Published by the Foundation for Open Access Statistics
Editors-in-chief: Bettina Grün, Edzer Pebesma & Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
adabag: An R Package for Classification with Boosting and Bagging | Alfaro | Journal of Statistical Software
Authors: Esteban Alfaro, Matias Gamez, Noelia García
Title: adabag: An R Package for Classification with Boosting and Bagging
Abstract: Boosting and bagging are two widely used ensemble methods for classification. Their common goal is to improve the accuracy of a classifier combining single classifiers which are slightly better than random guessing. Among the family of boosting algorithms, AdaBoost (adaptive boosting) is the best known, although it is suitable only for dichotomous tasks. AdaBoost.M1 and SAMME (stagewise additive modeling using a multi-class exponential loss function) are two easy and natural extensions to the general case of two or more classes. In this paper, the adabag R package is introduced. This version implements AdaBoost.M1, SAMME and bagging algorithms with classification trees as base classifiers. Once the ensembles have been trained, they can be used to predict the class of new samples. The accuracy of these classifiers can be estimated in a separated data set or through cross validation. Moreover, the evolution of the error as the ensemble grows can be analysed and the ensemble can be pruned. In addition, the margin in the class prediction and the probability of each class for the observations can be calculated. Finally, several classic examples in classification literature are shown to illustrate the use of this package.

Page views:: 10367. Submitted: 2012-01-26. Published: 2013-09-03.
Paper: adabag: An R Package for Classification with Boosting and Bagging     Download PDF (Downloads: 11988)
Supplements:
adabag_3.2.tar.gz: R source package Download (Downloads: 271; 17KB)
v54i02.R: R example code from the paper Download (Downloads: 335; 14KB)

DOI: 10.18637/jss.v054.i02

by
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.