Published by the Foundation for Open Access Statistics Editors-in-chief: Bettina Grün, Torsten Hothorn, Rebecca Killick, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
[test by reto]
Authors: Rebecca M. Kuiper, Herbert Hoijtink
Title: A Fortran 90 Program for the Generalized Order-Restricted Information Criterion
Abstract: The generalized order-restricted information criterion (GORIC) is a generalization of the Akaike information criterion such that it can evaluate hypotheses that take on specific, but widely applicable, forms (namely, closed convex cones) for multivariate normal linear models. It can examine the traditional hypotheses H0: β1,1 = … = βt,k and Hu: β1,1, …, βt,k and hypotheses containing simple order restrictions Hm: β1,1 ≥ … ≥ βt,k, where any "≥" may be replaced by "=" and m is the model/hypothesis index; with βh,j the parameter for the h-th dependent variable and the j-th predictor in a t-variate regression model with k predictors (which might include the intercept). But, the GORIC can also be applied to restrictions of the form Hm: R1β = r1; R2β ≥ r2, with β a vector of length tk, R1 a cm1 × tk matrix, r1 a vector of length cm1, R2 a cm2 × tk matrix, and r2 a vector of length cm2. It should be noted that [R1T, R2T]T should be of full rank when [R1T, R2T]T ≠ 0. In practice, this implies that one cannot examine range restrictions (e.g., 0 < β1,1 < 2 or β1,2 < β1,1 < 2β1,2) with the GORIC. A Fortran 90 program is presented, which enables researchers to compute the GORIC for hypotheses in the context of multivariate regression models. Additionally, an R package called goric is made by Daniel Gerhard and the first author.

Page views:: 1505. Submitted: 2011-05-18. Published: 2013-09-08.
Paper: A Fortran 90 Program for the Generalized Order-Restricted Information Criterion     Download PDF (Downloads: 1212)
Supplements: Fortran 90 source code Download (Downloads: 248; 36KB)
GORIC.exe: Windows binary Download (Downloads: 218; 2MB) Data/input/output for examples from the manuscript Download (Downloads: 221; 4KB)

DOI: 10.18637/jss.v054.i08

This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.