Authors: | Adelino R. Ferreira da Silva | ||||||
Title: | cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis | ||||||
Abstract: | Graphic processing units (GPUs) are rapidly gaining maturity as powerful general parallel computing devices. A key feature in the development of modern GPUs has been the advancement of the programming model and programming tools. Compute Unified Device Architecture (CUDA) is a software platform for massively parallel high-performance computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI), the volume of the data to be processed, and the type of statistical analysis to perform call for high-performance computing strategies. In this work, we present the main features of the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian multilevel model for the analysis of brain fMRI data. The statistical model implements a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main contribution for the increased performance comes from the use of separate threads for fitting the linear regression model at each voxel in parallel. The R-CUDA implementation of the Bayesian model proposed here has been able to reduce significantly the run-time processing of Markov chain Monte Carlo (MCMC) simulations used in Bayesian fMRI data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia CUDA support. | ||||||
Page views:: 5178. Submitted: 2010-10-20. Published: 2011-10-27. |
|||||||
Paper: |
cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis
Download PDF
(Downloads: 5147)
|
||||||
Supplements: |
| ||||||
DOI: |
10.18637/jss.v044.i04
|
![]() This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |