for property definitions. The initialization function, passed as the
.initialize parameter, is invoked whenever an instance of the class is created, before any
properties are set. It takes the newly created instance of the class as its only parameter.

The return value from the call to gClass is the identifier of the new GType, and this can be
used in calls to create instances of this type.

The next step in our example is to create an instance of RGtkTransformedHScale and to
register a handler on the value-changed signal that will draw the plot using the transformed
value as the alpha setting:

R> adj <- gtkAdjustment(0.5, 0.15, 1.00, 0.05, 0.5, 0)

R> s <- gObject(tform_scale_type, adjustment = adj, expr = expression(x^3))

R> gSignalConnect(s, "value-changed", function(scale) {

+ plot(ma_data, col = rgb(0, 0, 0, scale$getTransformedValue()),

+ xlab = "Replicate 1", ylab = "Replicate 2",

Journal of Statistical Software 35

+ main = "Expression levels of WT at time 0", pch = 19)

+ })

Instances of any GObject class may be created using the gObject function. The value of the
expr property is set to the R expression x3 when the object is created. The signal handler now
calls the new getTransformedValue method, instead of getValue as in the original version.
This final block of code completes the example:

R> win <- gtkWindow(show = FALSE)

R> da <- gtkDrawingArea()

R> vbox <- gtkVBox()

R> vbox$packStart(da)

R> vbox$packStart(s, FALSE)

R> win$add(vbox)

R> win$setDefaultSize(400, 400)

R> require("cairoDevice")

R> asCairoDevice(da)

R> win$showAll()

R> par(pty = "s")

R> s$setValue(0.7)

More precise details on defining GObject classes are available in the R help page for the
gClass function.

6. Language binding design and generation

6.1. Goals and scope

There are two primary concerns for the design of RGtk2: consistency and efficiency of use.
In terms of consistency, the API should be consistent with R first and GTK+ second. RGtk2
aims to provide a complete and consistent interface to the GTK+ API, except where that
would conflict with R conventions. This is based on the assumption that the GTK+ API
has been designed to be used as a whole. We purposefully avoid any attempt to limit the
bindings to what we might consider the most useful subset of GTK+. Only functionality that
would introduce foreign concepts to R, such as as memory management, return-by-reference
parameters, and type casting, is excluded from the RGtk2 interface. It should not be obvious
to the user that GTK+ is implemented in a foreign language. As a consequence of consistency
with GTK+, RGtk2 provides a fairly low-level interface, which likely detracts from its ease
of use. To rectify this, RGtk2 aims to increase the usability of its API. Towards this end, it
provides high-level facilities like the RGtkDataFrame utility and the custom syntax for calling
methods and accessing properties.

In addition to GTK+, RGtk2 also provides bindings for Cairo, GDK, GdkPixbuf, Pango,
ATK, and Libglade. All of these libraries were designed with language bindings in mind,
and, except for Cairo, they are all based on the GObject framework. The API for Cairo is
sufficiently simple that its independence from GObject is of little consequence. As a result,
there are no significant binding issues that are particular to a single library, so the discussion
of GTK+ suffices for all of the bindings.

36 RGtk2: A Graphical User Interface Toolkit for R

With the exception of properties and signals, which are bound at runtime using introspection,
the RGtk2 bindings, including functions, methods, fields, virtual functions, callbacks and
enumerations, are based on programmatically generated code connecting R and the C routines
and data structures. This section continues by detailing the code generation system and the
type conversion routines utilized by the generated code. It concludes by introducing the
system for autogenerating the R documentation for the package. The explanations assume
the reader has a working knowledge of the GObject system (see Section 5.2).

6.2. Automatic binding generation

Given the broad scope of the project, it was decided that developing a system for automat-
ically generating the interface would be more time efficient than manual implementation.
Autogeneration also enhances the maintainability of the project, since improved code can be
uniformly and programmatically generated across for new versions of each library. Addition-
ally, this allows us and other users to programmatically generate interfaces to other libraries.
This section describes the design of the code generation system, beginning with the input
format and then explaining how each component of the bindings is generated.

The defs format

The GTK+ API and other GObject-based API’s are often described by a Scheme-based
(Kelsey et al. 1998) format called defs. A defs file describes the types and functions of an
API. The autogeneration system for the RGtk2 bindings takes defs files as its input. This
section briefly describes the defs format and how it is leveraged by RGtk2. It concludes with
a discussion of alternative API description methods.

The defs format supports six different kinds of types: objects, interfaces, boxed types, enumer-
ations, flags and pointers. Each of these correspond to a fundamental GType (see Section 5.2).

(define-object Widget

(in-module "Gtk")

(parent "GtkObject")

(c-name "GtkWidget")

(gtype-id "GTK_TYPE_WIDGET")

(fields

'("GtkStyle*" "style")

'("GtkRequisition" "requisition")

'("GtkAllocation" "allocation")

'("GdkWindow*" "window")

'("GtkWidget*" "parent")

)

)

Table 1: An example of the defs format for specifying the API of GObject-based libraries.
This particular expression describes the GtkWidget class.

Journal of Statistical Software 37

Every type of definition has a field identifying the module in which it is contained (usually
the name of the library or API), its C symbol and its GType, with the exception of raw pointer
types, which lack a specific GType. The objects, boxes, and pointers may contain a list of field
definitions, each consisting of the type and name of a field. The type names are formatted
as they are in C except for some special syntax for indicating arrays and specifying the type
of the elements in a list. Object definitions have a field for the parent type, while definitions
of boxed types specify the copy and free functions of the type. Each enumeration and flag
definition contains a list of their allowed values. As an example, the defs representation of
the GtkWidget object is given in Table 1.

In addition to types, the defs format supports definition of four kinds of invocable or callable
elements: functions, methods, virtual functions and callbacks. All callable definitions contain
the C symbol, a return type, whether the caller owns the returned memory and a list of
parameter definitions.

Each parameter definition contains a type, name, parameter direction (in or out), optional
default value and optional deprecation message. Parameter direction refers to whether a
parameter is passed as input (in) to the function or is part of the return value (out), which is
known as return by reference in C. An example is retrieving the dimensions of a GdkDrawable,
the rectangular target of GDK drawing operations. The method gdkDrawableGetSize has
two integer out parameters, width and height. A few parameters in the bound API’s are
sent in both directions, but these so-called inout parameters are so rare that we handle them
manually. Parameter types are formatted like field types.

There are slight differences in the way the different types of callables are defined in the
defs. Functions may be marked as constructors, i.e., for creating objects of a specified type.
Methods and virtual functions belong to an object or interface type. This distinguishes them
from plain functions and callback functions, which are independent of a class. The name of
the type declaring the method or virtual function is specified in the definition. Below is an
example of the getSize method on GtkWindow:

(define-method get_size

(of-object "GtkWindow")

(c-name "gtk_window_get_size")

(return-type "none")

(parameters

'("gint*" "width" (out))

'("gint*" "height" (out))

)

)

The Python binding to GTK+, PyGTK (Chapman and Kelley 2000), provides Python classes
for the generation and parsing of defs files. The generation scripts scan C header files for
information about an API. The autogenerated defs file is then manually annotated with
information that is not derivable from header files, such as that regarding memory ownership.
PyGTK maintains a set of reference defs files for every library bound by RGtk2 except Cairo,
for which a defs description was created as part of this work.

RGtk2 leverages this information as input to its binding generation system. The system is
implemented in R and calls the PyGTK defs parsing code via the RSPython (Temple Lang

38 RGtk2: A Graphical User Interface Toolkit for R

2005b) package. The resulting descriptions are converted to R and from these the interface
code is generated, consisting of both R and C binding code. In the great majority of cases,
the information provided by a defs file is sufficient for autogeneration of bindings. However,
there is a small number of functions that require manual implementation, such as those with
variadic arguments or complicated memory ownership policies.

There are some alternatives to the defs format. The GTK# project (Bernstein Niel 2004),
which binds GTK+ to the .NET platform, has defined the XML-based GAPI format (The
Mono Project 2008). GAPI contains essentially the same information as defs files, but the
GAPI tools allow the raw API description, which is normally derived automatically from
the header files of the library, to be stored separately from the manual annotations. The
raw definitions and annotations are merged when generating the code for an interface. This
facilitates maintenance of the interface definitions. The defs tools from PyGTK do not support
this, although filtering using regular expressions and storing the changes as patch or difference
files works fairly well. GAPI came long after the introduction of RGtk, and it was decided
that there were not enough advantages over defs to justify a switch. A second XML-based
format, GIR (Clasen et al. 2010), has recently been developed as a unifying standard for
representing GObject-based API’s. The use of XML as input to our code generation system
would substitute the dependency on the RSPython package with the XML package, and this
might prove simpler.

The following sections introduce each component of the bindings output by the code gener-
ation system. The components include a set of wrappers for each callable type, an accessor
function for each field, and code for creating an R vector for each enumeration/flags type.

Function and method wrappers

Functions and methods are mapped to R functions of the same name, transformed to camel-
Back form, i.e., words concatenated and the first letter in upper case, except for the first word.
Although an object-oriented syntax for methods is supported, its use is not mandatory; every
API call is possible through an R function. This results in an interface that is familiar to the
R programmer.

Each function and method definition in the defs input is converted to two wrapper functions,
one in R and the other in C. The R wrapper is responsible for coercion of the parameters to
the R types that correspond to the C types of the parameters of the underlying C function.
This includes checking the class attribute of the externalptr objects for the expected type.
It is considered simpler, safer and more maintainable to perform the coercion in R than in
C. The R wrapper will optionally emit a warning if the function is deprecated. It then calls
the C wrapper for the function, which converts the parameters from R types to C types and
invokes the API function. The return value, if any, is converted from C to R. If there are any
out parameters, these are also converted to R types and bundled with the return value in a
list. This avoids the foreign concept of return-by-reference in R. The result is then returned
to the R wrapper. If the function is a widget constructor, an extra optional parameter (show)
is added to the generated R function and this controls whether the newly created widget will
immediately be made visible. Finally, the result is returned to the user.

The following is an example of this process for the function gtkWidgetCreatePangoLayout,
which is a commonly used function for drawing text on a widget, such as a GtkDrawingArea.
First, we present the autogenerated R wrapper, from the RGtk2 source code, reformatted to

Journal of Statistical Software 39

wrap long lines:

R> gtkWidgetCreatePangoLayout <- function(object, text) {

+ checkPtrType(object, "GtkWidget")

+ text <- as.character(text)

+ w <- .RGtkCall("S_gtk_widget_create_pango_layout", object, text,

+ PACKAGE = "RGtk2")

+ return(w)

+ }

The wrapper ensures that the object is of type GtkWidget and coerces the text to display to a
character vector. It then invokes the C wrapper with the validated arguments and returns the
result. Below is the source code listing of the S_gtk_widget_create_pango_layout function:

SEXP

S_gtk_widget_create_pango_layout(SEXP s_object, SEXP s_text)

{

SEXP _result = R_NilValue;

GtkWidget* object = GTK_WIDGET(getPtrValue(s_object));

const gchar* text = ((const gchar*)asCString(s_text));

PangoLayout* ans;

ans = gtk_widget_create_pango_layout(object, text);

_result = toRPointerWithFinalizer(ans, "PangoLayout",

(RPointerFinalizer) g_object_unref);

return(_result);

}

The R types are converted to C types and passed to the actual GTK+ function. The result,
a PangoLayout object, is converted to an R externalptr type and returned.

Constructors

There are often several constructor routines for a given GTK+ class, e.g., for GtkButton

there is gtkButtonNew, gtkButtonNewWithLabel, gtkButtonNewFromStock. While bindings
for each of these are available, we also want the R programmer to be able to use a single
general purpose constructor function, e.g., gtkButton(). Depending on which arguments
are provided to gtkButton(), the code decides which of the low-level constructors is to be
invoked.

For each object class, the high-level constructor function (e.g., gtkButton()), is programmat-
ically generated. Its parameter list matches the union of all of the parameter lists for each
constructor of the class. The function body delegates to one of the constructors based on
which parameters are provided by the user. As with GtkButton, the name of the constructor
is the name of the class with the first character in lower case.

40 RGtk2: A Graphical User Interface Toolkit for R

As an example, the code for the programmatically generated gtkButton() function is given
below. The GtkButton class has three constructors which correspond to the functions
gtkButtonNewFromStock(stock.id), gtkButtonNewWithLabel(label) and the basic
gtkButtonNew, which takes no arguments. From these, we generate the following code:

R> gtkButton <- function (label, stock.id, show = TRUE) {

+ if (!missing(stock.id)) {

+ gtkButtonNewFromStock(stock.id, show)

+ } else {

+ if (!missing(label)) {

+ gtkButtonNewWithLabel(label, show)

+ } else {

+ gtkButtonNew(show)

+ }

+ }

+ }

This then allows the R programmer to use calls such as

R> gtkButton()

R> gtkButton("my label")

R> gtkButton(stock.id = "...")

Callback wrappers

Callbacks are functions that are passed to and returned from functions and methods in the
API of a library. After a callback is registered, the library may invoke it to perform a particular
task, and, in so doing, it calls back into client code. Thus, callbacks are one means for a client
to customize part of the functionality of a library.

An example of a function that registers a callback is gtkTreeViewColumnSetCellDataFunc,
which is used by the create_tree_view function in Section 4.4 to customize the rendering
of the numeric values as text in the spreadsheet. There are two integral components of the
bindings that enable support for callback functions. First, there is the wrapper for each
callback registration function, like gtkTreeViewColumnSetCellDataFunc. Then, for each
callback function, there is a C implementation of the callback that delegates to the R function
registered as the callback by the user.

In general, callback registration functions take two parameters: the callback function and
a user-data structure that is conventionally passed as the final argument to the callback
function. Similar to connecting a handler to a signal, the user needs to provide an R function
as the callback function. The user-data parameter is optional; if given, it may be any R
object.

When wrapping a callback registration function, special handling is required for its parame-
ters. As the underlying C registration function requires a C function for its callback parameter,
we pass an autogenerated C function, which delegates to the user-provided R callback function
(see below). In order to provide the R function to the C wrapper, we place the R function,
as well as the R user-data (if any) in a structure and pass that structure to the underlying C
registration function as the user-data.

Journal of Statistical Software 41

The generated code for the C wrapper that delegates to the user-provided R callback is similar
to that of an ordinary function wrapper, except the flow of control is in the opposite direction.
When invoked, the function retrieves the R function and user-data object from the special
structure passed as the user-data to the wrapper. The wrapper then converts its parameters to
their R equivalents, calls the user-provided R function, and returns the result after converting
it to its C equivalent.

Virtual function wrappers

Virtual functions, like format_value in the RTransformedHScale class defined in Section 5.4,
are bound to R in order to support the extension of GObject classes. Wrappers for virtual
functions are generated for both directions, from R to C, like the function wrappers, and from
C to R, like callbacks.

Although virtual functions are not public like methods, they are bound in the forward direction
for calling the overriden implementation of a virtual function in a parent class. The generated
code in this case is very similar to that for wrapping ordinary functions and methods.

The reverse wrapper, from C to R, is needed to support the overriding of virtual functions
through inheritance. The R functions implementing the virtual functions are stored within
the GObject class structure. When a virtual function is invoked, the code searches for a
corresponding R function. It is not guaranteed that one exists within the class structure, as
a class need not override every virtual function it inherits. If one is found, the R function is
invoked in the manner described above for callbacks functions. If no overriding function is
found, the code delegates to the implementation of the method in the parent class.

Field accessors

Fields, which are typically considered read-only in GObject API’s, may be accessed in R
using the extraction function [[as in obj[[name]]. The usage of [[is the same as when
extracting a named element from an R list, which should be familiar to every R programmer.
This mechanism is based on an R wrapper function named according to the scheme class-
NameGetFieldName, e.g., gtkWidgetGetStyle for retrieving the style field from an instance
of GtkWidget. This function works much the same as the function bindings introduced above,
except the C wrapper accesses a field of a C structure rather than invoking a function, and
converts the value from C to R.

Enumeration and flag definitions

Although the function wrappers accept the string representations of enumerations and flags,
as that is likely familiar to R programmers, there are some cases, such as in the example in
Section 3.1 involving GtkResponseType and when performing bitwise operations on flags, that
the numeric values of enumerated types are required. The code generator outputs definitions
of R numeric vectors with the names corresponding to the string representation of each value.

6.3. Type conversion

Overview

Most of the work on RGtk2 outside of autogeneration deals with type conversion. Conversion

42 RGtk2: A Graphical User Interface Toolkit for R

of strings and primitive C types, such as int and double, is relatively obvious and simple.
Pointers to C structures are converted in two different ways, generally referred to as high-level
and low-level type conversion. High-level conversion is the translation between a C structure
and a native R object, information? such as a list. The class attribute on the object normally
corresponds to the type of the original C structure. The alternative is low-level conversion
to and from R externalptrs. For consistency, the method of conversion is the same for a
particular structure type in both directions, to and from C. Collections, such as arrays and
linked lists, are converted by iterating over the data structures, converting each element and
storing the result into an R list. This section continues with further details on the two methods
for converting C structures, and this is followed by explanations of array and error conversion.

High-level type conversion

High-level structure conversion either produces or consumes a native R object instead of a
low-level externalptr. The advantage of a native R value is more obvious integration with R.
In particular, reference semantics are avoided. However, due to performance considerations,
information hiding, library design, and other constraints, high-level conversion is only feasible
in certain cases. One rare case is where a complex C type has a clear analog in R. An example
of this is the GString structure, which is a convenience wrapper around an array of characters.
This is naturally mapped to an R character vector of length 1, i.e., a single string and not
a vector of characters. The more common second case is the conversion between C structures
and R lists, where each field of the structure is represented by an element in the list, in the
same order. The names of the list elements match the names of the structure fields.

Structures qualify for the second case if they are meant to be initialized directly in C and
therefore lack a constructor. Although a new function could be introduced as a constructor,
this would introduce an unnecessary inconsistency between R and C. In our experience, if
the underlying API requires that a structure be initialized directly, it is feasible to perform
high-level conversion on the structure. An example of this type of high-level conversion may
be found in the spreadsheet example in Section 4. The actions for the menu and tool bar are
specified as lists; no external references are created.

Low-level type conversion

The use of low-level externalptr objects for the underlying C structures is likely unfamiliar
to most R programmers, but, in general, it is difficult to avoid. The primary reason is that the
C libraries depend on the treatment of many structures as references. For reasons connected
to run-time “safety” and method dispatch, the type of the pointer, as well as the entire class
hierarchy in the case of an object, is stored as a character vector in the class attribute of
the R object. This is used, for example, when validating inputs in function wrappers, as well
as for determining the function to call when the user employs the object-$-method syntax.

An important consideration when handling references is memory management, which needs
to be hidden from the R user. The base policy is that memory is preserved until it is no
longer referenced by R. This relies on the R garbage collector and the reference counting of
GObject. Boxed structures are copied using their copy function and registered for finalization
using their free function. Instances derived (directly or indirectly) from the GObject class
are managed using a reference counting scheme. The reference count is incremented when a
reference is obtained and decremented when the reference is finalized. In cases where memory

Journal of Statistical Software 43

ownership is transferred implictly, such as when an object is constructed, it is not necessary
to claim ownership by copying or increasing an reference count.

There are two cases where the above mechanism is insufficient: C structures without GTypes
and objects derived from GtkObject, which serves as the base class GtkWidget, as well as
several other GTK+ classes. When a structure lacks a GType, RGtk2 does not know how
to manage its memory. Thus, the structure is passed to R without copying it or otherwise
transferring the ownership of the memory to R, in the hope that the memory is not freed
externally. Thankfully, these types of structures are rare. Most of them are converted to
high-level R structures, which avoids holding a reference.

The second exception is GtkObject, which extends GObject to support explicit destruction
via the gtkObjectDestroy function. When that function is invoked, the destroy signal is
emitted. All parties that hold a reference to the object are required to respond to the signal by
releasing their reference. This functionality is useful for destroying widgets when they are no
longer needed, even if other parties hold references to them. However, it also means that the R
references to the object will become invalid even though they are still visible to the R session.
When a reference to a GtkObject is obtained, the RGtk2 package transparently connects a
handler to its destroy signal. Besides releasing the reference, the signal handler modifies the
class attribute of the externalptr to a sentinel value indicating that the reference is invalid.
If the programmer attempts to use an invalidated reference, an error will be thrown. This
silent modification of the class attribute may surprise the R programmer, but it avoids fatal
errors that may corrupt the R session (e.g., segmentation faults).

Arrays

C arrays are converted to R lists, with each element converted individually. The primary com-
plication is that C arrays do not track their length. Unless an array is terminated by a sentinel
value, there is usually no way to determine the length from the array itself. This requires C
functions to accept and return array length parameters along with arrays. Array length pa-
rameters need to be hidden from the R programmer, since R vectors have an inherent length.
The code generator uses heuristics to identify array length parameters and does not require
the R programmer to provide them. For example, if an array parameter is followed by an
integer parameter, the generator will assume the integer parameter specifies the length of the
array. A specific example of this is the function gtkActionGroupAddActions, which is called
in Section 4.2 as part of the spreadsheet application example. The function wraps the C func-
tion with the signature gtk_action_group_add_actions(GtkActionGroup *action_group,

GtkActionEntry *entries, guint n_entries, gpointer user_data). The generator
guesses that the unsigned integer n_entries parameter represents the length of the array of
GtkActionEntry structures passed as entries. For input parameters, the wrapper passes
the length of the input R list as the array length parameter. For returned arrays, a sim-
ilar heuristic finds the returned length and uses it when converting the array to an R list.
For example, the C function gtk_recent_chooser_get_uris(GtkRecentChooser *chooser,

gsize *length) returns an array of strings, containing the URI’s in a recent file chooser wid-
get. The generator identifies the length return-by-reference (out) parameter as representing
the length of the returned array. This heuristic is slightly less reliable compared to the one
for input arrays, since there is no array parameter to search around for a length parameter.
In cases where these heuristics fail, we manually implement the function wrapper (relying on
the code generator for a head start).

44 RGtk2: A Graphical User Interface Toolkit for R

Errors

Certain errors that occur in GLib-based libraries are described by a returned GError struc-
ture. In R, the user is often alerted to a problem via a condition emitted by the stop()

or warning() functions. The user may pass a value of TRUE or FALSE as the value of the
.errwarn parameter to any wrapper that might raise a GError. If .errwarn is TRUE, a warn-
ing is raised. Alternatively, if .errwarn is FALSE, no warning will be emitted and the user can
inspect a returned list structure containing the fields of the GError, which often holds more
information compared to the warning string. In the future, a new type of R-level condition
may be added for a GError, but the system currently emits only warnings.

6.4. Autogeneration of the documentation

The final design consideration is the documentation of the bindings, which is also accomplished
by auto-generation. A relatively easy approach would be to generate a single documentation
file with an alias for all of the functions and data structures of a particular library. That file
could contain a reference to the library’s C documentation on the web. However, referring
the user to C documentation would have several disadvantages. First, most R programmers
are likely not familiar with C. Second, there would be a number of significant inconsistencies
in the API. This might confuse even an experienced C programmer. For example, RGtk2
hides function parameters that specify the lengths of arrays, since these are always known in
R. The existence of these in the C documentation would confuse the R user. Other inconsis-
tencies would be return-by-reference parameters and the names of data types. Also, the C
documentation would omit concepts such as high-level structure conversion.

Fortunately, all of the bound libraries rely on the gtk-doc utility that produces documentation
as Docbook XML. The XML representation may be parsed into R using the XML package
(Temple Lang 2001). From within R, it is possible to introspect the bindings and access the
API descriptions stored in the defs files. By combining this information with the original
documentation, the documentation generator is able to output R help files that are consistent
with the RGtk2 API. Embedded C examples are replaced with their R equivalent by looking up
an R translation by the name of the example. The translation is done manually. The generator
attempts to filter out irrelevant statements, such as those regarding memory management,
though many C-specific phrases still exist in the output. Thus, the documentation of RGtk2
is still very much a work in progress.

7. Technical language binding and GUI issues

7.1. Fully programmatic binding generation

The strategy of autogenerating the bindings saves a significant amount of time and facilitates
maintenance, but it is not without its problems. The defs files as generated from the header
files do not contain all of the information necessary to correctly generate bindings to many of
the C functions. This requires human annotatation of the defs files. The two most common
types of required annotation are the direction of parameters (in, out or inout) and the transfer
of memory ownership. There is no way to determine this information from the header files.

Another solution would be to require the authors of the API to include the missing information

Journal of Statistical Software 45

as specially formatted comments in the source code. The comments could even be part of the
inline documentation, as it would be beneficial to state such information in a standard way
in the documentation, as well. This method does not avoid human annotation and there is
the potential for the code and the documentation to become unsynchronized, but the benefit
is that the annotations are centrally maintained by an authoritative source.

A variation on the above idea would be to support registration of functions, with all infor-
mation necessary for binding, during class initialization, just as signals and properties are
currently. This would render the entire API of a library introspectable at runtime; compiled
bindings would no longer be necessary. However, runtime introspection of functions would
have a high performance cost due to the consumption of a large amount of memory and the
need to lookup the information each time it is needed. One way around this would be to use
the information for generating a compiled interface but not to load the information during
normal use of the library. Still, the previous solution of storing the information in comments
would have the advantage of being accessible without linking to the library.

A more radical solution would be to write libraries in an entirely different language, which
compiled down to GObject-based C code. The design of the language would ensure that
all information necessary for binding would be known to the compiler. One such language
is named Vala (Billeter and Sandrini 2010). Vala is an object-oriented language with a C#
syntax and features like assisted memory management, lambda expressions and exceptions.
The Vala compiler provides an API for inspecting the parsed language, from which binding
information like memory management and function parameter directions may be obtained.

While completely reimplementing a C library in Vala would likely be impractical, it is possible
to write interface stubs in a subset of Vala, keeping the implementation in C. This interface
definition language, known as VAPI, could then be translated to a standard format, e.g., GIDL,
for input to interface generation tools. In the case of GIDL, this avoids the need for a human
to write XML.

All of the above solutions require, to some extent, manual maintenance of the interface defin-
tions. One way the machine might programmatically determine information about return-
by-reference parameters, memory management and other aspects would be to inspect the C
source code of the library in addition to or instead of the header files. The RGCCTransla-
tionUnit package (Temple Lang 2006a) provides a framework and some tools to support such
inspection.

7.2. RGtk2 as a base for other GObject bindings

Implementations of most progamming languages are still written in C. This suggests that
libraries implemented in C are likely accessible to more languages than those implemented in
Java, for example. GObject is designed with language bindings in mind. Given this incentive,
it is likely that the number of GObject-based libraries will continue to grow.

RGtk2 has been designed to serve as a base for other R packages binding to GObject-derived
libraries. The mechanism introduced by R 2.4 for sharing C interfaces between packages
allows RGtk2 to export all of its C-level utilities for interacting with GObject, including type
conversion routines, wrappers for the GObject API, and functions for extending GObject
classes. This support has already been used by an experimental version of rggobi (Lawrence
et al. 2007). If this functionality proves to be of general use, it should probably be split out
of RGtk2 as a base binding to GObject. In conjunction with this, the binding generation

46 RGtk2: A Graphical User Interface Toolkit for R

system should be revised and made public, as was done for the original RGtk package.

7.3. Event loop issues

All user interfaces need to respond to user input. GTK+ provides an event loop that checks
for user input and executes application callbacks when necessary. GTK+ applications written
in C usually execute the GTK+ event loop after initialization. The loop takes is started and
continues processing events until the GUI is terminated. The interactive R session is a user
interface, and it has its own event loop. When using RGtk2 from an interactive session, there
are two event loops, R and GTK+, trying to process the user input at the same time.

By default, RGtk2 attempts to reconcile the two loops by delegating to the GTK+ event
loop when the R event loop is idle. In general, both interfaces operate as expected under
this configuration. However, as the GTK+ event loop is not iterated continuously, certain
operations, in particular timer tasks, are not executed reliably. While it is not expected
that many RGtk2 users will rely on timers, several GTK+ widgets use timers for animation
purposes. These widgets tend not to be as responsive as the others without reliable iteration
of the GTK+ event loop. One solution to this problem is to invoke the R function gtkMain,
which transfers control to the GTK+ event loop and blocks the R console for the lifetime of
that GUI. If the user is willing to sacrifice access to the regular R console, this is a viable
method to enhance the responsiveness of the GTK+ GUI. Of course, an alternative command
line interface can be provided by implementing it within a GTK+-based GUI and so the user
would have both. Indeed, we feel that R should not have its own event loop but rather be
treated as library from other front ends. Another possible solution would be a multithreaded
model, with synchronized access to the R evaluator. There has been some work towards a
solution to this problem, such as the REventLoop package (Temple Lang 2003), but this
remains an area for further research.

8. Comparison of RGtk2 to other R GUI toolkit bindings

There are many different ways to construct a GUI from R. All of them, at some level, depend
on a binding to an external widget toolkit. Direct bindings exist for Tcl/Tk (Ousterhout 1994;
Welch 2003) and wxWidgets (Smart et al. 2005), in addition to GTK+. Other toolkits are
indirectly accessible across interfaces to DCOM (Microsoft Corporation 2007) and Java (Sun
Microsystems 2007). This section outlines the alternatives to RGtk2 for constructing GUIs
in R, considering the features of both the R binding and the underlying toolkit.

The great majority of R GUIs rely on the tcltk package (Dalgaard 2001, 2002) that binds R to
Tcl/Tk (Ousterhout 1994; Welch 2003), a mature light-weight cross-platform widget library.
Applications of tcltk range from limmaGUI (Smyth 2005), a task-specific GUI for microarray
preprocessing, to the more general R Commander (Fox 2005). The tcltk package is bundled
with the core distribution of R. This means that developers can usually count on its availabil-
ity. This is not the case for RGtk2, which requires the user to install RGtk2, GTK+, and all
of the libraries on which GTK+ depends. The small footprint of Tcl/Tk likely delivers better
performance in terms of speed and memory than GTK+ in many circumstances. Tcl/Tk also
offers some features that base GTK+ currently lacks, the canvas widget being one example.

Unfortunately, Tcl/Tk development is slow and the library is beginning to show its age. It lacks
many of the widgets present in GTK+ and other modern toolkits, such as tree tables, progress

Journal of Statistical Software 47

bars, and autocompleting text fields. Tcl/Tk widgets are often less modern or sophisticated
than their GTK+ counterparts. For example, a GTK+ menu is able to be torn off as an
independent window and the GTK+ file chooser supports the storage of shortcuts. Tcl/Tk
also lacks theme support, so it is not able to emulate native look and feels. Tcl/Tk is not
object-oriented, and it is not possible to override the fundamental behavior of widgets. While
one can build so-called “megawidgets” on top of existing Tk widgets, this is not the same
as creating new GtkWidget-derived classes with RGtk2. Moreover, the design goals of the
tcltk package differ from those of RGtk2, in that tcltk aims to expose the functionality of
the Tcl engine to the R programmer, while RGtk2 is a higher-level binding to a collection of
specialized C libraries.

The Windows-specific tcltk2 package (Grosjean 2010) is an attempt to overcome some of the
limitations of the tcltk package by binding the Tile extension (English 2004) of Tcl/Tk. Tile
adds support for themes, allowing emulation of native widgets and prettier GUIs, as well
as new widgets like a tree table and progress bar. However, Tile still lags behind GTK+.
For example, the GTK+ tree table allows the embedding of images, check boxes, and combo
boxes, while the Tile one does not.

wxWidgets (Smart et al. 2005) differs from Tcl/Tk and GTK+ in that it provides a common
API with platform-specific implementations based on the native widgets of each platform, and
so preserves the look and feel of each platform, without resorting to emulation. In contrast,
Tcl/Tk and GTK+ provide exactly the same widgets on all platforms, leaving the look and
feel to theme engines. GTK+ serves as the “native” Linux implementation of wxWidgets.
The first binding from R to wxWidgets is the now defunct wxPython package that leverages
RSPython to access the Python binding to wxWidgets. RwxWidgets (Temple Lang 2008b) is
a more recent binding that directly binds to the C++ classes of wxWidgets. wxWidgets has
some limitations; it lacks integrated 2D vector graphics and support for constructing GUIs
from XML descriptions. However, wxWidgets does provide some features that do not exist
yet in base GTK+, such as HTML display and a dockable window framework.

The RDCOM (Temple Lang 2008a) and rcom (Baier 2009) packages provide an interface
between R and DCOM (Microsoft Corporation 2007). This permits manipulation of existing
GUIs, such as that of Microsoft Office, or programmatically placing ActiveX controls on an
Excel spreadsheet and, with the RDCOMEvents package (Temple Lang 2005a), connecting
R functions to their events. The R-(D)COM package has been used to create the educational
R GUI simpleR (Maier 2006). A major drawback to the use of DCOM is its dependence on
Microsoft Windows. However, given the prevalence of Microsoft Windows, this is a significant
benefit for those seeking to develop rich GUIs for that platform and integrating tools such as
Excel, Word and Internet Explorer.

Java toolkits, including Swing and SWT, are also accessible from R through R-Java interfaces
such rJava (Urbanek 2009). The features of Swing and SWT are comparable to those of
GTK+, and one could use rJava to develop Java-based GUIs. This would be facilitated by a
high-level interface for GUI development built on top of the low-level interface provided by
rJava.

Such an interface is delivered by the gWidgets package (Verzani 2009). gWidgets provides a
simplified, common-denominator-style API for GUI programming that, similar in spirit but
not as complete as the approach of wxWidgets, is implemented by multiple toolkit backends.
gWidgets is written in R, so its backends rely on bindings to the external toolkits. So far, there

48 RGtk2: A Graphical User Interface Toolkit for R

are three backends for gWidgets: gWidgetsRGtk2, based on RGtk2; gWidgetsJava, based on
rJava and Swing; and gWidgetsTcltk for Tcl/Tk. A defining characteristic of gWidgets is the
design of its API, which aims for simplicity and consistency with R conventions. The goal is
to accelerate the construction of simple GUIs by those inexperienced with GUI programming.
For this purpose, using gWidgets is likely a better course than direct use of RGtk2; however,
the simplified interface hides functionality that more complex applications might find useful.

The Qt toolkit (Blanchette and Summerfield 2008) is another widely used C++ library for
developing GUIs. It is used as the basis for the KDE desktop and applications (KDE Founda-
tion 2010) and provides a rich, high-quality collection of customizable and extensible widgets,
along with many supporting classes for general computing such as network access and threads.
It is developed by the company Trolltech and was originally a commercial offering. Subse-
quently, it has been released with an open source license. The most recent version (4.4)
includes the integration of WebKit (The WebKit Open Source Project 2010), the libraries
used in Apple’s Safari Web browser, and so offers a wide variety of high quality support for
rendering HTML, executing JavaScript, XPath, etc. Bindings for R to Qt are in preparation
(Lawrence and Sarkar 2010).

One benefit of RGtk2 (and RwxWidgets on Linux) is the capability to integrate with other
GUIs based on GTK+. Such software includes GGobi, Mozilla Firefox (on some platforms),
and Gnumeric. Widgets from these tools could be embedded in RGtk2-based GUIs. The
rggobi package enables this for GGobi, a software tool for multivariate graphics.

9. Impact and future work

RGtk2 aims to provide a consistent and efficient interface to GTK+ for constructing GUIs in
R. The design of the API prioritizes usability from the perspective of the R programmer. The
package has been adopted by several projects, including: gWidgets (Verzani 2009), a simple
interface for GUI construction in R; Rattle (Williams 2010), a data mining GUI based on
Libglade; and playwith (Andrews 2010), a package for interactive R graphics. Future plans
for RGtk2 include more fully automating the code generation process and keeping pace with
frequent GTK+ releases.

Acknowledgments

Michael Lawrence’s work was supported in part by National Science Foundation Arabidopsis
2010 grants DBI-0209809 and DBI-052067. We also thank Dr. Dianne Cook for providing
helpful feedback on the software and this paper.

References

Andrews F (2010). playwith: A GUI for interactive plots using GTK+. R package version
0.9-45, URL http://CRAN.R-project.org/package=playwith.

Baier T (2009). rcom: R COM Client Interface and Internal COM Server. R package
version 2.2-1, URL http://CRAN.R-project.org/package=rcom.

http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=rcom

Journal of Statistical Software 49

Bernstein Niel M (2004). Using the Gtk Toolkit with Mono. URL http://ondotnet.com/

pub/a/dotnet/2004/08/09/gtk_mono.htm.

Billeter J, Sandrini R (2010). “Vala – Compiler for the GObject Type System.” Version 0.7-10,
URL http://live.gnome.org/Vala.

Blanchette J, Summerfield M (2008). C++ GUI Programming with Qt4. Prentice Hall Open
Source Software Developer Series, 2nd edition. Prentice Hall, Upper Saddle River, NJ, USA.

Breuer H, Clasen M, Lillqvist T, Janik T, Pennington H, Steinke R, Taylor O, Wilhelmi S
(2010). GLib: Low-Level Core Run-Time Library. Version 2.23, URL http://developer.

gnome.org/doc/API/2.0/glib/.

Chapman M, Kelley B (2000). “Examining the PyGtk Toolkit.” Dr. Dobb’s Journal of
Software Tools, 25(4), 82.

Clasen M, Dahlin J, Billeter J, Van Hoof P, Taylor R (2010). GObject Introspection. Ver-
sion 0.6, URL http://live.gnome.org/GObjectIntrospection.

Cook D, Lawrence M, Lee EK, Babka H, Wurtele ES (2008). “explorase: Multivariate Ex-
ploratory Analysis and Visualization for Systems Biology.” Journal of Statistical Software,
25(9), 1–23. URL http://www.jstatsoft.org/v25/i09/.

Dalgaard P (2001). “A Primer on the R-Tcl/Tk Package.” R News, 1(3), 27–31. URL
http://CRAN.R-project.org/doc/Rnews/.

Dalgaard P (2002). “Changes to the R-Tcl/Tk Package.” R News, 2(3), 25–27. URL http:

//CRAN.R-project.org/doc/Rnews/.

Drake L, Plummer M, Temple Lang D (2005). gtkDevice: Loadable and Embeddable Gtk
Device Driver for R. R package version 1.9-4, URL http://CRAN.R-project.org/src/

contrib/Archive/gtkDevice/.

English J (2004). “The Tile Widget Set.” Tcl2004. URL http://tktable.sourceforge.

net/tile/tile-tcl2004.pdf.

Fourdan O (2000). “Xfce: A Lightweight Desktop Environment.” In Proceed-
ings of the 4th Annual Linux Showcase, Atlanta. Atlanta, Georgia. URL
http://www.usenix.org/publications/library/proceedings/als00/2000papers/

papers/full_papers/fourdan/fourdan.pdf.

Fox J (2005). “The R Commander: A Basic Statistics Graphical User Interface to R.” Journal
of Statistical Software, 14(9), 1–42. URL http://www.jstatsoft.org/v14/i09/.

Grosjean P (2010). tcltk2: Tcl/Tk Additions. R package version 1.1-2, URL http://CRAN.

R-project.org/package=tcltk2.

GTK+ Development Team (2010). GTK+: The Gimp Toolkit. Version 2.19, URL http:

//www.gtk.org/.

Helbig M, Theus M, Urbanek S (2005). “JGR: Java GUI to R.” Statistical Computing
and Graphics Newsletter, 16(2), 9–12. URL http://stat-computing.org/newsletter/

issues/scgn-16-2.pdf.

http://ondotnet.com/pub/a/dotnet/2004/08/09/gtk_mono.htm
http://ondotnet.com/pub/a/dotnet/2004/08/09/gtk_mono.htm
http://live.gnome.org/Vala
http://developer.gnome.org/doc/API/2.0/glib/
http://developer.gnome.org/doc/API/2.0/glib/
http://live.gnome.org/GObjectIntrospection
http://www.jstatsoft.org/v25/i09/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/src/contrib/Archive/gtkDevice/
http://CRAN.R-project.org/src/contrib/Archive/gtkDevice/
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/fourdan/fourdan.pdf
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/fourdan/fourdan.pdf
http://www.jstatsoft.org/v14/i09/
http://CRAN.R-project.org/package=tcltk2
http://CRAN.R-project.org/package=tcltk2
http://www.gtk.org/
http://www.gtk.org/
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf

50 RGtk2: A Graphical User Interface Toolkit for R

KDE Foundation (2010). K Desktop Environment. Software version 4.4, URL http://www.

kde.org/.

Kelsey R, Clinger W, Rees J (1998). “Revised Report on the Algorithmic Language Scheme.”
ACM SIGPLAN Notices, 33(9), 26–76.

Krause A (2007). Foundations of GTK+ Development. Apress, Berkely, CA, USA.

Lawrence M (2009). cairoDevice: Cairo-based Cross-Platform Antialiased Graphics De-
vice Driver. R package version 2.10.0, URL http://CRAN.R-project.org/package=

cairoDevice.

Lawrence M, Sarkar D (2010). qtbase: Interface between R and Qt. R package version 0.6-3,
URL http://qtinterfaces.R-Forge.R-project.org/.

Lawrence M, Wickham H, Cook D (2007). “GGobi Beta Homepage.” URL http://www.

ggobi.org/beta/.

Maier G (2006). simpleR: A Windows GUI for R. R package version 0.1.1, URL http:

//www-sre.wu.ac.at/SimpleR/.

Microsoft Corporation (2007). “Distributed Component Object Model (DCOM) for Windows
98.” URL http://www.microsoft.com/com/.

Ousterhout J (1994). Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, USA.

Penners R (2005). GTK-WIMP (Windows Impersonator). Version 0.7.0, URL http://

gtk-wimp.sourceforge.net/.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

SAS Institute Inc (2007). JMP 7: Statistical Discovery Software. Cary, NC. URL http:

//www.jmp.com/.

Smart J, Hock K, Csomor S (2005). Cross-Platform GUI Programming with wxWidgets.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Smyth GK (2005). “Limma: Linear Models for Microarray Data.” In R Gentleman, V Carey,
S Dudoit, R Irizarry, W Huber (eds.), Bioinformatics and Computational Biology Solutions
Using R and Bioconductor, pp. 397–420. Springer-Verlag, New York.

Sun Microsystems (2007). “Java.” URL http://www.java.com/.

Temple Lang D (2001). “Using XML for Statistics: The XML Package.” R News, 1(1), 24–27.
URL http://CRAN.R-project.org/doc/Rnews/.

Temple Lang D (2001-2005). RGtk. R package version 0.8-0, URL http://www.omegahat.

org/RGtk/.

Temple Lang D (2003). REventLoop. R package version 0.2-3, URL http://www.omegahat.

org/REventLoop/.

http://www.kde.org/
http://www.kde.org/
http://CRAN.R-project.org/package=cairoDevice
http://CRAN.R-project.org/package=cairoDevice
http://qtinterfaces.R-Forge.R-project.org/
http://www.ggobi.org/beta/
http://www.ggobi.org/beta/
http://www-sre.wu.ac.at/SimpleR/
http://www-sre.wu.ac.at/SimpleR/
http://www.microsoft.com/com/
http://gtk-wimp.sourceforge.net/
http://gtk-wimp.sourceforge.net/
http://www.R-project.org
http://www.R-project.org
http://www.jmp.com/
http://www.jmp.com/
http://www.java.com/
http://CRAN.R-project.org/doc/Rnews/
http://www.omegahat.org/RGtk/
http://www.omegahat.org/RGtk/
http://www.omegahat.org/REventLoop/
http://www.omegahat.org/REventLoop/

Journal of Statistical Software 51

Temple Lang D (2005a). RDCOMEvents. R package version 0.3-1, URL http://www.

omegahat.org/RDCOMEvents/.

Temple Lang D (2005b). RSPython: R/SPlus – Python Interface. R package version 0.7-1,
URL http://www.omegahat.org/RSPython/.

Temple Lang D (2006a). RGCCTranslationUnit. URL http://www.omegahat.org/

RGCCTranslationUnit/.

Temple Lang D (2006b). SJava: The R & S Interface to Omegahat and Java. R package
version 0.69-0, URL http://www.omegahat.org/RSJava/.

Temple Lang D (2008a). RDCOM Bundle of Packages. Version 0.92-0, URL http://www.

omegahat.org/RDCOMBundle.

Temple Lang D (2008b). RwxWidgets. R package version 0.5-7, URL http://www.

omegahat.org/RwxWidgets/.

Temple Lang D, Swayne DF (2001). “GGobi Meets R: An Extensible Environment for Inter-
active Dynamic Data Visualization.” In K Hornik, F Leisch (eds.), Proceedings of the 2nd
International Workshop on Distributed Statistical Computing, March 15–17, 2001, Technis-
che Universität Wien, Vienna, Austria. ISSN 1609-395X, URL http://www.ci.tuwien.

ac.at/Conferences/DSC-2001/Proceedings/.

The Cairo Project (2010). Cairo Vector Graphics Library. Version 1.8.10, URL http:

//www.cairographics.org.

The Mono Project (2008). “GAPI.” URL http://www.mono-project.com/GAPI.

The WebKit Open Source Project (2010). WebKit. URL http://webkit.org/.

Tierney L (2008). tkrplot: Tk R Plot. R package version 0.0-18, URL http://CRAN.

R-project.org/package=tkrplot.

Unwin A, Hofmann H (1999). “GUI and Command-line – Conflict or Synergy?” In K Berk,
M Pourahmadi (eds.), Computing Science and Statistics.

Urbanek S (2009). rJava: Low-Level R to Java Interface. R package version 0.8-1, URL
http://CRAN.R-project.org/package=rJava.

Verzani J (2009). gWidgets: gWidgets API for Building Toolkit-independent, Interactive
GUIs. R package version 0.0-37, URL http://CRAN.R-project.org/package=gWidgets.

Verzani J (2010). pmg: Poor Man’s GUI. R package version 0.9-42, URL http://CRAN.

R-project.org/package=pmg.

Walthinsen E (2001). “GStreamer – GNOME Goes Multimedia.” Technical report, GUADEC.

Warkus M (2004). The Official GNOME 2 Developer’s Guide. 1st edition. No Starch Press,
San Francisco, CA, USA.

Welch B (2003). Practical Programming in Tcl and Tk. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

http://www.omegahat.org/RDCOMEvents/
http://www.omegahat.org/RDCOMEvents/
http://www.omegahat.org/RSPython/
http://www.omegahat.org/RGCCTranslationUnit/
http://www.omegahat.org/RGCCTranslationUnit/
http://www.omegahat.org/RSJava/
http://www.omegahat.org/RDCOMBundle
http://www.omegahat.org/RDCOMBundle
http://www.omegahat.org/RwxWidgets/
http://www.omegahat.org/RwxWidgets/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.cairographics.org
http://www.cairographics.org
http://www.mono-project.com/GAPI
http://webkit.org/
http://CRAN.R-project.org/package=tkrplot
http://CRAN.R-project.org/package=tkrplot
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=gWidgets
http://CRAN.R-project.org/package=pmg
http://CRAN.R-project.org/package=pmg

52 RGtk2: A Graphical User Interface Toolkit for R

Williams G (2010). Rattle: GNOME R Data Mining. R package version 2.5.24, URL http:

//CRAN.R-project.org/package=rattle.

Affiliation:

Michael Lawrence
Bioinformatics and Computational Biology
Genentech Research and Early Development
South San Francisco, CA, United States of America
E-mail: michafla@gene.com

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 37, Issue 8 Submitted: 2009-01-30
December 2010 Accepted: 2009-09-23

http://CRAN.R-project.org/package=rattle
http://CRAN.R-project.org/package=rattle
mailto:michafla@gene.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Fundamentals
	GTK+ widgets
	Widget type hierarchy
	Widget container hierarchy

	GTK+ widgets in R
	Invoking methods
	Accessing properties and fields
	Handling signals/events
	Widget documentation

	Widget layout

	Basic GUI construction
	A dialog with the user
	Giving the user more options
	The CRAN mirrors dialog
	Embedded R graphics

	Sample application
	Main window
	Menu bar and tool bar
	Implementing the callbacks
	Defining the actions
	Creating widgets for the actions

	Status bar
	Spreadsheet panel
	Data model
	Table view
	Filter text entry
	Notebook of sheets

	Integrating the components
	Loading a spreadsheet

	Advanced features
	Additional library support
	Cairo
	GDK
	GdkPixbuf
	Pango
	ATK
	Libglade

	GObject primer
	GType
	GSignal
	GObject base class

	Interfacing with external GObject-based applications
	Defining GObject classes
	Example of defining a class

	Language binding design and generation
	Goals and scope
	Automatic binding generation
	The defs format
	Function and method wrappers
	Constructors
	Callback wrappers
	Virtual function wrappers
	Field accessors
	Enumeration and flag definitions

	Type conversion
	Overview
	High-level type conversion
	Low-level type conversion
	Arrays
	Errors

	Autogeneration of the documentation

	Technical language binding and GUI issues
	Fully programmatic binding generation
	RGtk2 as a base for other GObject bindings
	Event loop issues

	Comparison of RGtk2 to other R GUI toolkit bindings
	Impact and future work

