
JSS Journal of Statistical Software
April 2011, Volume 40, Issue 6. http://www.jstatsoft.org/

DEoptim: An R Package for Global Optimization by

Differential Evolution

Katharine M. Mullen
National Institute of

Standards and Technology

David Ardia
aeris CAPITAL AG

David L. Gil
National Institute of

Standards and Technology

Donald Windover
National Institute of

Standards and Technology

James Cline
National Institute of

Standards and Technology

Abstract

This article describes the R package DEoptim, which implements the differential evolu-
tion algorithm for global optimization of a real-valued function of a real-valued parameter
vector. The implementation of differential evolution in DEoptim interfaces with C code
for efficiency. The utility of the package is illustrated by case studies in fitting a Parratt
model for X-ray reflectometry data and a Markov-switching generalized autoregressive
conditional heteroskedasticity model for the returns of the Swiss Market Index.

Keywords: global optimization, evolutionary algorithm, differential evolution, R software.

1. Introduction

Optimization algorithms inspired by the process of natural selection have been in use since
the 1950s (Mitchell 1998), and are often referred to as evolutionary algorithms. The genetic
algorithm is one such method, and was invented by John Holland in the 1960s (Holland
1975). Genetic algorithms apply logical operations, usually on bit strings of fixed or vari-
able length, in order to perform crossover, mutation, and selection on a population. Over
the course of successive generations, the members of the population are more likely to rep-
resent a minimum of an objective function. Genetic algorithms have proven themselves to
be useful heuristic methods for global optimization, in particular for combinatorial optimiza-
tion problems. Evolution strategies are another variety of evolutionary algorithm, in which

http://www.jstatsoft.org/

2 DEoptim: Global Optimization by Differential Evolution in R

Program Language Authors Cross-platform

DeApp Java Storn (1999) Yes
DeWin MS Visual C++ Storn (2004) No
DeMat MATLAB Storn et al. (2004) No
DiffEvol Scilab Di Carlo and Jarausch (2006) Yes
DESolver MS Visual C++ Godwin (1998) No
DE_Fortran90 Fortran 90 Wang (2004) Yes
DeMat for Pascal Pascal Geldon and Gauden (2006) Yes
DEoptim R Ardia and Mullen (2010) Yes

Table 1: Implementations of DE for general purpose optimization.

members of the population are represented with floating point numbers, and the population
is transformed over successive generations using arithmetic operations. See Price, Storn, and
Lampinen (2006, Section 1.2.3) for a detailed overview of evolutionary algorithms.

In the 1990s Rainer Storn and Kenneth Price developed an evolution strategy they termed
differential evolution (DE) (Storn and Price 1997). DE is particularly well-suited to find
the global optimum of a real-valued function of real-valued parameters, and does not require
that the function be either continuous or differentiable. In the roughly fifteen years since its
invention, DE has been successfully applied in a wide variety of fields, from computational
physics to operations research, as Price et al. (2006) catalogue.

Many implementations of DE are currently available. A web-based list of DE programs for
general purpose optimization is maintained Storn (2010). A selection of programs from this list
for which the source code is readily available are summarized in Table 1.

Commercial software such as Mathematica, MATLAB’s GA toolbox, and a variety of special-
purpose programs for optical and X-ray physics also implement DE.

The DEoptim implementation of DE was motivated by our desire to extend the set of al-
gorithms available for global optimization in the R language and environment for statisti-
cal computing (R Development Core Team 2009). R enables rapid prototyping of objective
functions, access to a wide array of tools for statistical modeling, and ability to generate
customized plots of results with ease (which in many situations makes use of R preferable
over the use of programs in languages like Java, MS Visual C++, Fortran 90 or Pascal). Fur-
thermore, R is released in open-source form under the terms of the GNU General Public
License, meaning that packages implemented for it do not require the purchase of commer-
cial software. R also has a large and growing user base interested in optimization. DE-
optim has been published on the Comprehensive R Archive Network and is available at
http://CRAN.R-project.org/package=DEoptim. Since becoming publicly available it has
been used by a variety of authors, e.g., Börner, Higgins, Kantelhardt, and Scheiter (2007), Hig-
gins, Kantelhardt, Scheiter, and Boerner (2007), Cao, Vilar, and Devia (2009), Opsina Arango
(2009), and Ardia, Boudt, Carl, Mullen, and Peterson (2010) to solve optimization problems
arising in diverse domains.

In the remainder of this manuscript we elaborate on DEoptim’s implementation and use.
In Section 1.1, the package is introduced via a simple example. Section 2 describes the
underlying algorithm. Section 3 describes the R implementation and serves as a user manual.
DEoptim is then illustrated via two cases studies, involving fitting a Parratt recursion model

http://CRAN.R-project.org/package=DEoptim

Journal of Statistical Software 3

for X-ray reflectometry data (in Section 4) and a Markov-switching generalized autoregressive
conditional heteroscedasticity (MSGARCH) model for log-returns of the Swiss Market Index
(in Section 5).

1.1. An introductory example

Minimization of the Rastrigin function in x ∈ <D

f(x) =
D∑
j=1

(
x2j − 10 cos (2πxj) + 10

)
for D = 2 is a common test for global optimization algorithms.

This function is possible to represent in R as

R> rastrigin <- function(x) 10 * length(x) + sum(x^2 - 10 * cos(2 * pi * x))

As shown in Figure 1, for D = 2 the function has a global minimum f(x) = 0 at the point
(0, 0).

In order to minimize this function using DEoptim, the R interpreter is invoked, and the
package is loaded with the command

R> library("DEoptim")

DEoptim package

Differential Evolution algorithm in R

Authors: David Ardia and Katharine Mullen

Figure 1: A contour plot of the two-dimensional Rastrigin function f(x). The global minimum
f(x) = 0 is at (0, 0) and is marked with an open white circle.

4 DEoptim: Global Optimization by Differential Evolution in R

Figure 2: The population associated with various generations of a call to DEoptim as it searches
for the minimum of the Rastrigin function (marked with an open white circle). The minimum
is consistently determined within 200 generations using the default settings of DEoptim.

The DEoptim function of the package DEoptim searches for minima of the objective function
between lower and upper bounds on each parameter to be optimized. Therefore in the call to
DEoptim we specify vectors that comprise the lower and upper bounds; these vectors are the
same length as the parameter vector. The call to DEoptim can be made as

R> est.ras <- DEoptim(rastrigin, lower = c(-5, -5), upper = c(5, 5),

+ control = list(storepopfrom = 1, trace = FALSE))

Note that the vector of parameters to be optimized must be the first argument of the objective
function fn passed to DEoptim. The above call specifies the objective function to minimize,
rastrigin, the lower and upper bounds on the the parameters, and, via the control ar-
gument, that we want to store intermediate populations from the first generation onwards
(storepopfrom = 1), and do not want to print out progress information each generation
(trace = FALSE). Storing intermediate populations allows us to examine the progress of the
optimization in detail. Upon initialization, the population is comprised of 50 vectors x of
length two (50 being the default value of NP), with xi a random value drawn from the uniform

Journal of Statistical Software 5

distribution over the values defined by the associated lower and upper bound. The operations
of crossover, mutation, and selection explained in Section 2 transform the population so that
the members of successive generations are more likely to represent the global minimum of the
objective function. The members of the population generated by the above call are plotted at
the end of different generations in Figure 2. DEoptim consistently finds the minimum of the
function within 200 generations using the default settings. We have observed that DEoptim
solves the Rastrigin problem more efficiently than the simulated annealing method found in
the R function optim.

We note that as the dimensionality of the Rastrigin problem increases, DEoptim may not
be able to find the global minimum in the default number of generations. Heuristics to
help ensure that the global minimum is found include re-running the problem with a larger
population size (value of NP), and increasing the maximum allowed number of generations.

1.2. Problems suitable for DE

Differential evolution does not require derivatives of the objective function. It is therefore
useful in situations in which the objective function is stochastic, noisy, or difficult to differen-
tiate. DE, however, may be inefficient on smooth functions, where derivative-based methods
generally are most efficient.

In the example below, a generalized Rosenbrock function is considered. This function is differ-
entiable and has a single local minima. It is often more efficient to apply methods other than
DE to optimization of such functions. Functions that are smooth but have many local minima,
however, may still be good candidates for optimization with DE, since alternative algorithms
for local, as opposed to global, optimization may converge to a sub-optimal solution.

A generalized Rosenbrock function is possible to represent in R as

R> genrose.f <- function(x) {

+ n <- length(x)

+ fval <- 1 + sum(100 * (x[1:(n - 1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

+ return(fval)

+ }

This function has a global minimum at 1, which DEoptim finds for n = 10 with a call like:

R> n <- 10

R> ans <- DEoptim(fn = genrose.f, lower = rep(-5, n), upper = rep(5, n),

+ control = list(NP = 100, itermax = 4000, trace = FALSE))

The minimum can be determined with far fewer function evalutations with a gradient-based
method such as “BFGS” (Nash 1990), e.g., with the call

R> ans1 <- optim(par = runif(10, -5, 5), fn = genrose.f, method = "BFGS",

+ control = list(maxit = 4000))

Note further that users interested in exact reproduction of results should set the seed of their
random number generator before calling DEoptim. DE is a randomized algorithm, and the
results may vary between runs.

6 DEoptim: Global Optimization by Differential Evolution in R

2. The differential evolution algorithm

We sketch the classical DE algorithm here and refer interested readers to the work of Storn
and Price (1997) and Price et al. (2006) for further elaboration. The algorithm is an evolu-
tionary technique which at each generation transforms a set of parameter vectors, termed the
population, into another set of parameter vectors, the members of which are more likely to
minimize the objective function. In order generate a new parameter vector, DE disturbs an
old parameter vector with the scaled difference of two randomly selected parameter vectors.

The variable NP represents the number of parameter vectors in the population. At generation
0, NP guesses for the optimal value of the parameter vector are made, either using random
values between upper and lower bounds for each parameter or using values given by the user.
Each generation involves creation of a new population from the current population members
xi,g, where i indexes the vectors that make up the population and g indexes generation.
This is accomplished using differential mutation of the population members. A trial mutant
parameter vector vi,g is created by choosing three members of the population, xr0,g, xr1,g and
xr2,g, at random. Then vi,g is generated as

vi,g
.
= xr0,g + F · (xr1,g − xr2,g) (1)

where F is a positive scale factor. Effective values of F are typically less than 1.

After the first mutation operation, mutation is continued until either length(x) mutations
have been made or rand > CR, where CR is a crossover probability CR ∈ [0, 1], and where
here and throughout rand is used to denote a random number from U(0, 1). The crossover
probability CR controls the fraction of the parameter values that are copied from the mutant.
CR approximates but does not exactly represent the probability that a parameter value will
be inherited from the mutant, since at least one mutation always occurs. Mutation is applied
in this way to each member of the population.

If an element vj of the parameter vector is found to violate the bounds after mutation and
crossover, it is reset, where here and throughout we use j to index into a parameter vector. In
the implementation of DEoptim, if vj > upperj , it is reset as vj

.
= upperj − rand · (upperj −

lowerj), and if vj < lowerj , it is reset as vj
.
= lowerj + rand · (upperj − lowerj). This ensures

that candidate population members found to violate the bounds are set some random amount
away from them, in such a way that the bounds are guaranteed to be satisfied. Then the
objective function values associated with the children v are determined. If a trial vector
vi,g has equal or lower objective function value than the vector xi,g, vi,g replaces xi,g in the
population; otherwise xi,g remains. The algorithm stops after some set number of generations,
or after the objective function value associated with the best member has been reduced below
some set threshold.

Variations on this theme are possible, some of which are described in the following section.
Values of NP and CR that have been found to be most effective for a variety of problems are
described in Price et al. (2006, Section 2). Reasonable default values for many problems are
given in the following section.

3. Implementation

DEoptim was first published on the Comprehensive R Archive Network (CRAN) in 2005 by
David Ardia. Early versions were written in pure R. Since version 2.0-0 (published to CRAN

Journal of Statistical Software 7

in 2009 by Katharine Mullen) the package has relied on an interface to a C implementation
of DE, which is significantly faster on most problems as compared to the implementation in
pure R. Since version 2.0-3 the C implementation dynamically allocates the memory required
to store the population, removing limitations on the number of members in the population
and length of the parameter vectors that may be optimized.

The implementation is used by calling the R function DEoptim, the arguments of which are:

� fn: The objective function to be minimized. This function should have as its first
argument the vector of real-valued parameters to optimize, and return a scalar real
result.

� lower, upper: Vectors specifying scalar real lower and upper bounds on each parameter
to be optimized, so that the ith element of lower and upper applies to the ith parameter.
The implementation searches between lower and upper for the global optimum of fn.

� control: A list of control parameters, discussed below.

� ...: allows the user to pass additional arguments to the function fn.

The control argument is a list, the following elements of which are currently interpreted:

� VTR: The value to reach. Specify the global minimum of fn if it is known, or if you wish
to cease optimization after having reached a certain value. The default value is -Inf.

� strategy: This defines the differential evolution strategy used in the optimization pro-
cedure, described below in the terms used by Price et al. (2006):

– 1: DE / rand / 1 / bin (classical strategy). This strategy is the classical approach
described in Section 2.

– 2: DE / local-to-best / 1 / bin. In place of the classical DE mutation given in (1),
the expression

vi,g
.
= oldi,g + F · (bestg − oldi,g) + F · (xr1,g − xr2,g)

is used, where oldi,g and bestg are the ith member and best member, respectively,
of the previous population. This strategy is currently used by default.

– 3: DE / best / 1 / bin with jitter. In place of the classical DE mutation given
in (1), the expression

vi,g
.
= bestg + jitter + F · (xr1,g − xr2,g)

is used, where jitter is defined as 0.0001 · rand + F .

– 4: DE / rand / 1 / bin with per vector dither. In place of the classical DE mutation
given in (1), the expression

vi,g
.
= xr0,g + dither · (xr1,g − xr2,g)

is used, where dither is calculated as dither
.
= F + rand · (1− F).

– 5: DE / rand / 1 / bin with per generation dither. The strategy described for 4 is
used, but dither is only determined once per-generation.

8 DEoptim: Global Optimization by Differential Evolution in R

– any value not above: variation to DE / rand / 1 / bin: either-or algorithm. In the
case that rand < 0.5, the classical strategy described for 1 is used. Otherwise, the
expression

vi,g
.
= xr0,g + 0.5 · (F + 1.0) · (xr1,g + xr2,g − 2 · xr0,g)

is used.

� bs: If FALSE then every mutant will be tested against a member in the previous gen-
eration, and the best value will survive into the next generation. This is the standard
trial vs. target selection described in Section 2. If TRUE then the old generation and
NP mutants will be sorted by their associated objective function values, and the best NP
vectors will proceed into the next generation (this is best-of-parent-and-child selection).
The default value is FALSE.

� NP: Number of population members. The default value is 50.

� itermax: The maximum iteration (population generation) allowed. The default value
is 200.

� CR: Crossover probability from interval [0, 1]. The default value is 0.9.

� F: Stepsize from interval [0, 2]. The default value is 0.8.

� trace: Logical value indicating whether printing of progress occurs at each iteration.
The default value is TRUE.

� initialpop: An initial population used as a starting population in the optimization
procedure, specified as a matrix in which each row represents a population member.
May be useful to speed up convergence. Defaults to NULL, so that the initial population
is generated randomly within the lower and upper boundaries.

� storepopfrom: From which generation should the following intermediate populations
be stored in memory. Default to itermax + 1, i.e., no intermediate population is stored.

� storepopfreq: The frequency with which populations are stored. The default value is
1, i.e., every intermediate population is stored.

� checkWinner: Logical value indicating whether to re-evaluate the objective function us-
ing the winning parameter vector if this vector remains the same between generations.
This may be useful for the optimization of a noisy objective function. If checkWinner
= TRUE and avWinner = FALSE then the value associated with re-evaluation of the ob-
jective function is used in the next generation. Default to FALSE.

� avWinner: Logical value. If checkWinner = TRUE and avWinner = TRUE then the ob-
jective function value associated with the winning member represents the average of
all evaluations of the objective function over the course of the ‘winning streak’ of the
best population member. This option may be useful for optimization of noisy objective
functions, and is interpreted only if checkWinner = TRUE. The default value is TRUE.

Journal of Statistical Software 9

The default value of control is the return value of DEoptim.control(), which is a list with
the above elements and specified default values.

The return value of the DEoptim function is a member of the S3 class DEoptim. Members
of this class have a plot method that accepts the argument plot.type. When retVal is
an object returned by DEoptim, calling plot(retVal, plot.type = "bestmemit") results
in a plot of the parameter values that represent the lowest value of the objective function
each generation. Calling plot(retVal, plot.type = "bestvalit") plots the best value of
the objective function each generation. Calling plot(retVal, plot.type = "storepop")

results in a plot of stored populations (which are only available if these have been saved by
setting the control argument of DEoptim appropriately). A summary method for objects
of S3 class DEoptim also exists, and returns the best parameter vector, the best value of the
objective function, the number of generations optimization ran, and the number of times the
objective function was evaluated.

A note on recommended settings: We have set the default values to the methods recommended
by Price et al. (2006) as starting points. We use strategy = 2 by default; the user should
consider trying as alternatives strategy = 6 and strategy = 1, though the best method
will be highly problem-dependent. Generally, the user should set the lower and upper bounds
to exploit the full allowable numerical range, i.e., if a parameter is allowed to exhibit values
in the range [-1, 1] it is typically a good idea to pick the initial values from this range instead
of unnecessarily restricting diversity. Increasing the value for NP will mean greater likelihood
of finding the minimum, but run-time will be longer.

4. Application I: X-ray reflectometry

X-ray reflectometry (XRR) is a measurement method that uses the interference of X-rays (i.e.,
photons with a wavelength in the approximate range of 0.01 nm–10 nm) caused by changes
in a material’s electron density to characterize thin films or other layered structures at the
nanometer to micrometer scale. The data collected consists of pairs of incident/scattered
angle and scattered X-ray intensities, {(θr, Ir)}, typically over a range of about 5 degrees.
Information regarding the density and thickness of each layer, and on the roughness of the
interface between layers and at the surface of the material is extracted by fitting a parametric
model to the measurements.

In the supplementary information we provide the full description of a model function used by
DEoptim to obtain physically realistic parameter estimates from the data shown in Figure 3.
This model is based on the Parratt recursion (Parratt 1954), which, as Als-Nielsen and Mc-
Morrow (2001) describe in detail, is often used to model each of the layers in multilayered
materials. For the data here, the Parratt recursion is used to describe reflection and transmis-
sion of X-rays from two thin layers of Pt (with each layer having a possibly distinct thickness,
density, and roughness at the interface) atop an infinitely thick layer of SiO2. Figure 4 is a
schematic description of the model for this multilayered material.

The free parameters of the applied Parratt recursion model are the thicknesses d1 and d2 of
each Pt layer, the density α1 and α2 of each Pt layer, terms ρ1, ρ2 and ρ3 descriptive of the
roughness of the interfaces between layers and at the surface, a parameter b describing a linear
background, and a multiplicative scaling parameter m. The model function can be understood
qualitatively by considering the the case of a single layer on a substrate. In this case, the

10 DEoptim: Global Optimization by Differential Evolution in R

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1e
+

02
1e

+
06

θ (radians)

In
te

ns
ity

 (
co

un
ts

)

Figure 3: XRR measurements of Pt layers on SiO2 substrate.

Pt

Pt

d1

d2

SiO2

ρ1

ρ2

ρ3

Figure 4: Schematic description of two layers of Pt on a substrate of SiO2. A Parratt recursion
model representing this structure will be fit to the XRR measurements, with free parameters
including the thickness of the Pt layers (d1 and d1), and terms (ρ1, ρ2, and ρ3) describing the
roughness of the interfaces between layers.

position of the abrupt drop-off in scattered intensity after the initial plateau is determined by
the density of the layer. The period of the subsequent oscillation fringes is set by the thickness
of the layer, whereas the decay of the oscillations is a function of the roughness of the layer.
Because the amplitudes of reflected and transmitted waves interfere, this qualitative view
cannot be extended to multilayered systems and model fitting is a necessity.

The objective function R to minimize is formulated as the sum of the squared differences
between the log of the data and the log of the Parratt recursion model function. The surface of
objective function values in the 9-dimensional parameter space contains many local minima.
Discovery of parameter estimates that represent a qualitatively good fit requires a global
optimization algorithm such as DE. Treatment of global optimization problems such as these

Journal of Statistical Software 11

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1e
+

02
1e

+
06

θ (radians)

In
te

ns
ity

 (
co

un
ts

)

data
optimized fit
fit at lower bound
fit at upper bound

Figure 5: XRR measurements (black) of Pt layers on SiO2 substrate with model fit (red).
For comparison, the model has also been evaluated at the lower and upper bounds on the
parameters used in the call to DEoptim (solid and dashed grey, respectively).

have been successfully addressed for many years in the XRR community using DE as, e.g.,
Wormington, Panaccione, Matney, and Bowen (1999), Taylor, Wall, Loxley, Wormington,
and Lafford (2001), and Bowen and Tanner (2006) describe. Special purpose programs, e.g.,
the GenX program developed by Björck and Andersson (2007) and the MOTOFIT program
developed by Nelson (2006), have been implemented for XRR model fitting problems of this
sort.

The XRR measurements shown in Figure 3 are included in DEoptim as the dataset xrrData,
with the vector of data to be fit represented by the vector counts. We have encoded the
objective function R as the function rss. Using knowledge of the physical system underlying
the measurements in order to set plausible lower and upper bounds on the parameters to
optimize, and to set fixed values for beta, wavelength, theta_r and delta, the objective
function is minimized with the call

R> parrattFit <- DEoptim(lower = c(d_1 = 5.5e-10, d_2 = 1.5e-08,

+ rho_1 = 2.1e-10, rho_2 = 5.0e-12, rho_3 = 2.2e-10, alpha_1 = 10,

+ alpha_2 = 10, b = 40, m = .90e7), upper = c(d_1 = 5.5e-09,

+ d_2 = 1.5e-07, rho_1 = 2.1e-09, rho_2 = 5.0e-11, rho_3 = 2.2e-09,

+ alpha_1 = 21.46, alpha_2 = 21.46, b = 55, m = 1.1e7),

+ fn = rss, theta_r = theta_r, delta = delta, beta = beta,

+ wavelength = wavelength, data = counts,

+ control = list(itermax = 1500, NP = 90))

Table 2 gives parameter estimates arrived at via the above call, along with the associated
lower and upper bounds. The resulting fit of the model to the data is shown in Figure 5. The
upper bound for the density of the Pt layers was set at 21.46 g·cm−3, the density of Pt in
bulk. The estimates for the densities (19.6 g·cm−3 and 20.9 g·cm−3) are slightly lower than
for the bulk material. The remaining parameter estimates are also plausible from physical
first principles, though the evaluation of the ability of the model to describe the material
underlying the XRR measurements is beyond the scope of this paper. As shown in Figure 5,

12 DEoptim: Global Optimization by Differential Evolution in R

d1 d2 ρ1 ρ2 ρ3 α1 α2 b m
/ nm / g·cm−3 / counts

lower 0.55 15.0 0.21 0.005 0.22 10.0 10.0 40.0 0.90e7
upper 5.50 150.0 2.10 0.050 2.20 22.0 22.0 55.0 1.20e7
bestmem 1.69 45.6 0.62 0.0053 0.69 20.0 21.0 48.0 1.1e7

Table 2: Parameter estimates (bestmem) and lower and upper bounds associated with the
call to DEoptim that results in the fit of Parratt recursion model to XRR data shown in
Figure 5. Parameters d1 and d2 represent the thickness of the Pt layers, parameters ρ1,
ρ2, ρ3 describe the roughness of the interfaces between layers, and parameters α1 and α2

represent the density of the Pt layers. Parameter b represents an additive background term,
and parameter m represents a multiplicative scaling factor for the intensity. Estimates are
reported to two significant figures, except for t1 and t2, which are reported to three.

the model fit captures the qualitative features of the dataset well. The robustness of the
estimates has been validated via initialization of DE using a variety of starting populations;
the estimates presented in Table 2 reliably represent the best results obtained.

The function rss encoding the objective function can easily be customized to the dataset at
hand, allowing, for instance, inclusion of more or fewer free parameters. Note that in this
example, the population size, NP, was set to 90 since in practice it has been observed that
convergence to the global optimum is facilitated if NP is at least ten times the number of
parameters being optimized (Price et al. 2006). Determination of whether the best member
returned by DEoptim with this call represents a unique global minimum is beyond the scope
of this paper, but would be interesting to check for the purpose of developing a physical
interpretation of the model fit.

5. Application II: Log-returns of the Swiss Market Index

Volatility plays a central role in empirical finance and financial risk management. Research
on changing volatility (i.e., conditional variance) using time series models has been active
since the creation of the original ARCH (autoregressive conditional heteroscedasticity) and
GARCH (generalized ARCH) models. Since then, GARCH type models grew rapidly into a
rich family of empirical models for volatility forecasting during the last twenty years. They
are now widespread and essential tools in financial econometrics.

In the GARCH(p, q) specification introduced by Bollerslev (1986), the conditional variance
at time t of the log-return yt (of a financial asset or a financial index), denoted by σ2t , is
postulated to be a linear function of the squares of past q log-returns and past p conditional
variances. More precisely:

σ2t
.
= α0 +

q∑
i=1

αi y
2
t−i +

p∑
j=1

βjσ
2
t−1 , (2)

where the parameters α0 > 0, αi ≥ 0 (i = 1, . . . , q) and βj ≥ 0 (j = 1, . . . , p) in order to
ensure a positive conditional variance. In most empirical applications it turns out that the

Journal of Statistical Software 13

simple specification p = q = 1 is able to reproduce the volatility dynamics of financial data.
This has led the GARCH(1, 1) model to become the workhorse model by both academics and
practitioners.

Numerous extensions and refinements of the GARCH(1, 1) model have been proposed to mimic
additional stylized facts observed in financial markets, such as nonlinearity, asymmetry, and
long memory properties in the volatility process; see Bollerslev, Chou, and Kroner (1992) and
Bollerslev, Engle, and Nelson (1994) for a review. Among them, the class of Markov-switching
GARCH (MSGARCH) has gained particular attention in recent years. In these models, the
parameters of the scedastic function (2) can change over time according to a latent (i.e.,
unobservable) variable taking values in the discrete space {1, . . . ,K} where K is an integer
defining the number of regimes or states. The interesting feature of these models lies in the
fact that they provide an explanation of the high persistence in volatility, i.e., nearly unit root
process for the conditional variance, observed with single-regime GARCH models (Lamoureux
and Lastrapes 1990). Furthermore, these models are apt to react quickly to changes in the
volatility level (unconditional volatility) which leads to significant improvements in volatility
forecasts as shown by Dueker (1997) or Klaassen (2002) for instance. These features make
the models attractive for various applications in financial modeling, such as risk management.

While MSGARCH models are attractive for the description of a variety of phenomena, we face
practical difficulties when attempting to fit their parameters to data. The maximization of
the likelihood function is a constrained optimization problem since some (or all) of the model
parameters must be positive to ensure a positive conditional variance. It is also common to
require that the covariance stationarity condition holds; this leads to additional non-linear
inequality constraints which render the optimization procedure cumbersome. Optimization
results are often sensitive to the choice of starting values. Finally, convergence is hard to
achieve if the true parameter values are close to the boundary of the parameter space and
if the underlying process is nearly non-stationary. For these reasons, a robust optimizer is
required. DE offers an adequate approach to finding the maximum likelihood parameter
estimates in this framework.

In order to illustrate the robustness of DEoptim compared to traditional estimation tech-
niques, we consider a two-state asymmetric MSGARCH model investigated in Ardia (2008,
Chapter 7). The author illustrated the poor performance of traditional local optimizers when
estimating such sophisticated models. Only computationally demanding Markov chain Monte
Carlo techniques were able to provide meaningful results.

A two-state Markov-switching asymmetric GARCH(1, 1) model with Student-t innovations
for the log-returns {yt} may be written as

yt = εt

√
ν−2
ν σ2st,t t = 1, . . . , T ,

εt
i.i.d.∼ S(0, 1, ν) ,

σ2i,t
.
=

{
ω1 +

(
α+
1 1{yt−1≥0} + α−1 1{yt−1<0}

)
y2t−1 + β1 σ

2
1,t−1 when st = 1

ω2 +
(
α+
2 1{yt−1≥0} + α−2 1{yt−1<0}

)
y2t−1 + β2 σ

2
2,t−1 when st = 2 ,

(3)

where ωi > 0, α+
i , α

−
i , βi ≥ 0 (i = 1, 2) and ν > 2. The restriction on the degrees of freedom

parameter ν ensures that the conditional variance σ2i,t remains finite; the restrictions on the

GARCH parameters ωi, α
+
i , α

−
i and βi guarantee its positivity. t is the time index and T

denotes the total number of observations. 1{·} denotes the indicator function which is equal

14 DEoptim: Global Optimization by Differential Evolution in R

to one if the constraint holds and zero otherwise. The sequence {st} is assumed to be a
stationary, irreducible Markov process with discrete state space {1, 2} and transition matrix
P

.
= [pij] where pij

.
= P(st+1 = j | st = i) is the transition probability of moving from state

i to state j (i, j ∈ {1, 2}). Finally, S(0, 1, ν) denotes the standard Student-t density with
ν degrees of freedom and

√
(ν − 2)/ν is a scaling factor which ensures that the conditional

variance of yt is σ2st,t.

Model specification (3) allows reproduction of the so-called volatility clustering observed in
financial returns, i.e., the fact that large changes tend to be followed by large changes (of either
sign) and small changes tend to be followed by small changes. Moreover, it allows for sudden
changes in the unconditional variance of the process; in the ith regime, the unconditional
variance is

σ̄2i
.
=

ωi

1− (α+
i + α−i)/2− βi

, (4)

provided that (α+
i +α−i)/2 + βi < 1 (i.e., the process is covariance stationary); see Bollerslev

(1986, page 310). Finally, it allows determination of whether or not an asymmetric response is
present (i.e., α−i > α+

i for at least one i) and is different between the regimes (i.e., α−i 6= α−i′).
This asymmetric response, referred to as the leverage effect in the financial literature, reflects
the fact that the volatility tends to rise more in response to bad news (i.e., yt−1 < 0) than to
good news (i.e., yt−1 ≥ 0).

In order to write the likelihood function corresponding to model (3), we define the vector of
log-returns y

.
= (y1, . . . , yT)′ and we regroup the eleven model parameters into the vector

θ
.
= (ω1, ω2, α

+
1 , α

+
2 , α

−
1 , α

−
2 , β1, β2, p11, p22, ν)′ .

The conditional density of yt in state st = i given θ and the information set It−1
.
= {yt−1, . . . , y1}

is

f(yt | st = i, θ, It−1) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π(ν − 2)σ2i,t

[
1 +

y2t
σ2i,t(ν − 2)

](ν+1)/2

,

where Γ(·) denotes the Gamma function. This stems from the fact that in state i, yt follows
a Student-t distribution with mean zero, variance σ2i,t and degrees of freedom ν.

By integrating out the state variable st, we can obtain the density of yt given θ and It−1 only.
The (discrete) integration is obtained as follows:

f(yt | θ, It−1) =

2∑
i=1

2∑
j=1

pij ηi,t−1 f(yt | st = j, θ, It−1) , (5)

where ηi,t−1
.
= P(st−1 = i | θ, It−1) is the filtered probability of state i at time t− 1 and where

we recall that pij denotes the transition probability of moving from state i to state j. The
filtered probabilities {ηi,t; i = 1, 2; t = 1, . . . , T} are obtained by an iterative algorithm similar
in spirit to a Kalman filter; we refer the reader to Hamilton (1989) and Hamilton (1994,
Chapter 22) for details.

Finally, the log-likelihood function corresponding to model specification (3) is obtained from (5)
as follows:

Journal of Statistical Software 15

1992 1994 1996 1998 2000

−5

0

5

Date (year)

Lo
g−

re
tu

rn
s

(in
 p

er
ce

nt
)

Figure 6: SMI daily log-returns.

L(θ | y)
.
=

T∑
t=2

ln f(yt | θ, It−1) . (6)

The maximum likelihood estimator θ̂ is obtained by maximizing (6) (or minimizing its negative
value).

To illustrate the utility of DEoptim, we fit the MSGARCH model (3) to daily log-returns of
the Swiss Market Index (SMI), displayed in Figure 6. The sample period is from November 12,
1990, to October 20, 2000, for a total of 2500 observations and the log-returns are expressed
in percent. The data set was downloaded from http://finance.yahoo.com/ and is available
when DEoptim is loaded using the command data("SMI"). Note that the two-regime speci-
fication is used for illustrative purposes only; checking for possible model misspecification is
beyond the scope of the present paper.

In addition to the positivity constraints on the model parameters, we require covariance
stationarity to hold in the two regimes, i.e., (α+

i + α−i)/2 + βi < 1 for i = 1, 2 and that the
unconditional variance (4) in state 1 is smaller than in state 2, i.e., σ̄21 < σ̄22. We also require
the transition probabilities p11 and p22 of the state variable to lie within the [0, 1] interval.
The constraints on the domain are set using the arguments lower and upper of DEoptim,
while the covariance stationarity and unconditional variance constraints are tested within the

http://finance.yahoo.com/

16 DEoptim: Global Optimization by Differential Evolution in R

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●●

1 2 3 4 5 6 7 8 9 10

3350

3400

3450

3500

3550

3600

3650

3700

NLL values

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Percentage of non−convergent runs

Figure 7: Top: Boxplots of the 50 negative values of the log-likelihood function (NLL) at opti-
mum θ̂ obtained by the various optimizers. (1) function optim with method "Nelder-Mead",
(2) method "BFGS", (3) method "CG", (4) method "L-BFGS-B", (5) method "SANN" with
control parameter itermax = 1e5, (6) function nlminb, (7) function constrOptim, (8) func-
tion constrOptim.nl of the package alabama, (9) function solnp of the package Rsolnp,
(10) function DEoptim with control parameters NP = 110 and itermax = 500. Starting val-
ues are generated randomly in the feasible parameter set. Lower boundaries were set to 0.0
(2.0 for ν) and upper boundaries to 1.0 (50 for ν). Bottom: Percentage of non-convergent
runs of the different optimization methods (either NaN output or convergence flag indicating
non-convergence).

objective function which then returns a very large value (in our case 1e10) if not satisfied. In
the DE optimization, we set the control parameters of DEoptim to itermax = 500 and NP

= 110. Note that the objective function (6) is implemented in C to speed up the optimization
procedure. We refer the reader to the Appendix for details on the R implementation.

For comparison, the objective function (6) is also optimized using various unconstrained
and constrained optimization routines available in R. More specifically, we use the function
optim with methods "Nelder-Mead" (unconstrained optimization), "BFGS" (unconstrained),
"CG" (unconstrained), "SANN" (unconstrained), "L-BFGS-B" (box constrained), the function
nlminb (box constrained). More details on the underlying algorithms for these methods can
be found in the optim and nlminb manuals. We also consider optimization routines which
handle more complicated constraints such as constrOptim, constrOptim.nl of the package

Journal of Statistical Software 17

alabama (Varadhan 2010) and solnp of the package Rsolnp (Ghalanos and Theussl 2011).
The former relies on an adaptive barrier algorithm and handles linear inequality constraints.
The two latter belong to the class of indirect solvers and implement the augmented Lagrange
multiplier methods, in which linear and non-linear equality and inequality constraints are
allowed; see Ye (1987) for details. For all methods we use ten times the default values of the
control parameters related to the maximum number of iterations and function evaluations.
For optim with method "SANN" we set itermax = 1e5. For unconstrained methods, the
constraints on the model parameters were tested within the function which returns 1e10 is not
satisfied, as for DEoptim. For functions which handled inequality constraints, we implement
the constraints explicitly in the inputs of the functions; see the Appendix for an example with
solnp.

We run the estimation 50 times for all optimization routines (including DEoptim) and use
random starting values in the feasible parameter set when needed (using the same random
starting values for the various methods). Boxplots of the negative log-likelihood value (NLL)
at optimum for convergent estimations is displayed in the upper part of Figure 7. The
lower part reports the percentage of non-convergent optimizations (defined as NaN output or
non-convergent flag, usually convergence > 0). We notice that the unconstrained and box
constrained methods 1-6 perform poorly compared to the optimizers which can handle more
complicated constraints. In particular, we note that nlminb does not converge over the 50
runs. Overall, the methods solnp and constrOptim are the best performers in terms of lowest
NLL values reached over the 50 runs. However, we notice that for both the convergence is not
achieved in about 20% of the time. DEoptim compares favorably with the two best competitors
in terms of NLL and is more stable over the runs. It does not however reach the lowest value
obtained by solnp after 500 iterations. The tradeoff for the stability afforded by DEoptim is in
runtime; it requires considerably more CPU time than either solnp or constrOptim (though
significantly less runtime than the other stochastic optimization algorithm tested, optim with
method "SANN").

Figure 8 displays the boxplots of the NLL values obtained over the 50 runs of DEoptim with
control parameter itermax = 500 on the left-hand side and itermax = 1000 on the right-
hand side. The horizontal red lines reports the lowest values obtained by solnp. We notice
that increasing the number of generated population in DEoptim leads to the convergence
toward the global optimum.

Figure 9 displays the boxplots of the parameter values obtained with the 50 runs of DEoptim
together with the parameter values corresponding to its best run (in blue squares), i.e., the
run leading to the minimum NLL, and the parameter values corresponding to the best run of
solnp (in red dots). The parameters at the global optimum (NLL = 3350.6979) obtained by
solnp and DEoptim (after a longer run with itermax = 2500) are ω̂1 = 0.2062, ω̂2 = 0.0930,
α̂+
1 = 0.0000, α̂+

2 = 0.0043, α̂−1 = 0.2123, α̂−2 = 0.1566, β̂1 = 0.5295, β̂2 = 0.8717, p̂11 =
0.9981, p̂22 = 0.9969 and ν̂ = 9.2480. The parameter estimates clearly indicate two different
regimes for the conditional variance process. More precisely, the values of ω̂i and β̂i are far
apart between the regimes. We note the presence of leverage effect in both regimes (i.e.,
α̂+
i < α̂−i for i = 1, 2), with similar levels. The estimated transition probabilities p̂11 and p̂22

very close to one indicate infrequent mixing between states. Finally, the estimated degrees of
freedom parameter suggests heavy tails for the conditional distribution of the log-returns.

Finally, Figure 10 displays the estimated filtered probabilities of the second state (high uncon-
ditional volatility state), {P(st = 2 | θ̂, It); t = 1, . . . , T}, implied by the best model parameters

18 DEoptim: Global Optimization by Differential Evolution in R

●

●●

●

●

●

●

●

●

itermax = 500 itermax = 1000

3350

3355

3360

3365

3370

Figure 8: Top: Boxplots of the 50 negative values of the log-likelihood function (NLL) at
optimum θ̂ obtained by DEoptim with control parameters NP = 110 and itermax = 500 (left)
and itermax = 1000 (right). The horizontal red line reports the lowest NLL value obtained
by solnp over the 50 runs.

●

●

● ●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

ω1 ω2 α1
+ α2

+ α1
− α2

− β1 β2 p11 p22

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

6

8

10

12

ν

Figure 9: Boxplot of the parameters obtained over the 50 runs of DEoptim, together with the
parameters of its best run (blue squares), i.e., the run leading to the lowest NLL, and the
parameters corresponding to the best run of solnp (red dots).

Journal of Statistical Software 19

Figure 10: Estimated filtered probabilities of the second state, {P(st = 2 | θ̂, It); t = 1, . . . , T},
implied by the best model parameters obtained by solnp (in red) over the 50 runs. The
dashed blue lines delimit the 50% area of the paths obtained over the 50 runs of DEoptim.
The small black circles depict the log-returns.

of solnp (in red solid line) together with the log-returns (in small circles). In addition, we
report in dashed blue lines, the 50% area of the paths obtained over the 50 runs of DEoptim.
The parameters obtained with DEoptim and solnp lead to a clear separation of regimes in the
filtering probabilities. The beginning of year 1991 is associated with the high unconditional
volatility state. Then, from the second half of 1991 to 1997, the returns are clearly associated
with the low unconditional volatility regime, with the exception of 1994. From 1997 to 2000,
the model remains in the high unconditional volatility regime with a transition during the
second semester 2000 to the low unconditional volatility state.

6. Summary and conclusions

Differential evolution is a heuristic evolutionary method for global optimization that is effec-
tive on many problems of interest in science and technology. By implementing the package
DEoptim we have made this algorithm possible to easily apply in the R language and envi-
ronment. As Section 3 details, we have also made available many variations on the classical
DE strategy. These variations as well as the classical strategy are due to Price, Storn and
Lampinen, and we have referred the interested reader to their textbook (Price et al. 2006) on

20 DEoptim: Global Optimization by Differential Evolution in R

DE for details.

We have described herein the use of the package for fitting the Parratt recursion models for
X-ray reflectometry and an MSGARCH model for the log-returns of the Swiss Market Index.
These case studies showcase the power of the DE algorithm underlying DEoptim. We hope
that readers will find the package to be a valuable tool for optimization. If you use R or
DEoptim, please cite the software in publications.

Current work in extension of the package includes the addition of a framework for adaptive
differential evolution (Zhang and Sanderson 2009). Future work will also be directed at
parallelization of the implementation. The DEoptim project hosted on R-Forge (http://
R-Forge.R-project.org/projects/deoptim/) links to development versions of the package.

Computational details

The results in this paper were obtained using R 2.10.0 (R Development Core Team 2009) with
the package DEoptim version 2.0-4 (Ardia and Mullen 2010). Computations were performed
on a Genuine Intel dual core CPU T2400 1.83Ghz processor and on a quad core Intel Xeon
Processor E5410.

DEoptim relies on repeated evaluation of the objective function in order to move the popula-
tion toward a global minimum. Users interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective function is as efficient as possible. Using pure
R code, this may often be accomplished using vectorization. Writing parts of the objective
function in a lower-level language like C or Fortran may also increase speed.

Acknowledgments

Many DEoptim users have sent us comments that helped improve the package. We would
like to thank in particular Hans Werner Borchers, Kris Boudt, Eugene Demidenko, Tarmo
Leinonen, Soren Macbeth, Dorothée Pages, Brian Peterson, Enrico Schumann, and Joshua
Ulrich. We would also like to thank Juan David Ospina Arango, who inspired us to present
the Rastrigin function as an example.

We thank the two reviewers of the paper for insightful suggestions.

Finally, we would like to thank Rainer Storn for his advocacy of DE and making his code
publicly available, which was a great help to us in the implementation of DEoptim.

The first two authors (KMM and DA) contributed equally to testing and development, the
remaining authors contributed expertise regarding the development of the XRR application
described in Section 4 and the second author (DA) was the sole developer of the MSGARCH
application described in Section 5.

Disclaimer

The views expressed in this paper are the sole responsibility of the authors and do not nec-
essarily reflect those of NIST and aeris CAPITAL AG.

Certain commercial equipment, instruments, or materials are identified in this paper to foster
understanding. Such identification does not imply recommendation or endorsement by the

http://R-Forge.R-project.org/projects/deoptim/
http://R-Forge.R-project.org/projects/deoptim/

Journal of Statistical Software 21

National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

References

Als-Nielsen J, McMorrow D (2001). Elements of Modern X-Ray Physics. John Wiley & Sons,
Hoboken.

Ardia D (2008). Financial Risk Management with Bayesian Estimation of GARCH Models:
Theory and Applications, volume 612 of Lecture Notes in Economics and Mathematical
Systems. Springer-Verlag, Berlin. ISBN 978-3-540-78656-6.

Ardia D, Boudt K, Carl P, Mullen K, Peterson B (2010). “Differential Evolution (DEoptim) for
Non-Convex Portfolio Optimization.” Technical report, Social Science Research Network.
URL http://ssrn.com/abstract=1584905.

Ardia D, Mullen K (2010). DEoptim: Differential Evolution Optimization in R. R package
version 2.0-4, URL http://CRAN.R-project.org/package=DEoptim.

Björck M, Andersson G (2007). “GenX: An Extensible X-Ray Reflectivity Refinement Pro-
gram Utilizing Differential Evolution.” Journal of Applied Crystallography, 40(6), 1174–
1178.

Bollerslev T (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of
Econometrics, 31(3), 307–327.

Bollerslev T, Chou RY, Kroner K (1992). “ARCH Modeling in Finance: A Review of the
Theory and Empirical Evidence.” Journal of Econometrics, 52(1–2), 5–59.

Bollerslev T, Engle RF, Nelson DB (1994). “ARCH Models.” In Handbook of Econometrics,
chapter 49, pp. 2959–3038. North Holland.

Börner J, Higgins SI, Kantelhardt J, Scheiter S (2007). “Rainfall or Price Variability: What
Determines Rangeland Management Decisions? A Simulation-Optimization Approach to
South African Savanas.” Agricultural Economics, 37(2–3), 189–200.

Bowen DK, Tanner BK (2006). X-Ray Metrology in Semiconductor Manufacturing. CRC
Press.

Cao R, Vilar JM, Devia A (2009). “Modelling Consumer Credit Risk via Survival Analysis.”
Statistics & Operations Research Transactions, 33(1), 3–30.

Di Carlo W, Jarausch H (2006). DiffEvol: Differential Evolution for Scilab. Scilab code
version 2006/03/01, URL http://www.icsi.berkeley.edu/~storn/DiffEvol.zip.

Dueker MJ (1997). “Markov Switching in GARCH Processes and Mean-Reverting Stock-
Market Volatility.” Journal of Business & Economic Statistics, 15(1), 26–34.

Geldon H, Gauden PA (2006). DeMat for Pascal. Pascal translation of original MATLAB
code, URL http://www.icsi.berkeley.edu/~storn/storn_pascal.zip.

http://ssrn.com/abstract=1584905
http://CRAN.R-project.org/package=DEoptim
http://www.icsi.berkeley.edu/~storn/DiffEvol.zip
http://www.icsi.berkeley.edu/~storn/storn_pascal.zip

22 DEoptim: Global Optimization by Differential Evolution in R

Ghalanos A, Theussl S (2011). Rsolnp: General Non-Linear Optimization. R package ver-
sion 1.0-8, URL http://CRAN.R-project.org/package=Rsolnp.

Godwin LE (1998). DESolver: Differential Evolution Solver Class. C++ code revision 1.0,
URL http://www.icsi.berkeley.edu/~storn/devcpp.zip.

Hamilton JD (1989). “A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle.” Econometrica, 57(2), 357–384.

Hamilton JD (1994). Time Series Analysis. Princeton University Press, Princeton. ISBN
0691042896.

Higgins SI, Kantelhardt J, Scheiter S, Boerner J (2007). “Sustainable Management of Exten-
sively Managed Savanna Rangelands.” Ecological Economics, 62(1), 102–114.

Holland JH (1975). Adaptation in Natural Artificial Systems. University of Michigan Press,
Ann Arbor.

Klaassen F (2002). “Improving GARCH Volatility Forecasts with Regime-Switching GARCH.”
Empirical Economics, 27(2), 363–394.

Lamoureux CG, Lastrapes WD (1990). “Persistence in Variance, Structural Change, and the
GARCH Model.” Journal of Business & Economic Statistics, 8(2), 225–243.

Mitchell M (1998). An Introduction to Genetic Algorithms. The MIT Press.

Nash JC (1990). Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation. Adam Hilger.

Nelson A (2006). “Co-Refinement of Multiple-Contrast Neutron/X-Ray Reflectivity Data
Using MOTOFIT.” Journal of Applied Crystallography, 39(2), 273–276.

Opsina Arango JD (2009). Estimacion de un Modelo de Difusion con Saltos con Distribu-
cion de Error Generalizada Asimetrica usando Algorithmos Evolutivos. Master’s thesis,
Universidad Nacional de Colombia.

Parratt LG (1954). “Surface Studies of Solids by Total Reflection of X-Rays.” Physical Review,
95(2), 359–369.

Price KV, Storn RM, Lampinen JA (2006). Differential Evolution: A Practical Approach to
Global Optimization. Springer-Verlag, Berlin.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Storn R (1999). DEApp – An Application in Java for the Usage of Differential Evolution.
Java applet version 1.0.3, URL http://www.icsi.berkeley.edu/~storn/devol.zip.

Storn R (2004). DeWin: Differential Evolution Engine. C++ code version 4.0, URL http:

//www.icsi.berkeley.edu/~storn/DeWin.zip.

http://CRAN.R-project.org/package=Rsolnp
http://www.icsi.berkeley.edu/~storn/devcpp.zip
http://www.R-project.org/
http://www.R-project.org/
http://www.icsi.berkeley.edu/~storn/devol.zip
http://www.icsi.berkeley.edu/~storn/DeWin.zip
http://www.icsi.berkeley.edu/~storn/DeWin.zip

Journal of Statistical Software 23

Storn R (2010). “Differential Evolution Homepage.” International Computer Science Institute,
University of California, Berkeley. URL http://www.icsi.berkeley.edu/~storn/code.

html.

Storn R, Price K (1997). “Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces.” Journal of Global Optimization, 11(4), 341–359.

Storn R, Price K, Neumaier A, Zandt JV (2004). DeMat: Differential Evolution in MATLAB.
URL http://www.icsi.berkeley.edu/~storn/DeMat.zip.

Taylor M, Wall J, Loxley N, Wormington M, Lafford T (2001). “High Resolution X-Ray
Diffraction Using a High Brilliance Source, with Rapid Data Analysis by Auto-Fitting.”
Materials Science and Engineering B, 80(1-3), 95 – 98.

Varadhan R (2010). alabama: Constrained Nonlinear Optimization. R Package ver-
sion 2010.10-1, URL http://CRAN.R-project.org/package=alabama.

Wang FS (2004). DE_Fortran90: Differential Evolution for Optimal Control Problems.
Department of Chemical Engineering, National Chung Cheng University, URL http:

//www.icsi.berkeley.edu/~storn/DE_FORTRAN90.f90.

Wormington M, Panaccione C, Matney KM, Bowen DK (1999). “Characterization of Struc-
tures from X-Ray Scattering Data Using Genetic Algorithms.” Philosophical Transactions
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
357(1761), 2827–2848.

Ye Y (1987). Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-Linear
Programming. Ph.D. thesis, Stanford University.

Zhang J, Sanderson AC (2009). “JADE: Adaptive Differential Evolution with Optional Ex-
ternal Archive.” IEEE Transactions on Evolutionary Computation, 13(5), 945–958.

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/DeMat.zip
http://CRAN.R-project.org/package=alabama
http://www.icsi.berkeley.edu/~storn/DE_FORTRAN90.f90
http://www.icsi.berkeley.edu/~storn/DE_FORTRAN90.f90

24 DEoptim: Global Optimization by Differential Evolution in R

A. Implementation of the MSGARCH model

We described below the major steps for implementing and estimating in R the Markov-
switching asymmetric GARCH(1, 1) model described in Section 5.

First, we define the function NLL which computes the negative value of the log-likelihood
function (6). This function will be minimized in order to find the maximum likelihood
estimator θ̂. The function NLL has input parameters theta, a 11-dim vector containing
the MSGARCH(1, 1) parameters, y the (T × 1) vector of log-returns y

.
= (y1, . . . , yT)′ and

checkConstraints, a boolean indicating if the constraints should be checked within the
function (which is TRUE by default). The function outputs 1e10 when the constraints are not
fulfilled. In the implementation below, two constraints must be fulfilled: i) the covariance-
stationarity condition of the conditional variance is satisfied in the two states; ii) the un-
conditional variance in state 1 is smaller than in state 2. The constraints on the lower and
upper bounds on the parameters will be checked by the optimization function itself (below we
consider DEoptim and solnp which handle this case). For optimization functions which can-
not handle box constraints (e.g., optim with method Nelder-Mead), lower and upper bounds
should also be checked within the function NLL. If the two constraints are satisfied, the function
NLL calls a C routine which computes the negative log-likelihood value. The C implementation
is needed for speed purposes, since for each input theta, two conditional variance processes
need to be computed as well as the filtering and updating steps of a Kalman-like algorithm
(Hamilton 1989). Since DEoptim evaluates the objective function for a large number of theta
values, this C implementation is recommended. We do not document the C implementation
here and refer the reader to file MSGJR.c attached for details.

R> 'NLL' <- function(theta, y, checkConstraints = TRUE) {

+ constraintsOK <- TRUE

+ nll <- 1e10

+ if (isTRUE(checkConstraints)) {

+ csc1 <- (theta[3] + theta[5]) / 2 + theta[7]

+ csc2 <- (theta[4] + theta[6]) / 2 + theta[8]

+ uv1 <- theta[1] / (1 - csc1)

+ uv2 <- theta[2] / (1 - csc2)

+ constraintsOK <- (csc1 < 1.0) & (csc2 < 1.0) & (uv1 < uv2)

+ }

+ if (isTRUE(constraintsOK)) {

+ n <- length(y)

+ outC <- .C(name = "MSGJRS", theta = as.double(theta),

+ y = as.double(y), n = as.integer(n), nll = as.double(0),

+ f = vector('double', 2 * (n-1)), u = vector('double', 2 * (n-1)))

+ nll <- outC$nll

+ }

+ if (is.nan(nll)) {

+ nll <- 1e10

+ }

+ return(nll)

+ }

Second, we load the package, the data set and the complied C function MSGJR.c (under Linux,

Journal of Statistical Software 25

use dyn.load("MSGJR.dll") under Windows), set the lower and upper boundaries, set the
seed and minimize the value of the function NLL using the function DEoptim. For the control
parameters of DEoptim, we set itermax = 500 and NP = 110, giving more robustness to
the evolutionary process. The number of members in the population is set to 10 times the
number of parameters. The result of the optimization is stored in the object outDE of the
class DEoptim. Note that in this case, the function NLL checks if the constraints are fulfilled
and outputs 1e10 if not.

R> library("DEoptim")

R> data("SMI")

R> dyn.load("MSGJR.so")

R> LB <- c(rep(0.0, 10), 2)

R> UB <- c(rep(1.0, 10), 50)

R> set.seed(1111)

R> outDE <- DEoptim(NLL, lower = LB, upper = UB, y = y,

+ DEoptim.control(itermax = 500, NP = 110))

Iteration: 1 bestvalit: 3457.906087 bestmemit: 0.310703 0.293937 0.608078

0.188130 0.227485 0.350169 0.145067 0.623558 0.405052 0.313200 8.941630

Iteration: 2 bestvalit: 3457.906087 bestmemit: 0.310703 0.293937 0.608078

0.188130 0.227485 0.350169 0.145067 0.623558 0.405052 0.313200 8.941630

...

Iteration: 500 bestvalit: 3354.081090 bestmemit: 0.225172 0.170456 0.007156

0.035552 0.247096 0.233424 0.504850 0.782076 0.996851 0.996322 9.472251

After 500 iterations, the best population member is

par1 par2 par3 par4 par5 par6 par7 par8 par9 par10 par11

0.2252 0.1705 0.0072 0.0356 0.2471 0.2334 0.5048 0.7821 0.9969 0.9963 9.4723

for a negative log-likelihood value of 3354.08.

An alternative optimization approach considered in Section 5 is solnp available in the package
Rsolnp (Ghalanos and Theussl 2011). In this case the constraints are explicitely given using
the input function ineqfun (which must have the same inputs than NLL, even if not all are
needed). We therefore set the input checkConstraints to FALSE in NLL. Moreover, we require
a starting value of the optimization. The result of the optimization is stored in the object
outSOLNP of the class Rsolnp.

R> library("Rsolnp")

R> LB <- c(rep(0.0, 10), 2)

R> UB <- c(rep(1.0, 10), 50)

R> ineqfun <- function(theta, y, checkConstraints) {

+ csc1 <- 0.5 * (theta[3] + theta[5]) + theta[7]

+ csc2 <- 0.5 * (theta[4] + theta[6]) + theta[8]

+ uv1 <- theta[1] / (1 - csc1)

+ uv2 <- theta[2] / (1 - csc2)

+ uv <- uv2 - uv1

26 DEoptim: Global Optimization by Differential Evolution in R

+ h <- c(csc1, csc2, uv)

+ return(h)

+ }

R> ineqLB <- c(0, 0, 0)

R> ineqUB <- c(1, 1, 1e5)

R> thetaStart <- c(0.1, 0.2, 0.01, 0.01, 0.15, 0.15, 0.5, 0.6, 0.5, 0.5, 20)

R> outSOLNP <- solnp(pars = thetaStart, fun = NLL, ineqfun = ineqfun,

+ ineqLB = ineqLB, ineqUB = ineqUB, LB = LB, UB = UB, y = y,

+ checkConstraints = FALSE)

Iter: 1 fn: 3374.4122 Pars: 0.0975794 0.0001383 0.0315380 0.0262597

0.3136239 0.0505717 0.7515778 0.9615000 0.5577655 0.3701970 9.0604452

Iter: 2 fn: 3374.3081 Pars: 0.1008872 0.0001061 0.0310303 0.0264484

0.3099624 0.0534042 0.7483836 0.9600354 0.5494617 0.3508670 9.1424336

Iter: 3 fn: 3374.3080 Pars: 0.1009166 0.0001053 0.0310270 0.0264577

0.3098355 0.0534334 0.7483817 0.9600163 0.5493104 0.3503742 9.1394165

solnp--> Completed in 3 iterations

The optimum is obtained at

0.10092 0.00011 0.03103 0.02646 0.30984 0.05343 0.74838 0.96002 0.54931

0.35037 9.13942

for a negative log-likelihood value of 3374.31. We note that in this case, the procedure gets
stuck to a local minimum since the value is higher than the one obtained by DEoptim. Using
the alternative starting value c(0.01, 0.02, 0.01, 0.01, 0.15, 0.15, 0.8, 0.8, 0.9,

0.9, 10) leads to the global minimum at 3350.698. Several starting values must therefore be
used to diminish the risk of convergence to local minima.

Affiliation:

Katharine Mullen
Ceramics Division, National Institute of Standards and Technology (NIST)
100 Bureau Drive, MS 8520
Gaithersburg, MD, 20899, United States of America
E-mail: Katharine.Mullen@nist.gov

David Ardia
aeris CAPITAL AG Switzerland
URL: http://perso.unifr.ch/david.ardia/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 40, Issue 6 Submitted: 2010-03-27
April 2011 Accepted: 2011-02-04

mailto:Katharine.Mullen@nist.gov
http://perso.unifr.ch/david.ardia/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	An introductory example
	Problems suitable for DE

	The differential evolution algorithm
	Implementation
	Application I: X-ray reflectometry
	Application II: Log-returns of the Swiss Market Index
	Summary and conclusions
	Implementation of the MSGARCH model

