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Abstract

poLCA is a software package for the estimation of latent class and latent class regres-
sion models for polytomous outcome variables, implemented in the R statistical computing
environment. Both models can be called using a single simple command line. The basic
latent class model is a finite mixture model in which the component distributions are as-
sumed to be multi-way cross-classification tables with all variables mutually independent.
The latent class regression model further enables the researcher to estimate the effects of
covariates on predicting latent class membership. poLCA uses expectation-maximization
and Newton-Raphson algorithms to find maximum likelihood estimates of the model pa-
rameters.
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1. Introduction

Latent class analysis is a statistical technique for the analysis of multivariate categorical data.
When observed data take the form of a series of categorical responses—as, for example, in pub-
lic opinion surveys, individual-level voting data, studies of inter-rater reliability, or consumer
behavior and decision-making—it is often of interest to investigate sources of confounding
between the observed variables, identify and characterize clusters of similar cases, and ap-
proximate the distribution of observations across the many variables of interest. Latent class
models are a useful tool for accomplishing these goals.

The latent class model seeks to stratify the cross-classification table of observed (or, “man-
ifest”) variables by an unobserved (“latent”) unordered categorical variable that eliminates
all confounding between the manifest variables. Conditional upon values of this latent vari-
able, responses to all of the manifest variables are assumed to be statistically independent;
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an assumption typically referred to as “conditional” or “local” independence. The model, in
effect, probabilistically groups each observation into a “latent class,” which in turn produces
expectations about how that observation will respond on each manifest variable. Although
the model does not automatically determine the number of latent classes in a given data set,
it does offer a variety of parsimony and goodness of fit statistics that the researcher may use
in order to make a theoretically and empirically sound assessment.

Because the unobserved latent variable is nominal (membership of a class), the latent class
model is actually a type of finite mixture model. The component distributions in the mixture
are cross-classification tables of equal dimension to the observed table of manifest variables,
and, following the assumption of conditional independence, the frequency in each cell of each
component table is simply the product of the respective class-conditional marginal frequencies
(the parameters estimated by the latent class model are the proportion of observations in each
latent class, and the probabilities of observing each response to each manifest variable, con-
ditional on latent class). A weighted sum of these component tables forms an approximation
(or, density estimate) of the distribution of cases across the cells of the observed table. Ob-
servations with similar sets of responses on the manifest variables will tend to cluster within
the same latent classes. The model may also be fit to manifest variables that are ordinal, but
they will be treated as nominal. In practice, this does not usually restrict analyses in any
meaningful way.

An extension of this basic model permits the inclusion of covariates to predict latent class
membership. Whereas in the basic model, every observation has the same probability of
belonging to each latent class prior to observing the responses to the manifest variables, in
the more general latent class “regression” model, these prior probabilities vary by individual
as a function of some set of independent (or, “concomitant”) variables.

Examples of latent class models in political science include McCutcheon (1985), Feick (1989),
Breen (2000), Hill and Kriesi (2001a,b), Blaydes and Linzer (2008), and Linzer (2011). The
latent class model is similar to the latent trait model widely used for the estimation of voter
and legislator “ideal points” (e.g., Clinton, Jackman, and Rivers 2004) in that both models
assume the presence of an underlying, unobserved latent variable to explain patterns among
observed variables. Yet whereas the latent trait model assumes that the latent variable is
continuous, the latent class model assumes that the latent variable is categorical. Moreover,
unlike the ideal point model, the latent class model requires no assumptions about respondent
utility functions, utility maximization, or rationality.

poLCA is the most complete and most user-friendly package for the estimation of latent class
models and latent class regression models in R (Linzer and Lewis 2011; R Development Core
Team 2010). The package is available from both the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=poLCA and the poLCA project Web site at http:

//userwww.service.emory.edu/~dlinzer/poLCA. Other R functions for the estimation of
latent class models include lca in package e1071, gllm in package gllm, and randomLCA in
package randomLCA, but these can only estimate the basic model for dichotomous outcome
variables (Duffy 2010; Beath 2011; Dimitriadou, Hornik, Leisch, Meyer, and Weingessel 2011).
Package flexmix has the capacity to estimate latent class regression models, but not without
considerable extra programming effort on the part of the user (Grün and Leisch 2008).

Note that there is occasionally some confusion over the term “latent class regression” (LCR);
in practice it can have two meanings. In poLCA, LCR models refer to latent class models in
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which the probability of latent class membership is predicted by one or more covariates. In
other contexts, however, LCR is used to refer to regression models in which the dependent
variable is partitioned into latent classes as part of estimating the regression model. It is a way
to simultaneously fit more than one regression to the data when the latent data partition is
unknown. The regmix function in package fpc (Hennig 2010) will estimate this other type of
LCR model, as will the flexmix function in package flexmix (Leisch 2004; Grün and Leisch
2008). Because of these terminology issues, the LCR models estimated using poLCA are
sometimes termed “latent class models with covariates” or “concomitant-variable latent class
analysis,” both of which are accurate descriptions of this model.

2. Latent class models

The basic latent class model is a finite mixture model in which the component distributions are
assumed to be multi-way cross-classification tables with all variables mutually independent.
This model was originally proposed by Lazarsfeld (1950) under the name “latent structure
analysis.” Chapter 13 in Agresti (2002) details the connection between latent class models
and finite mixture models.

2.1. Terminology and model definition

Suppose we observe J polytomous categorical variables (the “manifest” variables), each of
which contains Kj possible outcomes, for individuals i = 1, . . . , N . The manifest variables
may have different numbers of outcomes, hence the indexing by j. Denote as Yijk the observed
values of the J manifest variables such that Yijk = 1 if respondent i gives the kth response to
the jth variable, and Yijk = 0 otherwise, where j = 1, . . . , J and k = 1, . . . ,Kj .

The latent class model approximates the observed joint distribution of the manifest variables
as the weighted sum of a finite number, R, of constituent cross-classification tables. R is fixed
prior to estimation on the basis of either theoretical reasons or model fit; this issue is addressed
in greater detail in Section 2.4 below. Let πjrk denote the class-conditional probability that
an observation in class r = 1, . . . , R produces the kth outcome on the jth variable. Within

each class, for each manifest variable, therefore,
∑Kj

k=1 πjrk = 1. Further denote as pr the R
mixing proportions that provide the weights in the weighted sum of the component tables,
with

∑
r pr = 1. The values of pr are also referred to as the “prior” probabilities of latent class

membership, as they represent the unconditional probability that an individual will belong to
each class before taking into account the responses Yijk provided on the manifest variables.

The probability that an individual i in class r produces a particular set of J outcomes on
the manifest variables, assuming conditional independence of the outcomes Y given class
memberships, is the product

f(Yi;πr) =
J∏
j=1

Kj∏
k=1

(πjrk)
Yijk . (1)

The probability density function across all classes is the weighted sum

P(Yi|π, p) =

R∑
r=1

pr

J∏
j=1

Kj∏
k=1

(πjrk)
Yijk . (2)
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The parameters estimated by the latent class model are pr and πjrk.

Given estimates p̂r and π̂jrk of pr and πjrk, respectively, the posterior probability that each
individual belongs to each class, conditional on the observed values of the manifest variables,
can be calculated using Bayes’ formula:

P̂(ri|Yi) =
p̂rf(Yi; π̂r)∑R
q=1 p̂qf(Yi; π̂q)

. (3)

where ri ∈ {1, . . . , R}. Recall that the π̂jrk are estimates of outcome probabilities conditional
on class r.

It is important to remain aware that the number of independent parameters estimated by
the latent class model increases rapidly with R, J , and Kj . Given these values, the number
of parameters is R

∑
j(Kj − 1) + (R − 1). If this number exceeds either the total number of

observations, or one fewer than the total number of cells in the cross-classification table of
the manifest variables, then the latent class model will be unidentified.

2.2. Parameter estimation

poLCA estimates the latent class model by maximizing the log-likelihood function

lnL =
N∑
i=1

ln
R∑
r=1

pr

J∏
j=1

Kj∏
k=1

(πjrk)
Yijk (4)

with respect to pr and πjrk, using the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977). This log-likelihood function is identical in form to the standard
finite mixture model log-likelihood. As with any finite mixture model, the EM algorithm
is applicable because each individual’s class membership is unknown and may be treated as
missing data (McLachlan and Krishnan 1997; McLachlan and Peel 2000).

The EM algorithm proceeds iteratively. Begin with arbitrary initial values of p̂r and π̂jrk, and
label them p̂oldr and π̂oldjrk. In the expectation step, calculate the “missing” class membership

probabilities using Equation 3, substituting in p̂oldr and π̂oldjrk. In the maximization step, up-
date the parameter estimates by maximizing the log-likelihood function given these posterior
P̂(ri|Yi), with

p̂newr =
1

N

N∑
i=1

P̂(ri|Yi) (5)

as the new prior probabilities and

π̂newjr =

∑N
i=1 YijP̂(ri|Yi)∑N
i=1 P̂(ri|Yi)

(6)

as the new class-conditional outcome probabilities; see Everitt and Hand (1981), and Everitt
(1984). In Equation 6, π̂newjr is the vector of length Kj of class-r conditional outcome proba-
bilities for the jth manifest variable; and Yij is the N ×Kj matrix of observed outcomes Yijk
on that variable. The algorithm repeats these steps, assigning the new to the old, until the
overall log-likelihood reaches a maximum and ceases to increment beyond some arbitrarily
small value.
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poLCA takes advantage of the iterative nature of the EM algorithm to make it possible to
estimate the latent class model even when some of the observations on the manifest variables
are missing. Although poLCA does offer the option to listwise delete observations with missing
values before estimating the model, it is not necessary to do so. Instead, when determining the
product in Equation 1 and the sum in the numerator of Equation 6, poLCA simply excludes
from the calculation any manifest variables with missing observations. The priors are updated
in Equation 3 using as many or as few manifest variables as are observed for each individual.

Depending on the initial values chosen for p̂oldr and π̂oldjrk, and the complexity of the latent class
model being estimated, the EM algorithm may only find a local maximum of the log-likelihood
function, rather than the desired global maximum. For this reason, it is always advisable to
re-estimate a particular model a couple of times when using poLCA, in an attempt to find
the global maximizer to be taken as the maximum likelihood solution.

2.3. Standard error estimation

poLCA estimates standard errors of the estimated class-conditional response probabilities
π̂jrk and the mixing parameters p̂r using the empirical observed information matrix (Meilijson
1989), which, following McLachlan and Peel (2000, 66), equals

Ie(Ψ̂;Y ) =
N∑
i=1

s(Yi; Ψ̂)sT (Yi; Ψ̂), (7)

where s(Yi; Ψ̂) is the score function with respect to the vector of parameters Ψ for the ith
observation, evaluated at the maximum likelihood estimate Ψ̂;

s(Yi; Ψ) =
R∑
r=1

θir∂{ln pr +
J∑
j=1

Kj∑
k=1

Yijk lnπjrk}/∂Ψ (8)

where θir = P̂(ri|Yi) is the posterior probability that observation i belongs to class r (Equa-
tion 3). The covariance matrix of the parameter estimates is then approximated by the inverse
of Ie(Ψ̂;Y ).

Because of the sum-to-one constraint on the πjrk across each manifest variable, it is useful to
reparameterize the score function in terms of log-ratios φjrk = ln(πjrk/πjr1) for given outcome
variable j and class r. Then, for the lth response on the hth item in the qth class,

s(Yi;φhql) = θiq(Yihl − πhql). (9)

Likewise, denoting ωr = ln(pr/p1), then for the log-ratio corresponding to the qth mixing
parameter,

s(Yi;ωq) = θiq − pq. (10)

To transform the covariance matrix of these log-ratios back to the original units of π and p, we
apply the delta method. For the response probabilities, let g(φjrk) = πjrk = eφjrk/

∑
l e
φjrl .

Taking as VAR(φ̂) the submatrix of the inverse of Ie(Ψ̂;Y ) corresponding to the φ parameters,
hen

VAR(g(φ̂)) = g′(φ)VAR(φ̂)g′(φ)T
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where g′(φ) is the Jacobian consisting of elements

∂g(φjrk)

∂φhql
=


0 if q 6= r

0 if q = r but h 6= j

−πjrkπjrl if q = r and h = j but l 6= k

πjrk(1− πjrk) if q = r and h = j and l = k.

For the mixing parameters, similarly let h(ωr) = pr = epr/
∑

q e
pq . Taking as VAR(ω̂) the

submatrix of the inverse of Ie(Ψ̂;Y ) corresponding to the ω parameters, then

VAR(h(ω̂)) = h′(ω)VAR(ω̂)h′(ω)T

where h′(ω) is the Jacobian consisting of elements

∂h(ωr)

∂ωq
=

{
−prpq if q 6= r

pr(1− pr) if q = r.

Standard errors of each parameter estimate are equal to the square root of the values along
the main diagonal of covariance matrices VAR(π) and VAR(p).

2.4. Model selection and goodness of fit criteria

One of the benefits of latent class analysis, in contrast to other statistical techniques for
clustered data, is the variety of tools available for assessing model fit and determining an
appropriate number of latent classes R for a given data set. In some applications, the number
of latent classes will be selected for primarily theoretical reasons. In other cases, however,
the analysis may be of a more exploratory nature, with the objective being to locate the best
fitting or most parsimonious model. The researcher may then begin by fitting a complete
“independence” model with R = 1, and then iteratively increasing the number of latent
classes by one until a suitable fit has been achieved.

Adding an additional class to a latent class model will increase the fit of the model, but at
the risk of fitting to noise, and at the expense of estimating a further 1 +

∑
j(Kj − 1) model

parameters. Parsimony criteria seek to strike a balance between over- and under-fitting the
model to the data by penalizing the log-likelihood by a function of the number of parameters
being estimated. The two most widely used parsimony measures are the Bayesian information
criterion, or BIC (Schwartz 1978) and Akaike information criterion, or AIC (Akaike 1973).
Preferred models are those that minimize values of the BIC and/or AIC. Let Λ represent
the maximum log-likelihood of the model and Φ represent the total number of estimated
parameters. Then,

AIC = −2Λ + 2Φ

and

BIC = −2Λ + Φ lnN.

poLCA calculates these parameters automatically when estimating the latent class model.
The BIC will usually be more appropriate for basic latent class models because of their
relative simplicity (Lin and Dayton 1997; Forster 2000).
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Calculating Pearson’s χ2 goodness of fit and likelihood ratio chi-square (G2) statistics for
the observed versus predicted cell counts is another method to help determine how well a
particular model fits the data (Goodman 1970). Let qc denote the observed number of cases
in the cth cell of the cross-classification table of the manifest variables, for cells c = 1 . . . C,
where C =

∏
Kj . The expected percentage of the population in each cell of the fitted J-

dimensional table is calculated by inserting estimates p̂r and π̂jrk into Equation 2. Denote as
yc the sequence of J outcomes corresponding to the cth cell in the fitted contingency table, such
that ycjk = 1 if cell c contains the kth response on the jth variable, and ycjk = 0 otherwise.
Then, the estimated probability mass function produced by the latent class model is

P̃ (yc) =

R∑
r=1

p̂r

J∏
j=1

Kj∏
k=1

(π̂jrk)
ycjk . (11)

The expected number of cases in each cell under a given model is Q̃c = NP̃ (yc). The two test
statistics are

χ2 =
C∑
c=1

(qc − Q̃c)2/Q̃c

and

G2 = 2
C∑
c=1

qc log(qc/Q̃c).

Like the AIC and BIC, these statistics are outputted automatically after calling poLCA.

Generally, the goal is to select models that minimize χ2 or G2 without estimating excessive
numbers of parameters. Note, however, that the distributional assumptions for these statistics
are not met if many cells of the observed cross-classification table contain very few observa-
tions. Common practice holds that no fewer than 10% to 20% of the cells should contain
fewer than five observations if either chi-square test is to be used.

3. Latent class regression models

The latent class regression model generalizes the basic latent class model by permitting the
inclusion of covariates to predict individuals’ latent class membership (Dayton and Macready
1988; Hagenaars and McCutcheon 2002). This is a so-called “one-step” technique for es-
timating the effects of covariates, because the coefficients on the covariates are estimated
simultaneously as part of the latent class model. An alternative estimation procedure that is
sometimes used is called the “three-step” approach: estimate the basic latent class model, cal-
culate the predicted posterior class membership probabilities using Equation 3, and then use
these values as the dependent variable(s) in a regression model with the desired covariates.
However, as demonstrated by Bolck, Croon, and Hagenaars (2004), the three-step proce-
dure produces biased coefficient estimates. It is preferable to estimate the entire latent class
regression model all at once.

Covariates are included in the latent class regression model through their effects on the priors
pr. In the basic latent class model, it is assumed that every individual has the same prior
probabilities of latent class membership. The latent class regression model, in contrast, allows
individuals’ priors to vary depending upon their observed covariates.
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3.1. Terminology and model definition

Denote the mixing proportions in the latent class regression model as pri to reflect the fact that
these priors are now free to vary by individual. It is still the case that

∑
r pri = 1 for each

individual. To accommodate this constraint, poLCA employs a generalized (multinomial)
logit link function for the effects of the covariates on the priors (Agresti 2002).

Let Xi represent the observed covariates for individual i. poLCA arbitrarily selects the first
latent class as a“reference”class and assumes that the log-odds of the latent class membership
priors with respect to that class are linear functions of the covariates. Let βr denote the vector
of coefficients corresponding to the rth latent class. With S covariates, the βr have length
S + 1; this is one coefficient on each of the covariates plus a constant. Because the first class
is used as the reference, β1 = 0 is fixed by definition. Then,

ln(p2i/p1i) = Xiβ2

ln(p3i/p1i) = Xiβ3

...

ln(pRi/p1i) = XiβR

Following some simple algebra, this produces the general result that

pri = pr(Xi;β) =
eXiβr∑R
q=1 e

Xiβq
. (12)

The parameters estimated by the latent class regression model are the R− 1 vectors of coef-
ficients βr and, as in the basic latent class model, the class-conditional outcome probabilities
πjrk. Given estimates β̂r and π̂jrk of these parameters, the posterior class membership prob-
abilities in the latent class regression model are obtained by replacing the pr in Equation 3
with the function pr(Xi;β) in Equation 12:

P̂(ri|Xi;Yi) =
pr(Xi; β̂)f(Yi; π̂r)∑R
q=1 pq(Xi; β̂)f(Yi; π̂q)

. (13)

The number of parameters estimated by the latent class regression model is equal toR
∑

j(Kj−
1)+(S+1)(R−1). The same considerations mentioned earlier regarding model identifiability
also apply here.

3.2. Parameter estimation

The latent class regression model log-likelihood function is identical to Equation 4 except that
the function pr(Xi;β) (Equation 12) takes the place of pr:

lnL =
N∑
i=1

ln
R∑
r=1

pr(Xi;β)

J∏
j=1

Kj∏
k=1

(πjrk)
Yijk . (14)

To find the values of β̂r and π̂jrk that maximize this function, poLCA uses a modified EM
algorithm with a Newton-Raphson step, as set forth by Bandeen-Roche, Miglioretti, Zeger,
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and Rathouz (1997). This estimation process begins with initial values of β̂
old
r and π̂oldjrk that

are used to calculate posterior probabilities P̂(ri|Xi;Yi) (Equation 13). The coefficients on
the concomitant variables are updated according to the formula

β̂
new
r = β̂

old
r −H−1β ∇β (15)

where ∇β is the gradient and Hβ the Hessian matrix of the log-likelihood function with
respect to β. The π̂newjrk are updated as

π̂newjr =

∑N
i=1 YijP̂(ri|Xi;Yi)∑N
i=1 P̂(ri|Xi;Yi)

. (16)

These steps are repeated until convergence, assigning the new parameter estimates to the
old in each iteration. The formulas for the gradient and Hessian matrix are provided in
Bandeen-Roche et al. (1997).

Because all of the concomitant variables must be observed in order to calculate pri (Equa-
tion 12), poLCA listwise deletes cases with missing values on the Xi before estimating the
latent class regression model. However, missing values on the manifest variables Yi can be
accommodated in the latent class regression model, just as they were in the basic latent class
model.

Note that when employing this estimation algorithm, different initial parameter values may
lead to different local maxima of the log-likelihood function. To be more certain that the
global maximum likelihood solution has been found, the poLCA function call should always be
repeated a handful of times.

3.3. Standard error estimation

For latent class models with covariates, standard errors are obtained just as for models without
covariates: using the empirical observed information matrix (Equation 7). First, we generalize
the score function (Equation 8) so that

s(Xi, Yi; Ψ) =
R∑
r=1

θir∂{ln pr(Xi;β) +
J∑
j=1

Kj∑
k=1

Yijk lnπjrk}/∂Ψ. (17)

As before, θir denote posterior probabilities. Since this function is no different than Equation 8
in terms of the π parameters, the score function s(Xi, Yi;φhql) = s(Yi;φhql) (Equation 9),
and the covariance matrix VAR(π) may be calculated in precisely the same way as for models
without covariates.

Now, however, the priors pri are free to vary by individual as a function of some set of
coefficients β, as given in Equation 12. Letting q index classes and s index covariates,

s(Xi, Yi;βqs) = Xis(θiq − piq). (18)

The standard errors of the coefficients β are equal to the square root of the values along the
main diagonal of the submatrix of the inverse of the empirical observed information matrix
corresponding to the β parameters. (Note that when the model has no covariates, Xi = 1 and
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piq = pq (that is, the priors do not vary by individual), so Equation 18 reduces to Equation 10
as expected.)

To obtain the covariance matrix of the mixing parameters pr, which are the average value
across all observations of the priors pir, we apply the delta method. Let

h(βr) = pr =
1

N

∑
i

(
eXiβr∑R
q=1 e

Xiβq

)
.

Then

VAR(h(β̂)) = h′(β)VAR(β̂)h′(β)T

where h′(β) is a Jacobian with elements

∂h(βr)

∂βqs
=

{
1
N

∑
iXis(−pirpiq) if q 6= r

1
N

∑
iXis(pir(1− pir)) if q = r.

When estimating latent class models with covariates, poLCA will compute and automatically
display t and p-values for the coefficient estimates, corresponding to a null hypothesis of
βqs = 0.

4. Using poLCA

The poLCA package makes it possible to estimate a wide range of latent class models in R using
a single command line, poLCA. Also included in the package is the command poLCA.simdata,
which enables the user to create simulated data sets that match the data-generating process
assumed by either the basic latent class model or the latent class regression model. This
functionality is useful for testing the poLCA estimator and for performing Monte Carlo-style
analyses of latent class models.

4.1. Data input and sample data sets

Data are input to the poLCA function as a data frame containing all manifest and concomitant
variables (if needed). The manifest variables must be coded as integer values starting at one
for the first outcome category, and increasing to the maximum number of outcomes for each
variable. If any of the manifest variables contain zeros, negative values, or decimals, poLCA
will produce an error message and terminate without estimating the model. The input data
frame may contain missing values.

poLCA also comes pre-installed with five sample data sets that are useful for exploring dif-
ferent aspects of latent class and latent class regression models.

carcinoma: Dichotomous ratings by seven pathologists of 118 slides for the presence or ab-
sence of carcinoma in the uterine cervix. Source: Agresti (2002, 542).

cheating: Dichotomous responses by 319 undergraduates to questions about cheating be-
havior. Also each student’s GPA, which is useful as a concomitant variable. Source:
Dayton (1998, 33 and 85).
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election: Two sets of six questions with four responses each, asking respondents’ opinions of
how well various traits describe presidential candidates Al Gore and George W. Bush.
Also potential covariates vote choice, age, education, gender, and party ID. Source: The
National Election Studies (2000).

gss82: Attitudes towards survey taking across two dichotomous and two trichotomous items
among 1202 white respondents to the 1982 General Social Survey. Source: McCutcheon
(1987, 30).

values: Dichotomous measures of 216 survey respondents’ tendencies towards“universalistic”
or “particularistic” values on four questions. Source: Goodman (1974).

These data sets may be accessed using the command data("carcinoma"), for example. Ex-
amples of models and analyses using the sample data sets are included in the internal docu-
mentation for each.

4.2. poLCA command line options

To specify a latent class model, poLCA uses the standard, symbolic R model formula expres-
sion. The response variables are the manifest variables of the model. Because latent class
models have multiple manifest variables, these variables must be “bound” as cbind(Y1, Y2,

Y3, ...) in the model formula. For the basic latent class model with no covariates, the
formula definition takes the form

R> f <- cbind(Y1, Y2, Y3) ~ 1

The ~ 1 instructs poLCA to estimate the basic latent class model. For the latent class regres-
sion model, replace the ~ 1 with the desired function of covariates, as, for example:

R> f <- cbind(Y1, Y2, Y3) ~ X1 + X2 * X3

Further assistance on formula specification in R can be obtained by entering ?formula at the
command prompt.

To estimate the specified latent class model, the default poLCA command is:

R> poLCA(formula, data, nclass = 2, maxiter = 1000, graphs = FALSE,

+ tol = 1e-10, na.rm = TRUE, probs.start = NULL, nrep = 1,

+ verbose = TRUE, calc.se = TRUE)

At minimum, it is necessary to enter a formula (as just described) and a data frame (as
described in the previous subsection). The remaining options are:

nclass: The number of latent classes to assume in the model; R in the above notation. Setting
nclass = 1 results in poLCA estimating the loglinear independence model (Goodman
1970). The default is two.

maxiter: The maximum number of iterations through which the estimation algorithm will
cycle. If convergence is not achieved before reaching this number of iterations, poLCA
terminates and reports an error message. The default is 1000, but this will be insufficient
for certain models.
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graphs: Logical, for whether poLCA should graphically display the parameter estimates at
the completion of the estimation algorithm. The default is FALSE.

tol: A tolerance value for judging when convergence has been reached. When the one-
iteration change in the estimated log-likelihood is less than tol, the estimation algorithm
stops updating and considers the maximum log-likelihood to have been found. The
default is 1×10−10 which is a standard value; this option will rarely need to be invoked.

na.rm: Logical, for how poLCA handles cases with missing values on the manifest variables.
If TRUE, those cases are removed (listwise deleted) before estimating the model. If
FALSE, cases with missing values are retained. (As discussed above, cases with missing
covariates are always removed.) The default is TRUE.

probs.start: A list of matrices of class-conditional response probabilities, πjrk, to be used as
the starting values for the EM estimation algorithm. Each matrix in the list corresponds
to one manifest variable, with one row for each latent class, and one column for each
possible outcome. The default is NULL, meaning that starting values are generated
randomly. Note that if nrep > 1, then any user-specified probs.start values are only
used in the first of the nrep attempts.

nrep: Number of times to estimate the model, using different values of probs.start. The
default is one. Setting nrep > 1 automates the search for the global—rather than just
a local—maximum of the log-likelihood function. poLCA returns only the parameter
estimates corresponding to the model producing the greatest log-likelihood.

verbose: Logical, indicating whether poLCA should output to the screen the results of the
model. If FALSE, no output is produced. The default is TRUE.

calc.se: Logical, indicating whether poLCA should calculate the standard errors of the esti-
mated class-conditional response probabilities and mixing proportions. The default is
TRUE; can only be set to FALSE if estimating a basic model with no concomitant variables
specified in formula.

4.3. poLCA output

The poLCA function returns an object containing the following elements:

y: A data frame of the manifest variables.

x: A data frame of the covariates, if specified.

N: Number of cases used in the model.

Nobs: Number of fully observed cases (less than or equal to N).

probs: A list of matrices containing the estimated class-conditional outcome probabilities
π̂jrk. Each item in the list represents one manifest variable; columns correspond to
possible outcomes on each variable, and rows correspond to the latent classes.

probs.se: Standard errors of the estimated class-conditional response probabilities, in the
same format as probs.
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P: The respective size of each latent class; equal to the estimated mixing proportions p̂r in the
basic latent class model, or the mean of the priors in the latent class regression model.

P.se: The standard errors of P.

posterior: An N×R matrix containing each observation’s posterior class membership prob-
abilities. Also see the function poLCA.posterior.

predclass: A vector of length N of predicted class memberships, by modal assignment.

predcell: A table of observed versus predicted cell counts for cases with no missing values.
Also see functions poLCA.table and poLCA.predcell.

llik: The maximum value of the estimated model log-likelihood.

numiter: The number of iterations required by the estimation algorithm to achieve conver-
gence.

maxiter: The maximum number of iterations through which the estimation algorithm was
set to run.

coeff: An (S + 1) × (R − 1) matrix of estimated multinomial logit coefficients β̂r, for the
latent class regression model. Rows correspond to concomitant variables X. Columns
correspond to the second through Rth latent classes; see Equation 12.

coeff.se: Standard errors of the coefficient estimates, in the same format as coeff.

coeff.V: Covariance matrix of the coefficient estimates.

aic: Akaike Information Criterion.

bic: Bayesian Information Criterion.

Gsq: Likelihood ratio/deviance statistic.

Chisq: Pearson Chi-square goodness of fit statistic.

time: Length of time it took to estimate the model.

npar: The number of degrees of freedom used by the model (that is, the number of estimated
parameters).

resid.df: The number of residual degrees of freedom, equal to the lesser of N and (
∏
jKj)−

1, minus npar.

attempts: A vector containing the maximum log-likelihood values found in each of the nrep

attempts to fit the model.

eflag: Logical, error flag. TRUE if estimation algorithm needed to automatically restart with
new initial parameters, otherwise FALSE. A restart is caused in the event of computa-
tional/rounding errors that result in nonsensical parameter estimates. If an error occurs,
poLCA outputs an error message to alert the user.



14 poLCA: Polytomous Variable Latent Class Analysis in R

probs.start: A list of matrices containing the class-conditional response probabilities used
as starting values in the EM estimation algorithm. If the algorithm needed to restart
(see eflag), this contains the starting values used for the final, successful, run of the
estimation algorithm.

probs.start.ok: Logical. FALSE if probs.start was incorrectly specified by the user, oth-
erwise TRUE.

If verbose=TRUE, selected items from this list are displayed automatically once the latent
class model has been estimated.

4.4. Predicted cell frequencies from the latent class model

The poLCA object contains an element predcell which enables quick comparisons of the
observed cell counts to the cell counts predicted by the latent class model—but only for cells
that were observed to contain at least one observation. To generate predicted cell counts
for any combination of the manifest variables, including cells with zero observations, apply
the poLCA.table function to the fitted latent class model stored in the poLCA object. This
function post-processes the latent class model estimates to produce frequency distributions
and two-way tables of predicted cell counts, holding the values of the other manifest variables
fixed at a user-specified set of values.

As an example, consider a basic two-class latent class model fitted to the four survey variables
in the gss82 data set included in the poLCA package.

R> data("gss82")

R> f <- cbind(PURPOSE, ACCURACY, UNDERSTA, COOPERAT) ~ 1

R> gss.lc2 <- poLCA(f, gss82, nclass = 2)

Entering gss.lc2$predcell shows that of the 36 possible four-response sequences of re-
sponses (3× 2× 2× 3), only 33 are actually observed. One unobserved sequence is the com-
bination PURPOSE=3, ACCURACY=1, UNDERSTA=2, COOPERAT=3. We produce the predicted
frequency table for COOPERAT conditional on the specified values of the other three variables
using the command

R> poLCA.table(formula = COOPERAT ~ 1,

+ condition = list(PURPOSE = 3, ACCURACY = 1, UNDERSTA = 2),

+ lc = gss.lc2)

Fitted values of 4.94 for COOPERAT=1 and 0.76 for COOPERAT=2 also appeared in the outputted
gss.lc2$predcell; we may now also see that the fitted value for COOPERAT=3 is 0.16, close
to the observed value of zero.

To make a two-way table, modify the specification of the formula argument to contain both
a row (COOPERAT) and a column (UNDERSTA) variable, again using the condition argument
to hold fixed the values of the other two variables:

R> poLCA.table(formula = COOPERAT ~ UNDERSTA,

+ condition = list(PURPOSE = 3, ACCURACY = 1),

+ lc = gss.lc2)
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The second column of this table, corresponding to UNDERSTA=2, is identical to the conditional
frequency just shown.

If the quantity of interest is not the predicted cell counts, but rather the cell percentages
P̃ (yc) estimated by the model for particular combinations of the manifest variables, apply
the poLCA.predcell function. The fitted latent class model is a density estimate of the
joint distribution of the manifest variables in the population, which may be represented as
a large multi-way contingency table (see, e.g., Linzer 2011). The poLCA.predcell function
calculates the value of the estimated probability mass function for specified cells in that
table. For example, the latent class model density estimate of the percentage of people in the
underlying population replying 1 to all four questions is 34%:

R> poLCA.predcell(lc = gss.lc2, y = c(1, 1, 1, 1))

Multiplying this percentage by the total number of observations in the data set, 1202, produces
an expected cell frequency of 408.1, as may also be seen in the first row of gss.lc2$predcell.

4.5. Entropy of a fitted latent class model

Entropy is a measure of dispersion (or concentration) in a probability mass function. For
multivariate categorical data, it is calculated H = −

∑
c pc ln(pc) where pc is the share of the

probability in the cth cell of the cross-classification table. A fitted latent class model produces
a smoothed density estimate of the underlying distribution of cell percentages in the multi-
way table of the manifest variables. The poLCA.entropy function calculates the entropy of
that estimated probability mass function, setting pc = P̃ (yc) in the above notation.

4.6. Reordering the latent classes

Because the latent classes are unordered categories, the numerical order of the estimated
latent classes in the model output is arbitrary, and is determined solely by the start values of
the EM algorithm. If probs.start is set to NULL (the default) when calling poLCA, then the
function generates the starting values randomly in each run. This means that repeated runs of
poLCA will typically produce results containing the same parameter estimates (corresponding
to the same maximum log-likelihood), but with reordered latent class labels.

To change the order of the latent classes, it is convenient to use the included function
poLCA.reorder. Suppose you have estimated a three-class model and wish to reverse the
second and third class labels in the output. After an initial call to poLCA, extract the out-
putted list of probs.start.

R> lc <- poLCA(f, dat, nclass = 3)

R> probs.start <- lc$probs.start

The poLCA.reorder function takes as its first argument the list of starting values probs.start,
and as its second argument a vector describing the desired reordering of the latent classes.
In this example, the vector c(1, 3, 2) instructs poLCA.reorder to keep the first class in its
current position, but move the third class to the second, and the second class to the third.

R> new.probs.start <- poLCA.reorder(probs.start, c(1, 3, 2))
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Maximum Number of Respondent type
log-likelihood occurrences Ideal Skeptics Believers

-2754.545 258 0.621 0.172 0.207
-2755.617 14 0.782 0.150 0.067
-2755.739 57 0.796 0.162 0.043
-2762.005 70 0.508 0.392 0.099
-2762.231 101 0.297 0.533 0.170

Table 1: Results of 500 poLCA function calls for three-class model using gss82 data set. Five
local maxima of the log-likelihood function were found. Estimated latent class proportions p̂r
are reported for each respondent type at each local maximum.

Then run poLCA once more, this time using the reordered starting values in the function call.

R> lc <- poLCA(f, dat, nclass = 3, probs.start = new.probs.start)

The outputted class labels will now match the desired ordering.

4.7. Recognizing and avoiding local maxima

A well-known drawback of the EM algorithm is that depending upon the initial parameter
values chosen in the first iteration, the algorithm may only find a local, rather than the global,
maximum of the log-likelihood function (McLachlan and Krishnan 1997). To avoid these local
maxima, a user should always either 1) call poLCA at least a couple of times; or 2) utilize
the nrep argument to attempt to locate the parameter values that globally maximize the
log-likelihood function.

We demonstrate this using a basic three-class latent class model to analyze the four survey
variables in the gss82 data set included in the poLCA package.

R> data("gss82")

R> f <- cbind(PURPOSE, ACCURACY, UNDERSTA, COOPERAT) ~ 1

We estimate this model 500 times, and after each function call, we record the maximum
log-likelihood and the estimated population sizes of the three types of survey respondent.
Following McCutcheon (1987), from whom these data were obtained, we label the three types
ideal, skeptics, and believers. Among other characteristics, the ideal type is the most likely to
have a good understanding of surveys, while the believer type is the least likely.

R> mlmat <- NULL

R> for (i in 1:500) {

+ gss.lc <- poLCA(f, gss82, nclass = 3, maxiter = 3000, verbose = FALSE)

+ o <- order(gss.lc$probs$UNDERSTA[, 1], decreasing = TRUE)

+ mlmat <- rbind(mlmat, c(gss.lc$llik, gss.lc$P[o]))

+ }

Results of this simulation are reported in Table 1. Of the five local maxima of the log-
likelihood function that were found, the global maximum was obtained in only approximately
half of the trials. At the global maximum, the ideal type is estimated to represent 62.1% of the
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population, with another 17.2% skeptics and 20.7% believers. In contrast, the second-most
frequent local maximum was also the lowest of the local maxima, and the parameter estimates
corresponding to that “solution” are substantially different: 29.7% ideal types, 53.3% skeptics,
and 17.0% believers. This is why it is essential to run poLCA multiple times until you can
be reasonably certain that you have found the parameter estimates that produce the global
maximum likelihood solution.

To automate this search using the nrep argument, specify the model as

R> gss.lc <- poLCA(f, gss82, nclass = 3, maxiter = 3000, nrep = 10)

The latent class model will be estimated ten times using different initial parameter values,
and will assign to gss.lc the results corresponding to the model with the greatest value of
the log-likelihood function. Sample output will appear as follows.

Model 1: llik = -2762.231 ... best llik = -2762.231

Model 2: llik = -2755.739 ... best llik = -2755.739

Model 3: llik = -2754.545 ... best llik = -2754.545

Model 4: llik = -2754.545 ... best llik = -2754.545

Model 5: llik = -2754.545 ... best llik = -2754.545

Model 6: llik = -2762.005 ... best llik = -2754.545

Model 7: llik = -2755.739 ... best llik = -2754.545

Model 8: llik = -2754.545 ... best llik = -2754.545

Model 9: llik = -2754.545 ... best llik = -2754.545

Model 10: llik = -2754.545 ... best llik = -2754.545

In this example, the global maximum log-likelihood, -2754.545, is found in the third attempt
at fitting the model.

4.8. Creating simulated data sets

The command poLCA.simdata will generate simulated data sets that can be used to examine
properties of the latent class and latent class regression model estimators. The properties of
the simulated data set are fully customizable, but poLCA.simdata uses the following default
arguments in the function call.

R> poLCA.simdata(N = 5000, probs = NULL, nclass = 2, ndv = 4, nresp = NULL,

+ x = NULL, niv = 0, b = NULL, P = NULL, missval = FALSE, pctmiss = NULL)

These input arguments control the following parameters:

N: Total number of observations, N .

probs: A list of matrices of dimension nclass × nresp, containing, by row, the class-
conditional outcome probabilities πjrk (which must sum to 1) for the manifest vari-
ables. Each matrix represents one manifest variable. If probs is NULL (default) then
the outcome probabilities are generated randomly.

nclass: The number of latent classes, R. If probs is specified, then nclass is set equal to
the number of rows in each matrix in that list. If P is specified, then nclass is set equal
to the length of that vector. Otherwise, the default is two.
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ndv: The number of manifest variables, J . If probs is specified, then ndv is set equal to the
number of matrices in that list. If nresp is specified, then ndv is set equal to the length
of that vector. Otherwise, the default is four.

nresp: The number of possible outcomes for each manifest variable, Kj , entered as a vector
of length ndv. If probs is specified, then ndv is set equal to the number of columns in
each matrix in that list. If both probs and nresp are NULL (default), then the manifest
variables are assigned a random number of outcomes between two and five.

x: A matrix of concomitant variables, of dimension N × niv. If niv > 0 but x is NULL

(default) then the concomitant variable(s) will be generated randomly. If both x and
niv are entered, then then the number of columns in x overrides the value of niv.

niv: The number of concomitant variables, S. Setting niv = 0 (default) creates a data set
assuming no covariates. If nclass = 1 then niv is automatically set equal to 0. Unless x
is specified, all covariates consist of random draws from a standard normal distribution
and are mutually independent.

b: When using covariates, an niv+1 × nclass−1 matrix of (multinomial) logit coefficients,
βr. If b is NULL (default), then coefficients are generated as random integers between
-2 and 2.

P: A vector of mixing proportions of length nclass, corresponding to pr. P must sum to 1.
Disregarded if niv> 1 because then P is, in part, a function of the concomitant variables.
If P is NULL (default), then the pr are generated randomly.

missval: Logical. If TRUE then a fraction pctmiss of the observations on the manifest vari-
ables are randomly dropped as missing values. Default is FALSE.

pctmiss: The percentage of values to be dropped as missing, if missval = TRUE. If pctmiss
is NULL (default), then a value between 5% and 40% is chosen randomly.

Note that in many instances, specifying values for certain arguments will override other spec-
ified arguments. Be sure when calling poLCA.simdata that all arguments are in logical agree-
ment, or else the function may produce unexpected results.

Specifying the list of matrices probs can be tricky; we recommend a command structure such
as this for, for example, five manifest variables, three latent classes, and Kj = (3, 2, 3, 4, 3).

R> probs <- list(

+ matrix(c(0.6, 0.1, 0.3, 0.6, 0.3, 0.1, 0.3, 0.1, 0.6),

+ ncol = 3, byrow = TRUE),

+ matrix(c(0.2, 0.8, 0.7, 0.3, 0.3, 0.7),

+ ncol = 2, byrow = TRUE),

+ matrix(c(0.3, 0.6, 0.1, 0.1, 0.3, 0.6, 0.3, 0.6, 0.1),

+ ncol = 3, byrow = TRUE),

+ matrix(c(0.1, 0.1, 0.5, 0.3, 0.5, 0.3, 0.1, 0.1, 0.3, 0.1, 0.1, 0.5),

+ ncol = 4, byrow = TRUE),

+ matrix(c(0.1, 0.1, 0.8, 0.1, 0.8, 0.1, 0.8, 0.1, 0.1),

+ ncol = 3, byrow = TRUE))
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The object returned by poLCA.simdata is a list containing both the simulated data set and
all of the parameters used to generate that data set. The elements listed here have the same
characteristics and meanings as just described.

dat: A data frame containing the simulated variables X and Y . Variable names for manifest
variables are Y1, Y2, . . ., YJ . Variable names for concomitant variables are X1, X2, . . .,
XS .

probs: A list of matrices of dimension nclass × nresp containing the class-conditional out-
come probabilities.

nresp: A vector containing the number of possible outcomes for each manifest variable.

b: A matrix containing the coefficients on the covariates, if used.

P: The mixing proportions corresponding to each latent class.

pctmiss: The percent of observations missing.

trueclass: A vector of length N containing the “true” class membership for each individual.

Examples of possible uses of poLCA.simdata are included in the poLCA internal documen-
tation and may be accessed by entering ? poLCA.simdata in R. One example demonstrates
that even when the “true” data generating process involves a series of covariates—so that each
observation has a different prior probability of belonging to each class—the posterior prob-
abilities of latent class membership can still be recovered with high accuracy using a basic
model specified without covariates. A second example confirms that in data sets with miss-
ing values, the poLCA function produces consistent estimates of the class-conditional response
probabilities πjrk regardless of whether the researcher elects to include or listwise delete the
observations with missing values.

5. Two examples

To illustrate the usage of the poLCA package, we present two examples: a basic latent class
model and a latent class regression model, using sample data sets included in the package.

5.1. Basic latent class modeling with the carcinoma data

The carcinoma data from Agresti (2002, 542) consist of seven dichotomous variables that rep-
resent the ratings by seven pathologists of 118 slides on the presence or absence of carcinoma.
The purpose of studying these data is to model “interobserver agreement” by examining how
subjects might be divided into groups depending upon the consistency of their diagnoses.

It is straightforward to replicate Agresti’s published results (Agresti 2002, 543) using the
series of commands:

R> data("carcinoma")

R> f <- cbind(A, B, C, D, E, F, G) ~ 1

R> lc2 <- poLCA(f, carcinoma, nclass = 2)

R> lc3 <- poLCA(f, carcinoma, nclass = 3, graphs = TRUE)

R> lc4 <- poLCA(f, carcinoma, nclass = 4, maxiter = 5000)
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Figure 1: Estimation of the three-class basic latent class model using the carcinoma data;
obtained by setting graphs = TRUE in the poLCA function call. Each group of red bars rep-
resents the conditional probabilities, by latent class, of being rated positively by each of the
seven pathologists (labeled A through G). Taller bars correspond to conditional probabilities
closer to 1 of a positive rating.

The four-class model will typically require a larger number of iterations to achieve convergence.

Figure 1 shows a screen capture of the estimation of model lc3 with the graphs option
set to TRUE. As Agresti describes, the three estimated latent classes clearly correspond to
a pair of classes that are consistently rated negative (37%) or positive (44%), plus a third
“problematic” class representing 18% of the population. In that class, pathologists B, E, and
G tend to diagnose positive; C, D, and F tend to diagnose negative; and A is about 50/50.

The full output from the estimation of model lc3 is given below. First, the estimated class-
conditional response probabilities π̂jrk are reported for pathologists A through G, with each
row corresponding to a latent class, and each column corresponding to a diagnosis; negative
in the first column, and positive in the second. Thus, for example, a slide belonging to the
first (“negative”) class has a 94% chance of being rated free from carcinoma by rater A, an
86% chance of the same from rater B, an 100% chance from rater C, and so forth.

Next, the output provides the estimated mixing proportions p̂r corresponding to the share
of observations belonging to each latent class. These are the same values that appear in
Figure 1. An alternative method for determining the size of the latent classes is to assign
each observation to a latent class on an individual basis according to its model posterior
class membership probability. Values using this technique are reported directly below the
estimated mixing proportions. Congruence between these two sets of population shares often
indicates a good fit of the model to the data.

The next set of results simply reports the number of observations, the number of fully ob-
served cases (for data sets with missing values and na.rm = FALSE), the number of estimated
parameters, residual degrees of freedom, and maximum log-likelihood. It is always worth
checking to ensure that the number of residual degrees of freedom is non-negative; poLCA will
output a warning message if this is the case.

Finally, poLCA outputs a number of goodness of fit statistics as described in Section 2.4. For
the carcinoma data, the minimum AIC and BIC criteria both indicate that the three-class
model is most parsimonious: with two classes, the AIC is 664.5 and the BIC is 706.1; with
three classes, the AIC decreases to 633.4 and the BIC decreases to 697.1; and with four classes,
the AIC increases again to 641.6 and the BIC increases to 727.5.
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Conditional item response (column) probabilities,

by outcome variable, for each class (row)

$A

Pr(1) Pr(2)

class 1: 0.9427 0.0573

class 2: 0.4872 0.5128

class 3: 0.0000 1.0000

$B

Pr(1) Pr(2)

class 1: 0.8621 0.1379

class 2: 0.0000 1.0000

class 3: 0.0191 0.9809

$C

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 1.0000 0.0000

class 3: 0.1425 0.8575

$D

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 0.9424 0.0576

class 3: 0.4138 0.5862

$E

Pr(1) Pr(2)

class 1: 0.9449 0.0551

class 2: 0.2494 0.7506

class 3: 0.0000 1.0000

$F

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 1.0000 0.0000

class 3: 0.5236 0.4764

$G

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 0.3693 0.6307

class 3: 0.0000 1.0000

Estimated class population shares

0.3736 0.1817 0.4447
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Predicted class memberships (by modal posterior prob.)

0.3729 0.1949 0.4322

=========================================================

Fit for 3 latent classes:

=========================================================

number of observations: 118

number of estimated parameters: 23

residual degrees of freedom: 95

maximum log-likelihood: -293.705

AIC(3): 633.41

BIC(3): 697.1357

G^2(3): 15.26171 (Likelihood ratio/deviance statistic)

X^2(3): 20.50336 (Chi-square goodness of fit)

5.2. Latent class regression modeling with the election data

In the election data set, respondents to the 2000 American National Election Study pub-
lic opinion poll were asked to evaluate how well a series of traits—moral, caring, knowl-
edgable, good leader, dishonest, and intelligent—described presidential candidates Al Gore
and George W. Bush. Each question had four possible choices: (1) extremely well; (2) quite
well; (3) not too well; and (4) not well at all.

Models with one covariate

A reasonable theoretical approach might suppose that there are three latent classes of survey
respondents: Gore supporters, Bush supporters, and those who are more or less neutral. Gore
supporters will tend to respond favorably towards Gore and unfavorably towards Bush, with
the reverse being the case for Bush supporters. Those in the neutral group will not have
strong opinions about either candidate. We might further expect that falling into one of these
three groups is a function of each individual’s party identification, with committed Democrats
more likely to favor Gore, committed Republicans more likely to favor Bush, and less intense
partisans tending to be indifferent. We can investigate this hypothesis using a latent class
regression model.

Begin by loading the election data into memory, and specifying a model with 12 manifest
variables and PARTY as the lone concomitant variable. The PARTY variable is coded across
seven categories, from strong Democrat at 1 to strong Republican at 7. People who primarily
consider themselves Independents are at 3-4-5 on the scale. Next, estimate the latent class
regression model and assign those results to object nes.party. A call to the poLCA.reorder

command, with a subsequent re-estimation of the model, ensures that the three latent classes
are assigned the same category labels in each run.

R> data("election")

R> f.party <- cbind(MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG,

+ MORALB, CARESB, KNOWB, LEADB, DISHONB, INTELB) ~ PARTY
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R> nes.party <- poLCA(f.party, election, nclass = 3, verbose = FALSE)

R> probs.start <- poLCA.reorder(nes.party$probs.start,

+ order(nes.party$P, decreasing = TRUE))

R> nes.party <- poLCA(f.party, election, nclass = 3,

+ probs.start = probs.start)

By examining the estimated class-conditional response probabilities, we confirm that the
model finds that the three groups indeed separate as expected, with 27% in the favor-Gore
group, 34% in the favor-Bush group, and 39% in the neutral group.

This example also illustrates a shortcoming of the χ2 goodness of fit statistic, which is cal-
culated to be over 34.5 billion. With only 1300 observations but nearly 17 million cells in
the observed cross-classification table (that is, four responses to each of 12 questions, or 412

cells), the vast majority of the cells will contain zero cases. For models such as this, using the
χ2 statistic to assess model fit is not advised.

In addition to the information outputted for the basic model, the poLCA output now also
includes the estimated coefficients β̂r on the covariates, and their standard errors.

=========================================================

Fit for 3 latent classes:

=========================================================

2 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -3.81813 0.31109 -12.274 0

PARTY 0.79327 0.06232 12.728 0

=========================================================

3 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) 1.16155 0.17989 6.457 0

PARTY -0.57436 0.06401 -8.973 0

=========================================================

Here, the neutral group is the first latent class, the favor-Bush group is the second latent class,
and the favor-Gore group is the third latent class. Following the terminology in Section 3.1,
the log-ratio prior probability that a respondent will belong to the favor-Bush group with
respect to the neutral group is ln(p2i/p1i) = −3.82 + 0.79 × PARTY. Likewise, the log-ratio
prior probability that a respondent will belong to the favor-Gore group with respect to the
neutral group is ln(p3i/p1i) = 1.16 − 0.57 × PARTY. Equation 12 provides the formula for
converting these log-ratios into predicted prior probabilities for each latent class.

To interpret the estimated generalized logit coefficients, we calculate and plot predicted val-
ues of pri, the prior probability of class membership, at varying levels of party ID. The R
commands to do this are as follows, producing the graph in Figure 2.

R> pidmat <- cbind(1, c(1:7))

R> exb <- exp(pidmat %*% nes.party$coeff)

R> matplot(c(1:7), (cbind(1, exb)/(1 + rowSums(exb))),

+ main = "Party ID as a predictor of candidate affinity class",
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Figure 2: Predicted prior probabilities of latent class membership at varying levels of partisan
self-identification. Results are from a three-class latent class regression model.

+ xlab = "Party ID: strong Democratic (1) to strong Republican (7)",

+ ylab = "Probability of latent class membership",

+ ylim = c(0, 1), type = "l", lwd = 3, col = 1)

R> text(5.9, 0.40, "Other")

R> text(5.4, 0.75, "Bush affinity")

R> text(1.8, 0.65, "Gore affinity")

Strong Democrats have over a 60% prior probability of belonging to the Gore affinity group,
while strong Republicans have over an 80% prior probability of belonging to the Bush affinity
group. The prior probability of belonging to the indifferent category, labeled “Other”, is
greatest for self-identified Independents (4) and Independents who lean Democratic (3).

Models with more than one covariate

It is straightforward to similarly investigate models with more than one covariate. Suppose
we are interested in whether the effect of age modifies the effect of partisanship on candidate
affinity. We specify the interaction model with three covariates:

R> f.3cov <- cbind(MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG,

+ MORALB, CARESB, KNOWB, LEADB, DISHONB, INTELB) ~ PARTY * AGE

R> nes.3cov <- poLCA(f.3cov, election, nclass = 3, verbose = FALSE)

R> probs.start <- poLCA.reorder(nes.3cov$probs.start,

+ order(nes.3cov$P, decreasing = TRUE))

R> nes.3cov <- poLCA(f.3cov, election, nclass = 3,

+ probs.start = probs.start)
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This produces the following coefficient estimates, again with the neutral group as the first
latent class, the favor-Bush group as the second latent class, and the favor-Gore group as the
third latent class.

=========================================================

Fit for 3 latent classes:

=========================================================

2 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -4.39452 0.85423 -5.144 0.000

PARTY 0.80682 0.17614 4.581 0.000

AGE 0.01314 0.01772 0.741 0.459

PARTY:AGE -0.00020 0.00363 -0.054 0.957

=========================================================

3 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -0.31445 0.56324 -0.558 0.577

PARTY -0.39923 0.19990 -1.997 0.046

AGE 0.02967 0.01121 2.648 0.008

PARTY:AGE -0.00310 0.00398 -0.778 0.437

=========================================================

To see the effects of age on the candidate affinity of strong partisans, we first specify a
matrix of hypothetical values of the covariates: strdems for Democrats and strreps for
Republicans. We then calculate and plot the predicted prior probabilities of latent class
membership corresponding to each of these chosen hypothetical values (Figure 3).

R> strdems <- cbind(1, 1, c(18:80), (c(18:80) * 1))

R> exb.strdems <- exp(strdems %*% nes.3cov$coeff)

R> matplot(c(18:80), (cbind(1, exb.strdems)/(1+rowSums(exb.strdems))),

+ main = "Age and candidate affinity for strong Democrats",

+ xlab = "Age", ylab = "Probability of latent class membership",

+ ylim = c(0, 1), type = "l", col = 1, lwd = 3)

R> strreps <- cbind(1, 7, c(18:80), (c(18:80) * 7))

R> exb.strreps <- exp(strreps %*% nes.3cov$coeff)

R> matplot(c(18:80), (cbind(1, exb.strreps) / (1 + rowSums(exb.strreps))),

+ main = "Age and candidate affinity for strong Republicans",

+ xlab = "Age", ylab = "Probability of latent class membership",

+ ylim = c(0, 1), type = "l", col = 1, lwd = 3)

As expected, regardless of age, strong Democrats are very unlikely to belong to the Bush-
affinity group, and strong Republicans are very unlikely to belong to the Gore-affinity group.
However, it is interesting to observe that while strong Republicans in 2000 had extremely
high levels of affinity for Bush at all ages, strong Democrats below the age of 30 tended to be
just as (or more) likely to belong to the neutral group as to the Gore-affinity group.
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Figure 3: Predicted prior probabilities of latent class membership for strong Democrats (left)
and strong Republicans (right) at ages 18-80.

6. Conclusion

The R package poLCA provides an easy-to-use framework for the estimation of latent class
models and latent class regression models for the analysis of multivariate categorical data.
The manifest variables may contain any number of possible (polytomous) outcomes. In the
latent class regression model, covariates may be used to predict individual observations’ latent
class membership. poLCA also includes tools for visualizing model results, creating simulated
multivariate categorical data sets with an unobserved latent categorical structure, and post-
processing the model results to produce various other quantities of interest, including expected
cell percentages and posterior probabilities of latent class membership for either observed or
hypothetical cases.

poLCA is still undergoing active development. Planned extensions include flexibility to relax
the assumption of local independence among selected manifest variables, explicit treatment
of manifest variables as ordinal as well as nominal, incorporation of sampling weights, and
accommodation of user-specified constraints on the class-conditional response probabilities
πjrk as a way to simplify models, achieve model identifiability, test substantive hypotheses, and
analyze model fit. Such constraints might, for example, require selected response probabilities
to be set equal to one another across different classes, across manifest variables within classes,
or equal to fixed constant values, as in Goodman (1974). This extension would also permit
the estimation of so-called “simultaneous” latent class models across multiple groups where
the groups are already known (or at least theorized) to exist in the data (Clogg and Goodman
1986). The researcher would then include in the model a manifest variable measuring this
known categorization, and specify that one of the grouping variable response probabilities be
fixed at 1.0 in each class.
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