
JSS Journal of Statistical Software
June 2011, Volume 42, Issue 8. http://www.jstatsoft.org/

MatchIt: Nonparametric Preprocessing for

Parametric Causal Inference

Daniel E. Ho
Stanford Law School

Kosuke Imai
Princeton University

Gary King
Harvard University

Elizabeth A. Stuart
Johns Hopkins University

Abstract

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improv-
ing parametric statistical models by preprocessing data with nonparametric matching
methods. MatchIt implements a wide range of sophisticated matching methods, making
it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but
commonly made, statistical modeling assumptions. The software also easily fits into ex-
isting research practices since, after preprocessing data with MatchIt, researchers can use
whatever parametric model they would have used without MatchIt, but produce infer-
ences with substantially more robustness and less sensitivity to modeling assumptions.
MatchIt is an R program, and also works seamlessly with Zelig.

Keywords: matching methods, causal inference, balance, preprocessing, R.

1. Introduction

1.1. What MatchIt does

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving
parametric statistical models and reducing model dependence by preprocessing data with
semi-parametric and non-parametric matching methods. After appropriately preprocessing
data with MatchIt, researchers can use whatever parametric model and software they would
have used without MatchIt, without other modification, and produce inferences that are
more robust and less sensitive to modeling assumptions. MatchIt reduces the dependence of

http://www.jstatsoft.org/

2 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

causal inferences on commonly made, but hard-to-justify, statistical modeling assumptions
via the largest range of sophisticated matching methods of any software we know of. The
program includes most existing approaches to matching and even enables users to access
methods implemented in other programs through its single, unified, and easy-to-use interface.
In addition, we have written MatchIt so that adding new matching methods to the software
is as easy for anyone with the inclination as it is for us.

1.2. Software requirements

MatchIt works in conjunction with the R programming language and statistical software R
Development Core Team (2011) and will run on any platform where R is installed (Windows,
Unix, or Mac OS X). MatchIt is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=MatchIt. MatchIt has been tested on the most re-
cent version of R. A good way to learn R, if you do not know it already, is to learn Zelig which
includes a self-contained introduction to R and can be used to analyze the matched data after
running MatchIt (Imai, King, and Lau 2011, 2008a).

2. Overview

MatchIt is designed for causal inference with a dichotomous treatment variable and a set of
pretreatment control variables. Any number or type of dependent variables can be used. (If
you are interested in the causal effect of more than one variable in your data set, run MatchIt
separately for each one; it is unlikely that any one parametric model will produce valid causal
inferences for more than one treatment variable at a time.) MatchIt can be used for other
types of causal variables by dichotomizing them, perhaps in multiple ways (see also Imai and
van Dyk 2004). MatchIt works for experimental data, but is usually used for observational
studies where the treatment variable is not randomly assigned by the investigator, or the
random assignment goes awry.

We adopt the same notation as in Ho, Imai, King, and Stuart (2007). Unless otherwise noted,
let i index the n units in the data set, n1 denote the number of treated units, n0 denote the
number of control units (such that n = n0 + n1), and xi indicate a vector of pretreatment
(or control) variables for unit i. Let ti = 1 when unit i is assigned treatment, and ti = 0
when unit i is assigned control. (The labels “treatment” and “control” and values 1 and 0
respectively are arbitrary and can be switched for convenience, except that some methods
of matching are keyed to the definition of the treated group.) Denote yi(1) as the potential
outcome of unit i under treatment — the value the outcome variable would take if ti were
equal to 1, whether or not ti in fact is 0 or 1 – and yi(0) the potential outcome of unit i
under control — the value the outcome variable would take if ti were equal to 0, regardless
of its value in fact. The variables yi(1) and yi(0) are jointly unobservable, and for each i, we
observe one yi = tiyi(1) + (1− ti)yi(0), and not the other.

Also denote a fixed vector of exogenous confounders (measured at pretreatment) as Xi. These
variables are defined in the hope or under the assumption that conditioning on them appro-
priately will make inferences ignorable; see Ho, Imai, King, and Stuart (2007) for details.
Measures of balance should be computed with respect to all of X, even if some methods of
matching only use some components.

http://CRAN.R-project.org/package=MatchIt

Journal of Statistical Software 3

2.1. Preprocessing via matching

If ti and Xi were independent, we would not need to control for Xi, and any parametric
analysis would effectively reduce to a difference in means of Y for the treated and control
groups. The goal of matching is to preprocess the data prior to the parametric analysis so
that the actual relationship between ti and Xi is eliminated or reduced without introducing
bias and or increasing inefficiency too much.

When matching we select, duplicate, or selectively drop observations from our data, and we
do so without inducing bias as long as we use a rule that is a function only of ti and Xi and
does not depend on the outcome variable Yi. Many methods that offer this preprocessing
are included here, including exact, subclassification, nearest neighbor, optimal, and genetic
matching. For many of these methods the propensity score — defined as the probability of
receiving the treatment given the covariates — is a key tool. In order to avoid changing the
quantity of interest, most MatchIt routines work by retaining all treated units and selecting
(or weighting) control units to include in the final data set; this enables one to estimate the
average treatment effect on the treated (the purpose of which is described in Section 2.3).

MatchIt implements and evaluates the choice of the rules for matching. Matching sometimes
increases efficiency by eliminating heterogeneity or deleting observations outside of an area
where a model can reasonably be used to extrapolate, but one needs to be careful not to lose
too many observations in matching or efficiency will drop more than the reduction in bias
that is achieved.

The simplest way to obtain good matches (as defined above) is to use one-to-one exact match-
ing, which pairs each treated unit with one control unit for which the values of Xi are identi-
cal. However, with many covariates and finite numbers of potential matches, sufficient exact
matches often cannot be found. Indeed, many of the other methods implemented in MatchIt
attempt to balance the overall covariate distributions as much as possible, when sufficient
one-to-one exact matches are not available.

A key point in Ho, Imai, King, and Stuart (2007) is that matching methods by themselves are
not methods of estimation: every use of matching in the literature involves an analysis step
following the matching procedure, but almost all analyses use a simple difference in means.
This procedure is appropriate only if exact matching was conducted. In almost all other cases,
some adjustment is required, and there is no reason to degrade your inferences by using an
inferior method of analysis such as a difference in means even when improving your inferences
via preprocessing. Thus, with MatchIt, you can improve your analyses in two ways. MatchIt
analyses are “doubly robust” in that if either the matching analysis or the analysis model is
correct (but not necessarily both) your inferences will be statistically consistent. In practice,
the modeling choices you make at the analysis stage will be much less consequential if you
match first.

2.2. Checking balance

The goal of matching is to create a data set that looks closer to one that would result from a
perfectly blocked (and possibly randomized) experiment. When we get close to attaining this
goal, we break the link between the treatment variable and the pre-treatment controls, which
makes the parametric form of the analysis model less relevant or irrelevant entirely. To break
this link, we need the distribution of covariates to be the same within the matched treated
and control groups.

4 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

A crucial part of any matching procedure is, therefore, to assess how close the (empirical)
covariate distributions are in the two groups, which is known as “balance.” Because the
outcome variable is not used in the matching procedure, any number of matching methods
can be tried and evaluated, and the one matching procedure that leads to the best balance
can be chosen.

MatchIt provides a number of ways to assess the balance of covariates after matching, includ-
ing numerical summaries such as the mean Diff. (difference in means) or the difference in
means divided by the treated group standard deviation, and summaries based on quantile-
quantile plots that compare the empirical distributions of each covariate. The widely used
procedure of doing t-tests of the difference in means is highly misleading and should never be
used to assess balance; see Imai, King, and Stuart (2008b). These balance diagnostics should
be performed on all variables in X, even if some are excluded from one of the matching
procedures.

2.3. Conducting analyses after matching

The most common way that parametric analyses are used to compute quantities of interest
(without matching) is by (statistically) holding constant some explanatory variables, changing
others, and computing predicted or expected values and taking the difference or ratio, all by
using the parametric functional form. In the case of causal inference, this would mean looking
at the effect on the expected value of the outcome variable when changing T from 0 to 1,
while holding constant the pretreatment control variables X at their means or medians. This,
and indeed any other appropriate analysis procedure, would be a perfectly reasonable way to
proceed with analysis after matching. If it is the chosen way to proceed, then either treated or
control units may be deleted during the matching stage, since the same parametric structure
is assumed to apply to all observations.

In other instances, researchers wish to reduce the assumptions inherent in their statistical
model and so want to allow for the possibility that their treatment effect varies over observa-
tions. In this situation, one popular quantity of interest used is the average treatment effect on
the treated (ATT). For example, for the treated group, the potential outcomes under control,
Yi(0), are missing, whereas the outcomes under treatment, Yi(1), are observed, and the goal
of the analysis is to impute the missing outcomes, Yi(0) for observations with Ti = 1. We
do this via simulation using a parametric statistical model such as linear regression, logit, or
others (as described below). Once those potential outcomes are imputed from the model, the
estimate of individual i’s treatment effect is Yi(1)− Ŷi(0) where Ŷi(0) is a predicted value of
the dependent variable for unit i under the counterfactual condition where Ti = 0. The in-
sample average treatment effect for the treated individuals can then be obtained by averaging
this difference over all observations i where in fact Ti = 1. Most MatchIt algorithms retain
all treated units, and choose some subset of or repeated units from the control group, so
that estimating the ATT is straightforward. If one chooses options that allow matching with
replacement, or any solution that has different numbers of controls (or treateds) within each
subclass or strata (such as full matching), then the parametric analysis following matching
must accommodate these procedures, such as by using fixed effects or weights, as appropriate.
(Similar procedures can also be used to estimate various other quantities of interest such as
the average treatment effect by computing it for all observations, but then one must be aware
that the quantity of interest may change during the matching procedure as some control units

Journal of Statistical Software 5

may be dropped.)

The imputation from the model can be done in at least two ways. Recall that the model is
used to impute the value that the outcome variable would take among the treated units if those
treated units were actually controls. Thus, one reasonable approach would be to fit a model
to the matched data and create simulated predicted values of the dependent variable for the
treated units with Ti switched counterfactually from 1 to 0. An alternative approach would be
to fit a model without T by using only the outcomes of the matched control units (i.e., using
only observations where Ti = 0). Then, given this fitted model, the missing outcomes Yi(0)
are imputed for the matched treated units by using the values of the explanatory variables for
the treated units. The first approach will usually have lower variance, since all observations
are used, and the second may have less bias, since no assumption of constant parameters
across the models of the potential outcomes under treatment and control is needed. See Ho,
Imai, King, and Stuart (2007) for more details.

Other quantities of interest can also be computed at the parametric stage, following any
procedures you would have followed in the absence of matching. The advantage is that if
matching is done well your answers will be more robust to many small changes in parametric
specification.

3. User’s guide to MatchIt

3.1. Preprocessing via matching

Quick overview

The main command matchit() implements the matching procedures. A general syntax is:

R> m.out <- matchit(treat ~ x1 + x2, data = mydata)

where treat is the dichotomous treatment variable, and x1 and x2 are pre-treatment co-
variates, all of which are contained in the data frame mydata. The dependent variable (or
variables) may be included in mydata for convenience but is never used by MatchIt or included
in the formula. This command creates the MatchIt object called m.out. Passing the name of
the object will produce a quick summary of the results:

R> m.out

Examples

To run any of the examples below, you first must load the library and and data:

R> library("MatchIt")

R> data("lalonde")

Our example data set is a subset of the job training program analyzed in Lalonde (1986)
and Dehejia and Wahba (1999). MatchIt includes a subsample of the original data consisting

6 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

of the National Supported Work Demonstration (NSW) treated group and the comparison
sample from the Population Survey of Income Dynamics (PSID).1 The variables in this data
set include participation in the job training program (treat, which is equal to 1 if participated
in the program, and 0 otherwise), age (age), years of education (educ), race (black which is
equal to 1 if black, and 0 otherwise; hispan which is equal to 1 if hispanic, and 0 otherwise),
marital status (married, which is equal to 1 if married, 0 otherwise), high school degree
(nodegree, which is equal to 1 if no degree, 0 otherwise), 1974 real earnings (re74), 1975 real
earnings (re75), and the main outcome variable, 1978 real earnings (re78).

Exact matching

The simplest version of matching is exact. This technique matches each treated unit to all
possible control units with exactly the same values on all the covariates, forming subclasses
such that within each subclass all units (treatment and control) have the same covariate values.
Exact matching is implemented in MatchIt using method = "exact". Exact matching will be
done on all covariates included on the right-hand side of the formula specified in the MatchIt
call. There are no additional options for exact matching. (Exact restrictions on a subset
of covariates can also be specified in nearest neighbor matching; see below.) The following
example can be run by typing demo("exact") at the R prompt,

R> m.out <- matchit(treat ~ educ + black + hispan, data = lalonde,

+ method = "exact")

Subclassification

When there are many covariates (or some covariates can take a large number of values),
finding sufficient exact matches will often be impossible. The goal of subclassification is to
form subclasses, such that in each the distribution (rather than the exact values) of covariates
for the treated and control groups are as similar as possible. Various subclassification schemes
exist, including the one based on a scalar distance measure such as the propensity score
estimated using the distance option (see Section 4.1.3). Subclassification is implemented in
MatchIt using method = "subclass".

The following example script can be run by typing demo("subclass") at the R prompt,

R> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

+ data = lalonde, method = "subclass")

The above syntax forms 6 subclasses, which is the default number of subclasses, based on a
distance measure (the propensity score) estimated using logistic regression. By default, each
subclass will have approximately the same number of treated units.

Subclassification may also be used in conjunction with nearest neighbor matching described
below, by leaving the default of method = "nearest" but adding the option subclass. When
you choose this option, MatchIt selects matches using nearest neighbor matching, but after
the nearest neighbor matches are chosen it places them into subclasses, and adds a variable
to the output object indicating subclass membership.

1This data set, lalonde, was created using NSWRE74_TREATED.TXT and CPS3_CONTROLS.TXT.

Journal of Statistical Software 7

Nearest neighbor matching

Nearest neighbor matching selects the r (default = 1) best control matches for each individual
in the treatment group (excluding those discarded using the discard option). Matching is
done using a distance measure specified by the distance option (default = logit, i.e., a
logistic regression model is used to estimate the propensity score, defined as the probability
of receiving treatment, conditional on the covariates). Matches are chosen for each treated
unit one at a time, with the order specified by the m.order command (default = largest to
smallest). At each matching step we choose the control unit that is not yet matched but is
closest to the treated unit on the distance measure.

Nearest neighbor matching is implemented in MatchIt using the method = "nearest" option.
The following example script can be run by typing demo("nearest"):

R> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

+ data = lalonde, method = "nearest")

Optimal matching

The default nearest neighbor matching method in MatchIt is “greedy” matching, where the
closest control match for each treated unit is chosen one at a time, without trying to minimize
a global distance measure. In contrast, “optimal”matching finds the matched samples with the
smallest average absolute distance across all the matched pairs. Gu and Rosenbaum (1993)
find that greedy and optimal matching approaches generally choose the same sets of controls
for the overall matched samples, but optimal matching does a better job of minimizing the
distance within each pair. In addition, optimal matching can be helpful when there are not
many appropriate control matches for the treated units.

Optimal matching is performed with MatchIt by setting method = "optimal", which auto-
matically loads an add-on package called optmatch (Hansen 2004). The following example
can also be run by typing demo("optimal") at the R prompt. We conduct 2:1 optimal ratio
matching based on the propensity score from the logistic regression.

R> m.out <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "optimal", ratio = 2)

Full matching

Full matching is a particular type of subclassification that forms the subclasses in an optimal
way (Rosenbaum 2002; Hansen 2004). A fully matched sample is composed of matched sets,
where each matched set contains one treated unit and one or more controls (or one control
unit and one or more treated units). As with subclassification, the only units not placed into
a subclass will be those discarded (if a discard option is specified) because they are outside
the range of common support. Full matching is optimal in terms of minimizing a weighted
average of the estimated distance measure between each treated subject and each control
subject within each subclass.

Full matching can be performed with MatchIt by setting method = "full". Just as with
optimal matching, we use the optmatch package (Hansen 2004), which automatically loads
when needed. The following example with full matching (using the default propensity score
based on logistic regression) can also be run by typing demo("full") at the R prompt:

8 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

R> m.out <- matchit(treat ~ age + educ + black + hispan + married +

+ nodegree + re74 + re75, data = lalonde, method = "full")

Genetic matching

Genetic matching automates the process of finding a good matching solution (Diamond and
Sekhon 2010). The idea is to use a genetic search algorithm to find a set of weights for
each covariate such that the a version of optimal balance is achieved after matching. As
currently implemented, matching is done with replacement using the matching method of
Abadie and Imbens (2006) and balance is determined by two univariate tests, paired t-tests
for dichotomous variables and a Kolmogorov-Smirnov test for multinomial and continuous
variables, but these options can be changed.

Genetic matching can be performed with MatchIt by setting method = "genetic", which
automatically loads the Matching (Sekhon 2011) package. The following example of genetic
matching (using the estimated propensity score based on logistic regression as one of the
covariates) can also be run by typing demo("genetic"):

R> m.out <- matchit(treat ~ age + educ + black + hispan + married +

+ nodegree + re74 + re75, data = lalonde, method = "genetic")

3.2. Checking balance

Quick overview

To check balance, use summary(m.out) for numerical summaries and plot(m.out) for graph-
ical summaries.

The summary() command

The summary() command gives measures of the balance between the treated and control
groups in the full (original) data set, and then in the matched data set. If the matching
worked well, the measures of balance should be smaller in the matched data set (smaller
values of the measures indicate better balance).

The summary() output for subclassification is the same as that for other types of matching,
except that the balance statistics are shown separately for each subclass, and the overall
balance in the matched samples is calculated by aggregating across the subclasses, where
each subclass is weighted by the number of units in the subclass. For exact matching, the
covariate values within each subclass are guaranteed to be the same, and so the measures of
balance are not output for exact matching; only the sample sizes in each subclass are shown.

� Balance statistics: The statistics the summary() command provides include means,
the original control group standard deviation (where applicable), mean differences, stan-
dardized mean differences, and (median, mean and maximum) quantile-quantile (Q-Q)
plot differences. In addition, the summary() command will report (a) the matched call,
(b) how many units were matched, unmatched, or discarded due to the discard option
(described below), and (c) the percent improvement in balance for each of the balance

Journal of Statistical Software 9

measures, defined as 100((|a| − |b|)/|a|), where a is the balance before and b is the bal-
ance after matching. For each set of units (original and matched data sets, with weights
used as appropriate in the matched data sets), the following statistics are provided:

1. Means Treated and Means Control show the weighted means in the treated and
control groups

2. SD Control is the standard deviation calculated in the control group (where ap-
plicable)

3. Mean Diff. is the difference in means between the groups

4. The final three columns of the summary output give summary statistics of a Q-Q
plot (see below for more information on these plots). Those columns give the me-
dian, mean, and maximum distance between the two empirical quantile functions
(treated and control groups). Values greater than 0 indicate deviations between
the groups in some part of the empirical distributions. The plots of the two empiri-
cal quantile functions themselves, described below, can provide further insight into
which part of the covariate distribution has differences between the two groups.

� Additional options: Three options to the summary() command can also help with
assessing balance and respecifying the propensity score model, as necessary. First, the
interactions = TRUE option with summary() shows the balance of all squares and
interactions of the covariates used in the matching procedure. Large differences in
higher order interactions usually are a good indication that the propensity score model
(the distance measure) needs to be respecified. Similarly, the addlvariables option
with summary() will provide balance measures on additional variables not included in the
original matching procedure. If a variable (or interaction of variables) not included in the
original propensity score model has large imbalances in the matched groups, including
that variable in the next model specification may improve the resulting balance on that
variable. Because the outcome variable is not used in the matching procedure, a variety
of matching methods can be tried, and the one that leads to the best resulting balance
chosen. Finally, the standardize = TRUE option will print out standardized versions
of the balance measures, where the mean difference is standardized (divided) by the
standard deviation in the original treated group.

The plot() command

We can also examine the balance graphically using the plot() command, which provides
three types of plots: jitter plots of the distance measure, Q-Q plots of each covariate, and
histograms of the distance measure. For subclassification, separate Q-Q plots can be printed
for each subclass. The jitter plot for subclassification is the same as that for other types
of matching, with the addition of vertical lines indicating the subclass cut-points. With the
histogram option, 4 histograms are provided: the original treated and control groups and the
matched treated and control groups. For the Q-Q plots and the histograms, the weights that
result after matching are used to create the plots.

Three examples of the output from the plot() command are shown in Figure 1. If the
empirical distributions are the same in the treated and control groups, the points in the Q-Q
plots would all lie on the 45 degree line (lower left panel of Figure 1). Deviations from the 45

10 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

Distribution of Propensity Scores

Propensity Score
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Unmatched Treatment Units

Matched Treatment Units

Matched Control Units

Unmatched Control Units

Index

QQ Plots
All Matched

Control Units

T
re

at
ed

 U
ni

ts

I(re74/1000)

0
10

20
30

Index

I(re75/1000)

0
5

15
25

educ

0
5

10
15

Raw Treated

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8

Matched Treated

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8
12

Raw Control

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4

Matched Control

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8

Figure 1: Examples of the three types of output from the plot command resulting from
matching on the lalonde data set based on real earnings in 1974 (re74) divided by 1000, real
earnings in 1975 (re75) divided by 1000, years of education (educ), Hispanic (hispan) and
marital status (married). Observations in both the treated and the control groups outside
the support of the distance measure were discarded. The upper plot shows the jitter plot of
the distance measure. The lower left plot shows the QQ plots for the first three covariates
(I(re74/1000), I(re75/1000), educ). The lower right plot shows the histograms of the
density of propensity scores for observations before and after matching.

degree line indicate differences in the empirical distribution. The jitter plot (top panel) shows
the overall distribution of propensity scores in the treated and control groups. In the jitter
plot, which can be created by setting type = "jitter", the size of each point is proportional
to the weight given to that unit. Observation names can be interactively identified by clicking
the first mouse button near the units. The histograms (lower right panel) can be plotted by
setting type = "hist".

Journal of Statistical Software 11

3.3. Conducting analyses after matching

Any software package may be used for parametric analysis following MatchIt. This includes
any of the relevant R packages, or other statistical software by exporting the resulting matched
data sets using R commands such as write.csv() and write.table() for ASCII files or
write.dta() in the foreign package for a Stata binary file.

When variable numbers of treated and control units have been matched to each other (e.g.,
through exact matching, full matching, or k:1 matching with replacement), the weights created
by MatchIt should be used (e.g., in a weighted regression) to ensure that the matched treated
and control groups are weighted up to be similar. Users should also remember that the
weights created by MatchIt estimate the average treatment effect on the treated, with the
control units weighted to resemble the treated units. See below for more detail on the weights.
With subclassification, estimates should be obtained within each subclass and then aggregated
across subclasses. When it is not possible to calculate an effect within each subclass, again
the weights can be used to weight the matched units.

In this section, we show how to use Zelig with MatchIt.Zelig (Imai, King, and Lau 2011) is
an R package that implements a large variety of statistical models (using numerous existing R
packages) with a single easy-to-use interface, gives easily interpretable results by simulating
quantities of interest, provides numerical and graphical summaries, and is easily extensible to
include new methods.

Quick overview

The general syntax is as follows. First, we use match.data() to create the matched data from
the MatchIt output object (m.out) by excluding unmatched units from the original data, and
including information produced by the particular matching procedure (i.e., primarily a new
data set, but also information that may result such as weights, subclasses, or the distance
measure).

R> m.data <- match.data(m.out)

where m.data is the resulting matched data. Zelig analyses all use three commands — zelig,
setx, and sim. For example, the basic statistical analysis is performed first:

R> z.out <- zelig(Y ~ treat + x1 + x2, model = mymodel, data = m.data)

where Y is the outcome variable, mymodel is the selected model, and z.out is the output
object from zelig. This output object includes estimated coefficients, standard errors, and
other typical outputs from your chosen statistical model. Its contents can be examined via
summary(z.out) or plot(z.out), but the idea of Zelig is that these statistical results are
typically only intermediate quantities needed to compute your ultimate quantities of interest,
which in the case of matching are usually causal inferences. To get these causal quantities, we
use Zelig’s other two commands. Thus, we can set the explanatory variables at their means
(the default) and change the treatment variable from a 0 to a 1:

R> x.out0 <- setx(z.out0, treat = 0)

R> x1.out0 <- setx(z.out0, treat = 1)

and finally compute the resulting estimates of the causal effects and examine a summary:

12 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

R> s.out0 <- sim(z.out1, x = x.out1)

R> summary(s.out0)

Examples

We now give four examples using the Lalonde data. They are meant to be read sequentially.
You can run these example commands by typing demo("analysis"). Although we use the
linear least squares model in these examples, a wide range of other models are available
in Zelig (for the list of supported models, see http://gking.harvard.edu/zelig/docs/

Models_Zelig_Can.html).

To load the Zelig package after installing it, type

R> library("Zelig")

Model-based estimates In our first example, we conduct a standard parametric analysis
and compute quantities of interest in the most common way. We begin with nearest
neighbor matching with a logistic regression-based propensity score, discarding with the
hull.control option (King and Zeng 2006, 2007):

R> m.out0 <- matchit(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75, method = "nearest", discard = "hull.control",

+ data = lalonde)

Then we check balance using the summary and plot procedures (which we do not show
here). When the best balance is achieved, we run the parametric analysis (two variables
are dropped because they are exactly matched):

R> z.out0 <- zelig(re78 ~ treat + age + educ + black + nodegree +

+ re74 + re75, data = match.data(m.out0), model = "ls")

and then set the explanatory variables at their means (the default) and change the
treatment variable from a 0 to a 1:

R> x.out0 <- setx(z.out0, treat = 0)

R> x1.out0 <- setx(z.out0, treat = 1)

and finally compute the result and examine a summary:

R> s.out0 <- sim(z.out0, x = x.out0, x1 = x1.out0)

R> summary(s.out0)

Average treatment effect on the treated We illustrate now how to estimate the average
treatment effect on the treated in a way that is quite robust. We do this by estimating
the coefficients in the control group alone.

We begin by conducting nearest neighbor matching with a logistic regression-based
propensity score:

R> m.out1 <- matchit(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75, method = "nearest", data = lalonde)

http://gking.harvard.edu/zelig/docs/Models_Zelig_Can.html
http://gking.harvard.edu/zelig/docs/Models_Zelig_Can.html

Journal of Statistical Software 13

Then we check balance using the summary and plot procedures (which we do not show
here). We reestimate the matching procedure until we achieve the best balance possible.
The running examples here are meant merely to illustrate, not to suggest that we’ve
achieved the best balance. Then we go to Zelig, and in this case choose to fit a linear
least squares model to the control group only:

R> z.out1 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75, data = match.data(m.out1, "control"),

+ model = "ls")

where the "control" option in match.data() extracts only the matched control units
and ls specifies least squares regression. In a smaller data set, this example should prob-
ably be changed to include all the data in this estimation (using data =

match.data(m.out1) for the data) and by including the treatment indicator (which
is excluded in the example since its a constant in the control group.) Next, we use the
coefficients estimated in this way from the control group, and combine them with the
values of the covariates set to the values of the treated units. We do this by choosing
conditional prediction (which means use the observed values) in setx(). The sim()

command does the imputation.

R> x.out1 <- setx(z.out1, data = match.data(m.out1, "treat"),

+ cond = TRUE)

R> s.out1 <- sim(z.out1, x = x.out1)

Finally, we obtain a summary of the results by

R> summary(s.out1)

Average treatment effect (overall) To estimate the average treatment effect, we continue
with the previous example and fit the linear model to the treatment group:

R> z.out2 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75, data = match.data(m.out1, "treat"),

+ model = "ls")

We then conduct the same simulation procedure in order to impute the counterfactual
outcome for the control group,

R> x.out2 <- setx(z.out2, data = match.data(m.out1, "control"),

+ cond = TRUE)

R> s.out2 <- sim(z.out2, x = x.out2)

In this calculation, Zelig is computing the difference between observed and the expected
values. This means that the treatment effect for the control units is the effect of con-
trol (observed control outcome minus the imputed outcome under treatment from the
model). Hence, to combine treatment effects just reverse the signs of the estimated
treatment effect of controls.

R> ate.all <- c(s.out1qiatt.ev, -s.out2qiatt.ev)

The point estimate, its standard error, and the 95% confidence interval is given by

14 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

R> mean(ate.all)

R> sd(ate.all)

R> quantile(ate.all, c(0.025, 0.975))

Subclassification In subclassification, the average treatment effect estimates are obtained
separately for each subclass, and then aggregated for an overall estimate. Estimating
the treatment effects separately for each subclass, and then aggregating across sub-
classes, can increase the robustness of the ultimate results since the parametric analysis
within each subclass requires only local rather than global assumptions. However, fewer
observations are obviously available within each subclass, and so this option is normally
chosen for larger data sets.

We begin this example by conducting subclassification with four subclasses,

R> m.out2 <- matchit(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75, data = lalonde, method = "subclass",

+ subclass = 4)

When balance is as good as we can get it, we then fit a linear regression within each
subclass by controlling for the estimated propensity score (called distance) and other
covariates. In most software, this would involve running four separate regressions and
then combining the results. In Zelig, however, all we need to do is to use the by option:

R> z.out3 <- zelig(re78 ~ re74 + re75 + distance, data =

+ match.data(m.out2, "control"), model = "ls", by = "subclass")

The same set of commands as in the first example are used to do the imputation of the
counterfactual outcomes for the treated units:

R> x.out3 <- setx(z.out3, data = match.data(m.out2, "treat"), fn = NULL,

+ cond = TRUE)

R> s.out3 <- sim(z.out3, x = x.out3)

R> summary(s.out3)

It is also possible to get the summary result for each subclass. For example, the following
command summarizes the result for the second subclass.

R> summary(s.out3, subset = 2)

How adjustment after exact matching has no effect Regression adjustment after ex-
act one-to-one exact matching gives the identical answer as a simple, unadjusted differ-
ence in means. General exact matching, as implemented in MatchIt, allows one-to-many
matches, so to see the same result we must weight when adjusting. In other words:
weighted regression adjustment after general exact matching gives the identical answer
as a simple, unadjusted weighted difference in means. For example:

R> m.out <- matchit(treat ~ educ + black + hispan, data = lalonde,

+ method = "exact")

R> m.data <- match.data(m.out)

R> weighted.mean(m.data$re78[m.data$treat == 1],

+ m.data$weights[m.data$treat == 1]) -

Journal of Statistical Software 15

+ weighted.mean(m.data$re78[m.data$treat == 0],

+ m.data$weights[m.data$treat == 0])

[1] 807

R> zelig(re78 ~ treat, data = m.data, model = "ls",

+ weights = "weights")

Call:

zelig(formula = re78 ~ treat, model = "ls", data = m.data,

weights = "weights")

Coefficients:

(Intercept) treat

5524 807

R> zelig(re78 ~ treat + black + hispan + educ, data = m.data,

+ model = "ls", weights = "weights")

Call:

zelig(formula = re78 ~ treat + black + hispan + educ, model = "ls",

data = m.data, weights = "weights")

Coefficients:

(Intercept) treat black hispan educ

314 807 -1882 258 657

4. Reference manual

4.1. matchit: Implementation of matching methods

Use matchit() to implement a variety of matching procedures including exact matching,
nearest neighbor matching, subclassification, optimal matching, genetic matching, and full
matching. The output of matchit() can be analyzed via any standard R package, by exporting
the data for use in another program, or most simply via Zelig in R.

Syntax

m.out <- matchit(formula, data, method = "nearest", verbose = FALSE, ...)

Arguments for all matching methods

� formula: formula used to calculate the distance measure for matching (e.g., the propen-
sity score model). It takes the usual syntax of R formulas, treat ~ x1 + x2, where

16 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

treat is a binary treatment indicator, and x1 and x2 are the pre-treatment covari-
ates. Both the treatment indicator and pre-treatment covariates must be contained
in the same data frame, which is specified as data (see below). All of the usual R
syntax for formulas work here. For example, x1:x2 represents the first order interac-
tion term between x1 and x2, and I(x1 ^ 2) represents the square term of x1. See
help("formula") for details.

� data: the data frame containing the variables called in formula.

� method: the matching method (default = "nearest", nearest neighbor matching). Cur-
rently, "exact" (exact matching), "full" (full matching), "nearest" (nearest neigh-
bor matching), "optimal" (optimal matching), "subclass" (subclassification), and
"genetic" (genetic matching) are available. Note that within each of these match-
ing methods, MatchIt offers a variety of options. See below for more details.

� verbose: a logical value indicating whether to print the status of the matching algorithm
(default = FALSE).

Additional arguments for specification of distance measures

The following arguments specify distance measures that are used for matching methods. These
arguments apply to all matching methods except exact matching.

� distance: the method used to estimate the distance measure (default = "logit",
logistic regression) or a numerical vector of user’s own distance measure. Before using
any of these techniques, it is best to understand the theoretical groundings of these
techniques and to evaluate the results. Most of these methods (such as logistic or probit
regression) define the distance by first estimating the propensity score, defined as the
probability of receiving treatment, conditional on the covariates. Available methods
include:

– "mahalanobis": the Mahalanobis distance measure.

– binomial generalized linear models with one of the following link functions:

* "logit": logistic link

* "linear.logit": logistic link with linear propensity score2

* "probit": probit link

* "linear.probit": probit link with linear propensity score

* "cloglog": complementary log-log link

* "linear.cloglog": complementary log-log link with linear propensity score

* "log": log link

* "linear.log": log link with linear propensity score

* "cauchit" Cauchy CDF link

* "linear.cauchit" Cauchy CDF link with linear propensity score

– Choose one of the following generalized additive models (see help("gam") for more
options).

2The linear propensity scores are obtained by transforming back onto a linear scale.

Journal of Statistical Software 17

* "GAMlogit": logistic link

* "GAMlinear.logit": logistic link with linear propensity score

* "GAMprobit": probit link

* "GAMlinear.probit": probit link with linear propensity score

* "GAMcloglog": complementary log-log link

* "GAMlinear.cloglog": complementary log-log link with linear propensity
score

* "GAMlog": log link

* "GAMlinear.log": log link with linear propensity score,

* "GAMcauchit": Cauchy CDF link

* "GAMlinear.cauchit": Cauchy CDF link with linear propensity score

– "nnet": neural network model. See help("nnet") for more options.

– "rpart": classification trees. See help("rpart") for more options.

� distance.options: optional arguments for estimating the distance measure. The in-
put to this argument should be a list. For example, if the distance measure is esti-
mated with a logistic regression, users can increase the maximum IWLS iterations by
distance.options = list(maxit = 5000). Find additional options for general lin-
ear models using help("glm") or help("family"), for general additive models using
help("gam"), for neutral network models help("nnet"), and for classification trees
help("rpart").

� discard: specifies whether to discard units that fall outside some measure of support
of the distance measure (default = "none", discard no units). Discarding units may
change the quantity of interest being estimated by changing the observations left in the
analysis. Enter a logical vector indicating which unit should be discarded or choose
from the following options:

– "none": no units will be discarded before matching. Use this option when the
units to be matched are substantially similar, such as in the case of matching
treatment and control units from a field experiment that was close to (but not
fully) randomized (e.g., Imai 2005), when caliper matching will restrict the donor
pool, or when you do not wish to change the quantity of interest and the parametric
methods to be used post-matching can be trusted to extrapolate.

– "hull.both": all units that are not within the convex hull will be discarded. See
King and Zeng (2006, 2007) for information about the convex hull in this context
and as a measure of model dependence.

– "both": all units (treated and control) that are outside the support of the distance
measure will be discarded.

– "hull.control": only control units that are not within the convex hull of the
treated units will be discarded.

– "control": only control units outside the support of the distance measure of
the treated units will be discarded. Use this option when the average treatment
effect on the treated is of most interest and when you are unwilling to discard
non-overlapping treatment units (which would change the quantity of interest).

18 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

– "hull.treat": only treated units that are not within the convex hull of the control
units will be discarded.

– "treat": only treated units outside the support of the distance measure of the
control units will be discarded. Use this option when the average treatment effect
on the control units is of most interest and when unwilling to discard control units.

� reestimate: If FALSE (default), the model for the distance measure will not be re-
estimated after units are discarded. The input must be a logical value. Re-estimation
may be desirable for efficiency reasons, especially if many units were discarded and so
the post-discard samples are quite different from the original samples.

Additional arguments for subclassification

� sub.by: criteria for subclassification. Choose from: "treat" (default), the number of
treatment units; "control", the number of control units; or "all", the total number of
units. Changing the default will likely also signal a change in your quantity of interest
from the average treatment effect on the treated to other quantities.

� subclass: either a scalar specifying the number of subclasses, or a vector of probabilities
bounded between 0 and 1, which create quantiles of the distance measure using the units
in the group specified by sub.by (default = subclass = 6).

Additional arguments for nearest neighbor matching

� m.order: the order in which to match treatment units with control units.

– "largest" (default): matches from the largest value of the distance measure to
the smallest.

– "smallest": matches from the smallest value of the distance measure to the
largest.

– "random": matches in random order.

� replace: logical value indicating whether each control unit can be matched to more than
one treated unit (default = replace = FALSE, each control unit is used at most once
– i.e., sampling without replacement). For matching with replacement, use replace =

TRUE. After matching with replacement, the weights can be used to reflect the frequency
with which each control unit was matched.

� ratio: the number of control units to match to each treated unit (default = 1). If
matching is done without replacement and there are fewer control units than ratio

times the number of eligible treated units (i.e., there are not enough control units for
the specified method), then the higher ratios will have NA in place of the matching unit
number in match.matrix.

Journal of Statistical Software 19

� exact: variables on which to perform exact matching within the nearest neighbor match-
ing (default = NULL, no exact matching). If exact is specified, only matches that exactly
match on the covariates in exact will be allowed. Within the matches that match on the
variables in exact, the match with the closest distance measure will be chosen. exact

should be entered as a vector of variable names (e.g., exact = c("X1", "X2")).

� caliper: the number of standard deviations of the distance measure within which to
draw control units (default = 0, no caliper matching). If a caliper is specified, a control
unit within the caliper for a treated unit is randomly selected as the match for that
treated unit. If caliper != 0, there are two additional options:

– calclosest: whether to take the nearest available match if no matches are avail-
able within the caliper (default = FALSE).

– mahvars: variables on which to perform Mahalanobis-metric matching within each
caliper (default = NULL). Variables should be entered as a vector of variable names
(e.g., mahvars = c("X1", "X2")). If mahvars is specified without caliper, the
caliper is set to 0.25.

� subclass and sub.by: See the options for subclassification for more details on these
options. If a subclass is specified within method = "nearest", the matched units will
be placed into subclasses after the nearest neighbor matching is completed.

Additional arguments for optimal matching

� ratio: the number of control units to be matched to each treatment unit (default = 1).

� ...: additional inputs that can be passed to the fullmatch() function in the opt-
match package. See help("fullmatch") or http://www.stat.lsa.umich.edu/~bbh/

optmatch.html for details.

Additional arguments for full matching

See help("fullmatch") (part of this information is copied below) or http://www.stat.lsa.
umich.edu/~bbh/optmatch.html for details.

� min.controls: The minimum ratio of controls to treatments that is to be permitted
within a matched set: should be nonnegative and finite. If min.controls is not a whole
number, the reciprocal of a whole number, or zero, then it is rounded down to the
nearest whole number or reciprocal of a whole number.

� max.controls: The maximum ratio of controls to treatments that is to be permitted
within a matched set: should be positive and numeric. If max.controls is not a whole
number, the reciprocal of a whole number, or Inf, then it is rounded up to the nearest
whole number or reciprocal of a whole number.

http://www.stat.lsa.umich.edu/~bbh/optmatch.html
http://www.stat.lsa.umich.edu/~bbh/optmatch.html
http://www.stat.lsa.umich.edu/~bbh/optmatch.html
http://www.stat.lsa.umich.edu/~bbh/optmatch.html

20 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

� omit.fraction: Optionally, specify what fraction of controls or treated subjects are to
be rejected. If omit.fraction is a positive fraction less than one, then fullmatch()

leaves up to that fraction of the control reservoir unmatched. If omit.fraction is a
negative number greater than −1, then fullmatch() leaves up to |omit.fraction| of
the treated group unmatched. Positive values are only accepted if max.controls >= 1;
negative values, only if min.controls <= 1. If omit.fraction is not specified, then only
those treated and control subjects without permissible matches among the control and
treated subjects, respectively, are omitted.

� ...: Additional inputs that can be passed to the fullmatch() function in the optmatch
package.

Additional arguments for genetic matching

The available options are listed below.

� ratio: the number of control units to be matched to each treatment unit (default = 1).

� ...: additional minor inputs that can be passed to the GenMatch() function in the
Matching package. See help("GenMatch") or
http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html for
details.

Output values

Regardless of the type of matching performed, the matchit output object contains the fol-
lowing elements:3

� call: the original matchit() call.

� formula: the formula used to specify the model for estimating the distance measure.

� model: the output of the model used to estimate the distance measure. summary(

m.out$model) will give the summary of the model where m.out is the output object
from matchit().

� match.matrix: an n1× ratio matrix where:

– the row names represent the names of the treatment units (which match the row
names of the data frame specified in data).

– each column stores the name(s) of the control unit(s) matched to the treatment
unit of that row. For example, when the ratio input for nearest neighbor or
optimal matching is specified as 3, the three columns of match.matrix represent
the three control units matched to one treatment unit).

– NA indicates that the treatment unit was not matched.

3When inapplicable or unnecessary, these elements may equal NULL. For example, when exact matching,
match.matrix = NULL.

http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html

Journal of Statistical Software 21

� discarded: a vector of length n that displays whether the units were ineligible for
matching due to common support restrictions. It equals TRUE if unit i was discarded,
and it is set to FALSE otherwise.

� distance: a vector of length n with the estimated distance measure for each unit.

� weights: a vector of length n with the weights assigned to each unit in the matching
process. Unmatched units have weights equal to 0. Matched treated units have weight
1. Each matched control unit has weight proportional to the number of treatment units
to which it was matched, and the sum of the control weights is equal to the number of
uniquely matched control units.

� subclass: the subclass index is an ordinal scale from 1 to the total number of subclasses
as specified in subclass (or the total number of subclasses from full or exact matching).
Unmatched units have NA.

� q.cut: the subclass cut-points that classify the distance measure.

� treat: the treatment indicator from data (the left-hand side of formula).

� X: the covariates used for estimating the distance measure (the right-hand side of
formula). When applicable, X is augmented by covariates contained in mahvars and
exact.

4.2. summary: Numerical summaries of balance

The summary() command returns numerical summaries of balance diagnostics.

Syntax

summary(object, interactions = FALSE, addlvariables = NULL,

standardize = FALSE, ...)

Arguments

� object: the output from matchit().

� interactions: an option to calculate summary statistics in sum.all and sum.matched

for all covariates, their squares, and two-way interactions when interactions = TRUE

and only the covariates themselves when interactions = FALSE, (default = FALSE).

� addlvariables: additional variables on which to calculate the diagnostic statistics
(in addition to the variables included in the matching procedure) (default = NULL).
addlvariables: a data frame containing additional variables whose balance is exam-
ined. The data should come with the same number of units and units in the same order
as in the data set used for matchit().

22 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

� standardize: a logical variable indicating whether to standardize balance measures,
i.e., whether the difference in means should be divided by the standard deviation in the
original treated group. (default = FALSE)

Output values

The output from the summary() command includes the following elements, when applicable:

� The original assignment model call.

� sum.all: a data frame that contains variable names and interactions down the row
names, and summary statistics on all observations in each of the columns. The columns
in sum.all contain:

– means of all covariates X for treated and control units, where Means Treated=
µX|T=1 = 1

n1

∑
T=1Xi and Means Control= µX|T=0 = 1

n0

∑
T=0Xi,

– standard deviation in the control group for all covariates X, where applicable,

sx|T=0 =

√∑
i∈{i:Ti=0}(Xi − µX|T=0)2

n0 − 1
.

– balance statistics of the original data (before matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,
respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µX|T=1−µX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

� sum.matched: a data frame which contains variable names down the row names, and
summary statistics on only the matched observations in each of the columns. Specifically,
the columns in sum.matched contain the following elements:

– weighted means for matched treatment units and matched control units of all co-
variatesX and their interactions, where Means Treated= µwX|T=1 = 1

n1

∑
T=1wiXi

and Means Control= µwX|T=0 = 1
n0

∑
T=0wiXi,

– weighted standard deviations in the matched control group for all covariates X,

where applicable, where SD = swX =
√

1
n

∑
i(wiXi −X

∗
)2, whereX

∗
is the weighted

mean of X in the matched control group, and

– balance statistics of the matched data (after matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,

Journal of Statistical Software 23

respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µwX|T=1−µwX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

where w represents the vector of weights.

� reduction: the percent reduction in the difference in means achieved in each of the
balance measures in sum.all and sum.matched, defined as 100(|a| − |b|)/|a|, where a
was the value of the balance measure before matching and b is the value of the balance
measure after matching.

� nn: the sample sizes in the full and matched samples and the number of discarded units,
by treatment and control.

� q.table: an array that contains the same information as sum.matched by subclass.

� qn: the sample sizes in the full and matched samples and the number of discarded units,
by subclass and by treatment and control.

� match.matrix: the same object is contained in the output of matchit().

4.3. plot: Graphical summaries of balance

Plot options for the matchit object

The plot() command allows you to check the distributions of propensity scores and covariates
in the assignment model, squares, and interactions, and within each subclasses if specified.

Syntax

plot(m.out, discrete.cutoff = 5, type = "QQ", numdraws = 5000,

interactive = TRUE, which.xs = NULL, ...)

Arguments

� type: type of output graph. type = "QQ" (default) outputs empirical quantile-quantile
plots of each covariate to check balance of marginal distributions. Alternatively, type
= "jitter" outputs jitter plots of the propensity score for treated and control units.
Finally, type="hist" outputs histograms of the propensity score in the original treated
and control groups and weighted histograms of the propensity score in the matched
treated and control groups.

� discrete.cutoff: For quantile-quantile plots, discrete covariates that take 5 or fewer
values are jittered for visibility. This may be changed by setting this argument to any
other positive integer.

� interactive: If TRUE (default), users can identify individual units by clicking on the
graph with the left mouse button, and (when applicable) choose subclasses to plot.

24 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

� which.xs: For quantile-quantile plots, specifies particular covariate names in a character
vector to plot only a subset of the covariates.

� subclass: If interactive = FALSE, users can specify which subclass to plot.

Output values

� Empirical quantile-quantile plot: This graph plots covariate values that fall in (approx-
imately) the same quantile of treated and control distributions. Control unit quantile
values are plotted on the x-axis, and treated unit quantile values are plotted on the
y-axis. If values fall below the 45 degree line, control units generally take lower values
of the covariate. Data points that fall exactly on the 45 degree line indicate that the
marginal distributions are identical.

� Jitter plots: This graph plots jittered estimated propensity scores of treated and control
units. Dark diamonds indicate matched units and grey diamonds indicate unmatched
or discarded units. The area of the diamond is proportional to the weights. Vertical
lines are plotted if subclassification is used.

� Histograms: This graph plots histograms of the estimated propensity scores in the
original treated and control groups and weighted histograms of the estimated propensity
scores in the matched treated and control groups. Plots can be compared vertically to
quickly check the balance before and after matching.

4.4. Plot options for the matchit summary object

You can also send a matchit summary object to the plot() command, to obtain a summary
of the balance on each covariate before and after matching. The summary() object must have
been created using the option standardize = TRUE. The idea for this plot came from the
twang package by McCaffrey, Ridgeway, and Morral.

Syntax

s.out <- summary(object, standardize = TRUE, ...)

plot(s.out, ...)

Arguments

� interactive: If TRUE (default), users can identify individual variables by clicking on
the graph with the left mouse button.

Output values

� Line plot of standardized differences in means before and after matching. Numbers
plotted are those output by the summary() command in the sum.all and sum.matched

objects.

Journal of Statistical Software 25

4.5. match.data: Extracting the matched data set

Usage

To extract the matched data set for subsequent analyses from the output object (as described
in Section 3.3), we provide the function match.data(). This is used as follows:

m.data <- match.data(object, group = "all", distance = "distance",

weights = "weights", subclass = "subclass")

The output of the function match.data() is the original data frame where additional infor-
mation about matching (i.e., distance measure as well as resulting weights and subclasses) is
added, restricted to units that were matched.

4.6. Arguments

match.data() takes the following inputs:

1. object is the output object from matchit(). This is a required input.

2. group specifies for which matched group the user wants to extract the data. Available
options are "all" (all matched units), "treat" (matched units in the treatment group),
and "control" (matched units in the control group). The default is "all".

3. distance specifies the variable name used to store the distance measure. The default
is "distance".

4. weights specifies the variable name used to store the resulting weights from matching.
The default is "weights". See Section 3.3.2 for more details on the weights.

5. subclass specifies the variable name used to store the subclass indicator. The default
is "subclass".

4.7. Examples

Here, we present examples for using match.data(). Users can run these commands by typing
demo("match.data") at the R prompt. First, we load the Lalonde data,

data("lalonde")

The next line performs nearest neighbor matching based on the estimated propensity score
from the logistic regression,

R> m.out1 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "nearest", distance = "logit")

To obtain matched data, type the following command,

R> m.data1 <- match.data(m.out1)

26 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

It is easy to summarize the resulting matched data,

R> summary(m.data1)

To obtain matched data for the treatment or control group, specify the option group as
follows,

R> m.data2 <- match.data(m.out1, group = "treat")

R> summary(m.data2)

R> m.data3 <- match.data(m.out1, group = "control")

R> summary(m.data3)

We can also use the function to return unmatched data:

R> unmatched.data <-

+ lalonde[!row.names(lalonde) %in% row.names(match.data(m.out1)),]

We can also specify different names for the subclass indicator, the weight variable, and the
estimated distance measure. The following example first does a subclassification method,
obtains the matched data with specified names for those three variables, and then print out
the names of all variables in the resulting matched data.

R> m.out2 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "subclass")

R> m.data4 <- match.data(m.out2, subclass = "block", weights = "w",

+ distance = "pscore")

R> names(m.data4)

Acknowledgments

We thank Olivia Lau for helpful suggestions about incorporating MatchIt into Zelig and
Michael Donnelly, Allie Dunworth, and Olga Zverovich for research assistance. Many thanks
also for financial support from the National Science Foundation (SES-0550873, SES-0752050),
the National Institute of Mental Health and the National Institute on Drug Abuse (MH066247),
and the Princeton University Committee on Research in the Humanities and Social Sciences.

References

Abadie A, Imbens GW (2006). “Large Sample Properties of Matching Estimators for Average
Treatment Effects.” Econometrica, 74(1), 235–267.

Dehejia RH, Wahba S (1999). “Causal Effects in Nonexperimental Studies: Re-Evaluating
the Evaluation of Training Programs.” Journal of the American Statistical Association,
94(448), 1053–62.

Journal of Statistical Software 27

Diamond A, Sekhon J (2010). “Genetic Matching for Estimating Causal Effects: A General
Multivariate Matching Method for Achieving Balance in Observational Studies.” URL
http://sekhon.berkeley.edu/papers/GenMatch.pdf.

Gu X, Rosenbaum PR (1993). “Comparison of Multivariate Matching Methods: Structures,
Distances, and Algorithms.” Journal of Computational and Graphical Statistics, 2(4), 405–
420.

Hansen BB (2004). “Full Matching in an Observational Study of Coaching for the SAT.”
Journal of the American Statistical Association, 99(467), 609–618.

Ho D, Imai K, King G, Stuart E (2007). “Matching as Nonparametric Preprocessing for
Reducing Model Dependence in Parametric Causal Inference.” Political Analysis, 15(3),
199–236.

Imai K (2005). “Do Get-Out-The-Vote Calls Reduce Turnout? The Importance of Statistical
Methods for Field Experiments.” American Political Science Review, 99(2), 283–300.

Imai K, King G, Lau O (2008a). “Toward a Common Framework for Statistical Analysis and
Development.” Journal of Computational and Graphical Statistics, 17(4), 1–22.

Imai K, King G, Lau O (2011). Zelig: Everyone’s Statistical Software. R package version 3.5,
URL http://CRAN.R-project.org/package=Zelig.

Imai K, King G, Stuart E (2008b). “Misunderstandings among Experimentalists and Obser-
vationalists about Causal Inference.” Journal of the Royal Statistical Society A, 171(2),
481–502.

Imai K, van Dyk DA (2004). “Causal Inference with General Treatment Treatment Regimes:
Generalizing the Propensity Score.” Journal of the American Statistical Association,
99(467), 854–866.

King G, Zeng L (2006). “The Dangers of Extreme Counterfactuals.” Political Analysis, 14(2),
131–159.

King G, Zeng L (2007). “When Can History Be Our Guide? The Pitfalls of Counterfactual
Inference.” International Studies Quarterly, pp. 183–210.

Lalonde R (1986). “Evaluating the Econometric Evaluations of Training Programs.” American
Economic Review, 76(4), 604–620.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Rosenbaum PR (2002). Observational Studies. 2nd edition. Springer-Verlag, New York.

Sekhon JS (2011). “Multivariate and Propensity Score Matching Software with Automated
Balance Optimization: The Matching Package for R.” Journal of Statistical Software, 42(7),
1–52. URL http://www.jstatsoft.org/v42/i07/.

http://sekhon.berkeley.edu/papers/GenMatch.pdf
http://CRAN.R-project.org/package=Zelig
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v42/i07/

28 MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

Affiliation:

Daniel E. Ho
Stanford Law School
559 Nathan Abbott Way
Stanford, CA 94305, United States of America
E-mail: dho@law.stanford.edu
URL: http://dho.stanford.edu/
Telephone: +1-650-723-9560
Fax: +1-650-725-0253

Kosuke Imai
Department of Politics
Princeton University
Princeton, NJ 08544, United States of America
E-mail: kimai@Princeton.Edu
URL: http://imai.princeton.edu/
Telephone: +1-609-258-6601
Fax: +1-609-258-1110

Gary King
Department of Government
Harvard University
1737 Cambridge Street
Cambridge, MA 02138, United States of America
E-mail: king@harvard.edu
URL: http://gking.harvard.edu/
Telephone: +1-617-495-2027
Fax: +1-617-812-8581

Elizabeth A. Stuart
Departments of Mental Health and Biostatistics
Johns Hopkins Bloomberg School of Public Health
624 North Broadway, Room 804
Baltimore, MD 21205, United States of America
E-mail: estuart@jhsph.edu
URL: http://faculty.jhsph.edu/default.cfm?faculty_id=1792
Telephone: +1-410-502-6222
Fax: +1-410-955-9088

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 42, Issue 8 Submitted: 2006-07-28
June 2011 Accepted: 2008-01-17

mailto:dho@law.stanford.edu
http://dho.stanford.edu/
mailto:kimai@Princeton.Edu
http://imai.princeton.edu/
mailto:king@harvard.edu
http://gking.harvard.edu/
mailto:estuart@jhsph.edu
http://faculty.jhsph.edu/default.cfm?faculty_id=1792
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	What MatchIt does
	Software requirements

	Overview
	Preprocessing via matching
	Checking balance
	Conducting analyses after matching

	User's guide to MatchIt
	Preprocessing via matching
	Quick overview
	Examples
	Exact matching
	Subclassification
	Nearest neighbor matching
	Optimal matching
	Full matching
	Genetic matching

	Checking balance
	Quick overview
	The summary() command
	The plot() command

	Conducting analyses after matching
	Quick overview
	Examples

	Reference manual
	matchit: Implementation of matching methods
	Syntax
	Arguments for all matching methods
	Additional arguments for specification of distance measures
	Additional arguments for subclassification
	Additional arguments for nearest neighbor matching
	Additional arguments for optimal matching
	Additional arguments for full matching
	Additional arguments for genetic matching
	Output values

	summary(): Numerical summaries of balance
	Syntax
	Arguments
	Output values

	plot: Graphical summaries of balance
	Plot options for the matchit object
	Syntax
	Arguments
	Output values

	Plot options for the matchit summary object
	Syntax
	Arguments
	Output values

	match.data: Extracting the matched data set
	Usage

	Arguments
	Examples

