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Abstract

In standardized testing it is important to equate tests in order to ensure that the test
takers, regardless of the test version given, obtain a fair test. Recently, the kernel method
of test equating, which is a conjoint framework of test equating, has gained popularity.
The kernel method of test equating includes five steps: (1) pre-smoothing, (2) estimation
of the score probabilities, (3) continuization, (4) equating, and (5) computing the standard
error of equating and the standard error of equating difference. Here, an implementation
has been made for six different equating designs: equivalent groups, single group, counter
balanced, non-equivalent groups with anchor test using either chain equating or post-
stratification equating, and non-equivalent groups using covariates. An R package for the
kernel method of test equating called kequate is presented. Included in the package are
also diagnostic tools aiding in the search for a proper log-linear model in the pre-smoothing
step for use in conjunction with the R function glm.

Keywords: kernel equating, observed-score test equating, item-response theory, R.

1. Introduction

One of the main concerns when using standardized achievement tests is that they are fair. In
order to ensure fairness when a test is given at different points in time, or in different versions
of the same standardized test, a statistical procedure known as equating is used. The ultimate
goal of equating is to adjust scores on different test forms so that the test forms can be used
interchangeably (Kolen and Brennan 2004).

The kernel method of test equating is a single unified approach to observed-score test equating,
usually presented as a process involving five different steps: pre-smoothing, score probability
estimation, continuization, computation of the equating function, and computation of the
standard errors of the equating function (von Davier, Holland, and Thayer 2004). The method
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has a number of advantages over other observed-score test equating methods. In particular, it
provides explicit formulas for the standard errors of equating in different designs and directly
uses information from the pre-smoothing step in the estimation of these. Kernel equating can
also handle equating using covariates in a non-equivalent groups setting and provides a method
to compare two different equatings using the standard error of the difference between two
equating functions. Since the kernel method of test equating is a unified equating framework
with large applicability both for the testing industry and the research community, it is of
great interest to create a software package which anyone interested in equating can use.

The aim of this paper is to introduce package kequate (Andersson, Bränberg, and Wiberg
2013), an implementation of the kernel method of test equating using five different data
collection designs in the statistical programming environment R (R Core Team 2013). For an
introduction to R see Venables, Smith, and R Core Team (2013). The content of the package
consists of the entirety of the equating aspects of the book The Kernel Method of Test Equating
by von Davier et al. (2004). In addition, our implementation of the kernel method of test
equating in R includes the option to use information from an item response theory (IRT)
model to conduct an IRT observed-score equating and the option to use unsmoothed input
frequencies directly, to enable the comparison of different approaches to observed-score test
equating.

The paper is structured as follows. In Section 2 a brief introduction to the kernel equating
framework is given. Section 3 introduces the functionality of kequate, and Section 4 provides
examples of the main functions. Section 5 contains some concluding remarks and presents
possible future additions to the package.

2. The kernel method of test equating

This section will comprise a brief description of the kernel method of test equating. For
a complete description please read the excellent book by von Davier et al. (2004).However,
before we can go through the steps of kernel equating, we need to describe the different
data collection designs that are available in the package. The first four are standard data
collection designs (see, e.g., Kolen and Brennan 2004; von Davier et al. 2004). The last data
collection design is a more uncommon case and is used if we have additional information
which is correlated with the test scores. For a detailed description please refer to Bränberg
(2010) and Bränberg and Wiberg (2011).

2.1. Data collection designs

We have incorporated the possibility of five different data collection designs:

� The equivalent groups design (EG): Two independent random samples are drawn from
a common population of test takers, P , and the test form X is administered to one
sample while test form Y is administered to the other sample. No test takers are taking
both X and Y .

� The single group design (SG): Two test forms X and Y are administered to the same
group of test takers drawn from a single population P . All test takers are taking both
X and Y .
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� The counter balanced design (CB): Two test forms X and Y are administered to the
same group of test takers drawn from a single population P . One part of the group
first takes test form X and then test form Y . The other part of the group takes the
test forms in a counterbalanced order, i.e., first test form Y and then test form X. This
could also be viewed as two EG designs or as two SG designs.

� The non-equivalent groups with anchor test design (NEAT): A sample of test takers
from population P are administered test form X, and another sample of test takers
from population Q are administered test form Y . Both samples are also administered a
set of common (i.e., anchor) items (test form A). With the NEAT design there are two
commonly used equating methods:

– Chain equating (CE): The idea is to first link test form X to the anchor test form
A and then link test form A to test form Y .

– Post-stratification equating (PSE): The idea is to link both test form X and test
form Y to test form A using a synthetic population, which is a blend of populations
P and Q. The equating is performed on the synthetic population.

� The non-equivalent groups with covariates design (NEC): A sample of test takers from
population P are administered test form X, and another sample of test takers from
population Q are administered test form Y . For both samples we also have observations
on background variables correlated with the test scores (i.e., covariates). Using a method
similar to the NEAT PSE case, a synthetic population is defined and an equating is
performed on this population.

2.2. The kernel method of test equating

Following the notation in von Davier et al. (2004), let X and Y be the names of the two test
forms to be equated and X and Y the scores on X and Y . Let T be the target population for
which the equating is to be performed. We will assume that the test takers taking the tests
are random samples from a population of test takers, so X and Y are regarded as random
variables. Observations on X will be denoted by xj for j = 1, . . . , J . Observations on Y will
be denoted by yk for k = 1, . . . ,K. If X and Y are number-right scores, J and K will be the
number of items plus one.

We will use
rj = P (X = xj | T ) (1)

for the probability of a randomly selected individual in population T scoring xj on test X,
and

sk = P (Y = yk | T ) (2)

for the probability of a randomly selected individual in population T scoring yk on test Y .

The goal is to find the link between X and Y in the form of an equipercentile equating
function in the target population T , the population on which the equating is to be done. The
equipercentile equating function is defined in terms of the cumulative distribution functions
(CDFs) of X and Y in the target population. Let

F (x) = P (X ≤ x | T ) (3)
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and

G (y) = P (Y ≤ y | T ) (4)

be the CDFs of X and Y over the target population T . If the two CDFs are continuous and
strictly increasing, then the equipercentile equating function of X to Y is defined by

y = EquiY (x) = G−1 (F (x)) . (5)

With test score data, the CDFs are discrete step functions so the CDFs have to be made
continuous somehow. In traditional equipercentile equating this is done using linear interpo-
lation, but kernel equating handles this issue by employing a kernel method instead (Holland
and Thayer 1989). The kernel method of test equating includes five steps: pre-smoothing,
estimation of the score probabilities, continuization, equating, and computing the standard
error of equating (SEE) and the standard error of equating difference (SEED). Most of the
steps which comprise what is called the kernel method of test equating were available before
the kernel framework was developed, see, e.g., Angoff (1984) for a description of equipercentile
equating using linear interpolation and Fairbank (1987) for a discussion on pre-smoothing in
equating. SEEs were also derived by Lord (1982) and Jarjoura and Kolen (1985), but prior
to the introduction of kernel equating SEEs were not available when using pre-smoothing
(Holland, King, and Thayer 1989).

Step 1: Pre-smoothing

In pre-smoothing, a statistical model is fitted to the empirical distribution obtained from the
sampled data. We assume that much of the irregularities seen in the empirical distributions
are due to sampling error, and the goal of smoothing is to reduce this error. In equating, the
raw data are two sets of univariate, bivariate or multivariate discrete distributions (depending
on the data collection design). One way to perform pre-smoothing is by fitting a polynomial
log-linear model to the relative frequencies obtained from the raw data. We will show this for
the NEAT design. For details the interested reader is referred to, e.g., Holland and Thayer
(2000) or von Davier et al. (2004).

In the NEAT design each test taker has a score on one of the test forms and a score on
an anchor test. Let A be the score on the anchor test form A. Observations on A will be
denoted by al for l = 1, . . . , L. Let nXjl be the number of test takers with X = xj and
A = al, and nY kl be the number of test takers with Y = yk and A = al. We assume that
nXA = (nX11, . . . , nXJL)> and nY A = (nY 11, . . . , nY KL)> are independent and that they each
have a multinomial distribution. The log likelihood function for X is given by

LX = cX +
∑
j,l

nXjl log (pjl) (6)

where pjl = P (X = xj ,A = al | T ). The target population T is a mixture of the two popula-
tions P and Q, T = wP + (1− w)Q, where w is selected from the interval [0, 1].

The log-linear model for pjl is given by

log (pjl) = αX +
TX∑
i=1

βXix
i
j +

TA∑
i=1

βAia
i
l +

IX∑
i=1

IA∑
i′=1

βXAii′x
i
ja

i′
l , (7)



Journal of Statistical Software 5

where TX and TA are the number of univariate moments for tests X and A, respectively, and
IX and IA are the number of cross-moments for the tests X and A, respectively. The log
likelihood function for Y and the log-linear model for qkl = P (Y = yk,A = al | T ) can be
written in a similar way. The log-linear models can also contain additional parameters, to
take care of lumps and spikes in the marginal distributions. The specification of such models
is, however, not discussed further herein (the interested reader is referred to von Davier et al.
2004).

Step 2: Estimation of the score probabilities

The score probabilities are obtained from the estimated score distributions from step 1. The
most important part of step 2 is the definition and use of the design function. The design
function is a function mapping the (estimated) population score distributions into (estimates
of) r and s, where r = (r1, r2, . . . , rJ)> and s = (s1, s2, . . . , sK)>. The function will vary
between different data collection designs. For example, in an EG design it is simply the
identity function as compared with PSE in a NEAT design, where the design function is
given by (

r
s

)
=


∑

l

(
w +

(1−w)
∑

k
qkl∑

j
pjl

)
pl∑

l

(
(1− w) +

w
∑

j
pjl∑

k
qkl

)
ql

 , (8)

where pl = (p1l, p2l, . . . , pJl)
> and ql = (q1l, q2l, . . . , qKl)

>.

Step 3: Continuization

Test score distributions are discrete, and the definition of the equipercentile equating function
given in Equation 5 cannot be used unless we deal with this discreteness in some way. Previous
to the development of kernel equating, linear interpolation was employed to obtain continuous
CDFs from the discrete CDFs (Kolen and Brennan 2004). In kernel equating continuous CDFs
are used as approximations to the estimated discrete step-function CDFs generated in the pre-
smoothing step. Following von Davier et al. (2004), we will use a Gaussian kernel. Logistic
and uniform kernels have also been described in the literature (Lee and von Davier 2011) and
are available as options in package kequate. In what follows, only the formulas for X are
shown, but the computations for Y are analogous. The discrete CDF F (x) is approximated
by

FhX
(x) =

∑
j

rjΦ

(
x− aXxj − (1− aX)µX

hXaX

)
, (9)

where µX =
∑

j xjrj is the mean of X in the target population T , hX is the bandwidth, and
Φ (·) is the standard Normal distribution function. The constant aX is defined as

aX =

√
σ2X

σ2X + h2X
, (10)

where σ2X =
∑

j (xj − µX)2 rj is the variance of X in the target population T . There are
several ways of choosing the bandwidth hX . We want the density functions to be as smooth
as possible without losing the characteristics of the distributions. We recommend the use of a
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penalty function to deal with this problem, see von Davier et al. (2004). For hX the penalty
function is given by

PEN (hX) =
∑
j

(
r̂j − f̂hX

(xj)
)2

+ κ
∑
j

Bj , (11)

where f̂hX
(x) is the estimated density function, i.e., the derivative of F̂hX

(x), and κ is a
constant. Bj is an indicator that is equal to one if the derivative of the density function is
negative a little to the left of xj and positive a little to the right of xj , or if the derivative
is positive a little to the left of xj and negative a little to the right of xj . Otherwise, Bj is
equal to zero. With a bandwidth that minimizes PEN (hX) in Equation 11, the estimated
continuous density function f̂hX

(x) will be a good approximation of the discrete distribution
of X, without too many modes.

Step 4: Equating

Assume that we are interested in equating X to Y. If we use the continuized CDFs described
previously, we can define the kernel equating function as

êY (x) = Ĝ−1hY

(
F̂hX

(x)
)
, (12)

which is analogous to the equipercentile equating function defined in Equation 5.

Step 5: Calculating the SEE and the SEED

One of the advantages with the kernel method of test equating is that it provides a neat way
to compute the SEE. The SEE for equating X to Y is given by

SEEY (x) =
√
VAR (êY (x)). (13)

In kernel equating the δ-method is used to compute an estimate of the SEE. Let R and S be
the vectors of pre-smoothed score distributions. If R and S are estimated independently, the
covariance can be written as

Cov

(
R̂

Ŝ

)
=

(
CRC

>
R 0

0 CSC
>
S

)
= CC>, (14)

where

C =

(
CR 0
0 CS

)
. (15)

The pre-smoothed score distributions are transformed into r and s using the design function.
The Jacobian of this function is

JDF =

(
∂r
∂R

∂r
∂S

∂s
∂R

∂s
∂S

)
. (16)

In the final step of kernel equating, estimates of r and s are used in the equating function to
calculate equated scores. The Jacobian of the equating function is given by

JeY =
(

∂eY
∂r ,

∂eY
∂s

)
. (17)
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If

(
R̂

Ŝ

)
is approximately normally distributed with mean

(
R
S

)
and variance given in

Equation 14, then
VAR (êY (x)) = ‖JeY JDFC‖2 (18)

and
SEEY (x) = ‖JeY JDFC‖ , (19)

where ‖υ‖ denotes the Euclidean norm of vector υ.
The SEED, which can be used to compare different kernel equating functions, is defined as

SEEDY (x) =
√
VAR (ê1 (x)− ê2 (x)) = ‖Je1JDF1C− Je2JDF2C‖ , (20)

i.e., the Euclidean norm of the difference between the two vectors Je1JDF1C and Je2JDF2C.
The equating function is designed to transform the continuous approximation of the distri-
bution of X into the continuous approximation of the distribution of Y. In order to diagnose
the effectiveness of the equating function, we need to consider what this transformation does
to the discrete distribution of X. One way of doing this is to compare the moments of the
distribution of X with the moments of the distribution of Y. Following von Davier et al.
(2004), we use the percent relative error (PRE) in the p-th moments, the PRE (p), which is
defined as

PRE (p) = 100
µp (eY (X))− µp (Y)

µp (Y)
, (21)

where µp (eY (X)) =
∑

j (eY (xj))
p rj and µp (Y) =

∑
k (yk)p sk.

3. kequate for R

The package kequate for R enables the equating of two parallel tests with the kernel method
of equating for the EG, SG, CB, NEAT PSE, NEAT CE and NEC designs. The package
kequate can use ‘glm’ objects created using the R function glm() (from package stats; R Core
Team 2013) as input arguments and estimate the equating function and associated standard
errors directly from the information contained therein. The S4 system of classes and methods
(Chambers 2008), a more formal and rigorous way of handling objects in R, is used in package
kequate, providing methods for the generic functions plot() and summary() for a number
of newly defined classes. The main function of the package is kequate(), which enables the
equating of two parallel tests using the previously defined equating designs. The function
kequate() has the following formal function call: kequate(design, ...) where design is a
character vector indicating the design used and ... should contain the additional arguments
which depend partly on the design chosen. The possible data collection designs and the
associated function calls are described below. Explanations of each argument that may be
supplied to kequate() are collected in Tables 1 and 2.

EG :

kequate("EG", x, y, r, s, DMP, DMQ, N, M, hx = 0, hy = 0, hxlin = 0,

hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel= "gaussian", slog = 1, bunif = 0.5,

altopt = FALSE)
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SG :

kequate("SG", x, y, P, DM, N, hx = 0, hy = 0, hxlin = 0, hylin = 0,

KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel = "gaussian", slog = 1, bunif = 0.5,

altopt = FALSE)

CB :

kequate("CB", x, y, P12, P21, DM12, DM21, N, M, hx = 0, hy = 0,

hxlin = 0, hylin = 0, wcb = 1/2, KPEN = 0, wpen = 1/4,

linear = FALSE, irtx = 0, irty = 0, smoothed = TRUE,

kernel = "gaussian", slog = 1, bunif = 0.5, altopt = FALSE)

NEAT CE :

kequate("NEAT_CE", x, y, a, P, Q, DMP, DMQ, N, M, hxP = 0, hyQ = 0,

haP = 0, haQ = 0, hxPlin = 0, hyQlin = 0, haPlin = 0, haQlin = 0,

KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel = "gaussian", slog = 1, bunif = 0.5,

altopt = FALSE)

NEAT PSE :

kequate("NEAT_PSE", x, y, P, Q, DMP, DMQ, N, M, w = 0.5, hx = 0,

hy = 0, hxlin = 0, hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE,

irtx = 0, irty = 0, smoothed = TRUE, kernel = "gaussian", slog = 1,

bunif = 0.5, altopt = FALSE)

NEC :

kequate("NEC", x, y, P, Q, DMP, DMQ, N, M, hx = 0, hy = 0, hxlin = 0,

hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel = "gaussian", slog = 1, bunif = 0.5,

altopt = FALSE)

The arguments containing the score probabilities and design matrices that are supplied to
kequate can either be objects of class ‘glm’ or design matrices and estimated probability
vectors/matrices. For ease of use, it is recommended to estimate the log-linear models using
the R function glm() and use the ‘glm’ objects as input to kequate(). The estimation of
log-linear models using glm() is not covered extensively in this article. The interested reader
is referred to Holland and Thayer (2000) and R help files. Optional arguments to specify
the continuization parameters directly are also available for all equating designs. In addition,
the option exists to only conduct a linear equating and an option to use unsmoothed input
frequencies. There is also the option of selecting the kernel to be used. In the NEAT PSE
case, the weighting of the synthetic populations can be specified. For all designs, if using
pre-smoothed input data, the equated values and the SEE are calculated. Using unsmoothed
data, the SEE is calculated only in the EG case. The SEED between the linear equating
function and the kernel equipercentile equating function is also calculated. For each design
there is also the option to use data from an IRT model to conduct an IRT observed-score
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Argument(s) Designs Description

x, y ALL Score value vectors for test X and test Y .
a CE Score value vector for the anchor test A.
r, s EG Score probability vectors for tests X and Y . Alter-

natively objects of class ‘glm’.

P SG, CE, PSE,
NEC

Matrix of bivariate score probabilities for tests X
and Y (SG), tests X and A (CE, PSE), or test X and
covariates (NEC) on population P . Alternatively an
object of class ‘glm’.

Q CE, PSE, NEC Matrix of bivariate score probabilities for tests Y
and A (CE, PSE) or test Y and covariates (NEC) on
population Q. Alternatively an object of class ‘glm’.

P12, P21 CB Matrices of bivariate score probabilities for tests X
and Y . Alternatively objects of class ‘glm’.

DMP, DMQ CE, PSE, NEC Design matrices for the specified bivariate log-linear
models on populations P and Q, respectively (or
groups taking test X and Y , respectively, in an EG
design). Not needed if P and Q are of class ‘glm’.

DM SG Design matrix for the specified bivariate log-linear
model. Not needed if P is of class ‘glm’.

DM12, DM21 CB Design matrices for the specified bivariate log-linear
models. Not needed if P12 and P21 are of class ‘glm’.

N ALL The sample size for population P (or the group tak-
ing test X in the EG design). Not needed if r, P, or
P12 is of class ‘glm’.

M EG, CB, CE,
PSE, NEC

The sample size for population Q (or the group tak-
ing test Y in the EG design). Not needed if s, Q, or
P21 is of class ‘glm’.

w PSE Optional argument to specify the weight given to
population P . Default is 0.5.

hx, hy, hxlin,
hylin

EG, SG, CB,
PSE, NEC

Optional arguments to specify the continuization pa-
rameters manually.

hxP, hyQ, haP, haQ,
hxPlin, hyQlin,
haPlin, haQlin

CE Optional arguments to specify the continuization pa-
rameters manually.

wcb CB The weighting of the two test groups in a counter-
balanced design. Default is 1/2.

Table 1: Arguments supplied to kequate().

equating using the kernel equating framework. This is accomplished by supplying matrices
of probabilities to answer each question correctly for each ability level on two parallel tests
X and Y , as estimated beforehand using an IRT model.

The package kequate creates an object of class ‘keout’ which includes information about
the equating. To access information from such an object, a number of get*-functions are
available. They are described in Table 3. Methods for the class ‘keout’ are implemented



10 kequate: Kernel Method of Test Equating in R

Argument(s) Designs Description

KPEN ALL Optional argument to specify the constant used in deciding the
optimal continuization parameter. Default is 0.

wpen ALL An argument denoting at which point the derivatives in the sec-
ond part of the penalty function should be evaluated. Default
is 1/4.

linear ALL Logical denoting if a linear equating only is to be performed.
Default is FALSE.

irtx, irty ALL Optional arguments to provide matrices of probabilities to an-
swer correctly to the questions on the parallel tests X and Y ,
as estimated in an IRT model.

smoothed ALL A logical argument denoting if the data provided are pre-
smoothed or not. Default is TRUE.

kernel ALL A character vector denoting which kernel to use, with options
"gaussian", "logistic", "stdgaussian" and "uniform".
Default is "gaussian".

slog ALL The parameter used in the logistic kernel. Default is 1.
bunif ALL The parameter used in the uniform kernel. Default is 0.5.
altopt ALL Logical which sets the bandwidth parameter equal to a variant

of Silverman’s rule of thumb. Default is FALSE.

Table 2: Arguments supplied to kequate() (Continued.)

Function Output

getEquating() A data frame with the equated values, SEEs and other information
about the equating.

getPre() A data frame with the PRE for the equated distribution.
getType() A character vector describing the type of equating conducted.
getScores() A list containing data frames with the score values, score probabilities

and the continuized distribution functions for the tests used in the
equating.

getH() A data frame containing the values of h used in the equating.
getEq() A vector containing the equated values.
getEqlin() A vector containing the equated values of the linear equating.
getSeelin() A vector containing the SEEs for the equated values of the linear

equating.
getSeed() An object of class ‘genseed’ containing the SEED between the KE-

equipercentile equating and the linear equating (if applicable).

Table 3: Functions to retrieve information from the resulting ‘keout’ objects.

for the functions plot() and summary(). Additionally, the function genseed() can be used
to compare any two equatings that utilize the same log-linear models. It takes as input two
objects created by kequate and calculates the SEED between them. A useful comparison is,
for example, between a chain equating and a post-stratification equating in the NEAT design.
A method for the function plot() is implemented for the objects created by genseed(). The
package also includes a function kefreq() to tabulate frequency data from individual test
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score data and functions FTres() and cdist() to be used when specifying the log-linear
pre-smoothing models. FTres() calculates the Freeman-Tukey residuals given a specified
log-linear model, and cdist() calculates the conditional means, variances, skewnesses and
kurtoses of the tests to be equated given an anchor test, for both the fitted distributions and
the observed distributions.

4. Examples

We exemplify the main function kequate() by equating using the EG, NEAT, and NEC
designs. The function calls for the other designs are very similar, only having other required
arguments. We also demonstrate how to conduct an IRT observed-score equating.

4.1. EG design

Let the parallel tests X and Y have common score vectors 0:20. The tests are each admin-
istered to a randomized group drawn from the same population, thus we have an EG design.
The data used in this example is from Chapter 7 of von Davier et al. (2004) and we have
specified identical log-linear models to the book using the glm() function in R. Thus, two
objects FXEGglm and FYEGglm have been created. We give the summary of the log-linear
model for test X below.

R> summary(FXEGglm)

Call:

glm(formula = freq ~ I(X) + I(X^2), family = poisson, data = FXEG,

x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.93720 -0.66091 0.02267 0.28793 2.06210

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.193832 0.159873 7.467 8.18e-14 ***

I(X) 0.700114 0.030547 22.919 < 2e-16 ***

I(X^2) -0.032194 0.001391 -23.140 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 881.023 on 20 degrees of freedom

Residual deviance: 18.353 on 18 degrees of freedom

AIC: 140.98

Number of Fisher Scoring iterations: 4
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Figure 1: The Freeman-Tukey residuals for the log-linear model of test X in the EG design.

In kequate the function FTres() can be used to calculate the Freeman-Tukey residuals often
considered in pre-smoothing. From our log-linear model for test X, we create a numeric vector
containing the Freeman-Tukey residuals by writing:

R> Xres <- FTres(FXEGglm$y, FXEGglm$fitted.values)

We plot the resulting vector which can be seen in Figure 1. If the model fits the data well,
the Freeman-Tukey residuals are approximately normal distributed, which is tenable in this
case. To then equate the two tests using an equipercentile equating with pre-smoothing, we
call the function kequate() as follows:

R> keEG <- kequate("EG", 0:20, 0:20, FXEGglm, FYEGglm)

This will create an R object keEG containing information about the equating, retrieved by
using the functions described in Table 3. To print useful information about the equating, we
can utilize the summary() function. With the EG example above, we write:

R> summary(keEG)

Design: EG equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 1453

Test Y: 1455

Score Ranges:
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Test X:

Min = 0 Max = 20

Test Y:

Min = 0 Max = 20

Bandwidths Used:

hx hy hxlin hylin

1 0.6222656 0.5706472 3807.166 3935.618

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 0.3937428 0.22003933

2 1 1.5813115 0.28953052

3 2 2.6403737 0.28750504

4 3 3.6443599 0.26639407

5 4 4.6316372 0.24103576

6 5 5.6177604 0.21694955

7 6 6.6099736 0.19666327

8 7 7.6120208 0.18124172

9 8 8.6259786 0.17074911

10 9 9.6529836 0.16457143

11 10 10.6934738 0.16187097

12 11 11.7471382 0.16210070

13 12 12.8126160 0.16533581

14 13 13.8868792 0.17213304

15 14 14.9641247 0.18265200

16 15 16.0338852 0.19504913

17 16 17.0781109 0.20375800

18 17 18.0676527 0.19900332

19 18 18.9607427 0.16999805

20 19 19.7183057 0.11860300

21 20 20.3929906 0.07030467

Comparing the Moments:

PREYx

1 0.005846071

2 0.012199064

3 0.021866777

4 0.039664185

5 0.072721834

6 0.127379417

7 0.208808230

8 0.320998175

9 0.466899016

10 0.648610889

The summary() function can be used in kequate to print information from any object of class
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‘keout’. The output is similar for all designs. The first part contains information about
the score range and bandwidths. The second part contains the equating function with its
standard error. Finally, the PRE is given.

With the EG design, it is also possible to equate two tests using the full kernel equating frame-
work with observed data instead of pre-smoothed data. The additional argument smoothed

= FALSE needs to be given to kequate() in such a case. As an example, by using information
from the object created in the equating with pre-smoothing, we can write:

R> rEGobs <- getScores(keEG)$X$r

R> sEGobs <- getScores(keEG)$Y$s

R> NEG <- getScores(keEG)$N

R> MEG <- getScores(keEG)$M

R> keEGobs <- kequate("EG", 0:20, 0:20, rEGobs, sEGobs, N = NEG, M = MEG,

+ smoothed = FALSE)

The object created contains similar information to an object from an equating with pre-
smoothed data.

IRT observed-score equating (IRT-OSE) is also enabled in kequate, using the arguments irtx
and irty. We let irt1 and irt2 be matrices where each column represents an ability level
in an IRT model and each row represents a question on the test to be equated. Each cell in
the matrix should then contain the estimated probability to answer correctly to a question
on the parallel tests for a certain ability level. To equate using IRT-OSE, we write:

R> keEGirt <- kequate("EG", 0:20, 0:20, FXEGglm, FYEGglm, irtx = irt2,

+ irty = irt1)

This function call will conduct an IRT-OSE in the kernel equating framework in addition to a
regular equipercentile equating. It is possible to use unsmoothed frequencies while conducting
an IRT-OSE. Specifying linear = TRUE will instruct kequate() to do a linear equating for
both the regular method and for the IRT-OSE. Using IRT-OSE is not limited to an EG design.
It can be used as a supplement in any of the designs available in kequate.

4.2. NEAT design

To illustrate how to do an equating in a NEAT design, we utilize a simulated data set provided
with kequate. With the same data we also show how the function kefreq() can be used to
tabulate data from individual test takers and how the function cdist() can be used to
evaluate a log-linear model. In this example test X and test Y have the same score value
vectors 0:20, and test A (the anchor test) has the score value vector 0:10. We now wish to
equate tests X and Y . The R object bivar1 is a data frame with columns X and A of length
1000 containing the score on test X and test A for each individual. Similarly, bivar2 is a data
frame with columns Y and A of length 1000. For all designs that utilize bivariate frequencies,
the data must be sorted first by the score vector for A and then by the score vector for X.
In the SG design, the data must be sorted first by the score vector for test Y and then by
the score vector for test X. To create data sorted in the manner appropriate for usage with
kequate, we write:

R> freq1 <- kefreq(bivar1$X, 0:20, bivar1$A, 0:10)

R> freq2 <- kefreq(bivar2$Y, 0:20, bivar2$A, 0:10)
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The created objects freq1 and freq2 are data frames with three columns: frequency, X,
and A, sorted first by the A column and then by the X column. The data frame created by
kefreq() can then be used in the glm() model specification. Alternatively, the frequency

column can be converted into relative frequencies and utilized to equate tests using observed
relative frequencies directly. In this example we use pre-smoothing and assume that the ‘glm’
objects glmsim1 and glmsim2 have been created. The summary of glmsim1 is given below.

R> summary(glmsim1)

Call:

glm(formula = frequency ~ I(X) + I(X^2) + I(X^3) + I(X^4) + I(X^5) +

I(A) + I(A^2) + I(A^3) + I(A^4) + I(A):I(X) + I(A):I(X^2) +

I(A^2):I(X) + I(A^2):I(X^2), family = "poisson", data = freq1,

x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0435 -0.6671 -0.1474 0.2255 2.7034

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.558e+00 3.088e-01 5.044 4.56e-07 ***

I(X) -3.753e-01 2.384e-01 -1.575 0.11537

I(X^2) 1.905e-01 7.193e-02 2.648 0.00810 **

I(X^3) -2.775e-02 8.943e-03 -3.103 0.00192 **

I(X^4) 1.298e-03 4.869e-04 2.666 0.00768 **

I(X^5) -2.208e-05 9.685e-06 -2.280 0.02262 *

I(A) -4.172e-01 2.282e-01 -1.828 0.06756 .

I(A^2) -1.988e-02 7.995e-02 -0.249 0.80363

I(A^3) -1.452e-02 1.319e-02 -1.101 0.27106

I(A^4) 8.691e-04 6.481e-04 1.341 0.17992

I(X):I(A) 1.526e-01 5.315e-02 2.870 0.00410 **

I(X^2):I(A) 7.769e-04 3.511e-03 0.221 0.82489

I(X):I(A^2) -4.951e-03 6.362e-03 -0.778 0.43642

I(X^2):I(A^2) 1.103e-04 2.656e-04 0.415 0.67807

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1550.4 on 230 degrees of freedom

Residual deviance: 169.0 on 217 degrees of freedom

AIC: 689.32

Number of Fisher Scoring iterations: 6

We fitted the model using five univariate moments for the score values of the test to be equated
and four moments for the score values of the anchor test. The first four cross-moments between
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the test scores were also added. Adding additional parameters did not improve the model
fit much. To evaluate a log-linear model for bivariate test score frequencies, it is a good
idea to compare the conditional mean, variance, skewness and kurtosis of the observed and
fitted frequencies. It is desirable to maintain the properties of the observed frequencies in the
specified model. In kequate the function cdist() can be used to calculate the conditional
parameters of observed and fitted frequencies. The input to cdist() are two matrices of
bivariate frequencies (one for the fitted and one for the observed frequencies) and the two
score value vectors. To specify the necessary input for tests X and A in our example, we
write:

R> EGPest <- matrix(glmsim1$fitted.values, nrow = 21)

R> EGPobs <- matrix(glmsim1$y, nrow = 21)

We then use these objects and the score value vectors to calculate the conditional parameters
and plot the result:

R> NEATdistP <- cdist(EGPest, EGPobs, 0:20, 0:10)

R> plot(NEATdistP)

The resulting object NEATdistP contains all the conditional parameters, but the plot shows
only the conditional mean and variance of the respective tests and distributions. The plot is
given in Figure 2, where it can be seen that the conditional mean is very close between the
observed and fitted distributions but that the conditional variance is not as well maintained
in the fitted distribution. To use the log-linear models specified above to equate the two
tests in a NEAT PSE design and also display the summary, we write:

R> eqNEATPSE <- kequate("NEAT_PSE", 0:20, 0:20, glmsim1, glmsim2)

R> summary(eqNEATPSE)

Design: NEAT/NEC PSE equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 1000

Test Y: 1000

Score Ranges:

Test X:

Min = 0 Max = 20

Test Y:

Min = 0 Max = 20

Bandwidths Used:

hx hy hxlin hylin

1 0.5565059 0.5965906 4174.636 3893.065
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Figure 2: Conditional mean and variance of tests X and A for the observed and fitted fre-
quencies in the NEAT case.

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 0.09205346 0.1942502

2 1 1.00529599 0.2936029

3 2 1.71066883 0.3000529

4 3 2.40382569 0.2784435

5 4 3.16821131 0.2484674

6 5 4.02457837 0.2170684

7 6 4.95676115 0.1879430

8 7 5.93318013 0.1647129

9 8 6.92349260 0.1493227

10 9 7.90577157 0.1410529

11 10 8.86675778 0.1379823

12 11 9.80020969 0.1391913

13 12 10.70586827 0.1455433

14 13 11.58932914 0.1582699

15 14 12.46220140 0.1769702

16 15 13.34185601 0.1999658

17 16 14.25090471 0.2274527
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Figure 3: The equated values and corresponding SEE for each score value in a NEAT PSE
design.

18 17 15.21769285 0.2642756

19 18 16.28082502 0.3155014

20 19 17.50960932 0.3654120

21 20 19.06346403 0.3116301

Comparing the Moments:

PREYx

1 -0.001950272

2 -0.030409301

3 -0.104245343

4 -0.242660855

5 -0.471507678

6 -0.814142404

7 -1.287683242

8 -1.902544819

9 -2.663200823

10 -3.569333597
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Figure 4: The difference between PSE and CE in a NEAT design for each score value with
the associated SEED.

The results can also be plotted by writing:

R> plot(eqNEATPSE)

The resulting graph can be seen in Figure 3, where the first plot compares the score values on
X with the equated values, and where the second plot gives the standard error of the equated
values for each score value of X. The same type of graph is plotted for all equating designs.
Chain equating can also be used in kequate. To equate the same tests as in the NEAT case
above but this time using CE, we write:

R> eqNEATCE <- kequate("NEAT_CE", 0:20, 0:20, 0:10, glmsim1, glmsim2)

Given two different equating functions derived from the same log-linear models, the SEED
between two equatings can be calculated. In kequate, the function genseed() takes as input
two objects of class ‘keout’ and calculates the SEED between two kernel equipercentile or
linear equatings. By default the kernel equipercentile equatings are used. To instead compare
two linear equatings to each other, the logical argument linear = TRUE should be used when
calling genseed(). The output from genseed() is an object of class ‘genseed’ which can be
plotted using plot(), creating a suitable plot of the difference between the equating functions
and the associated SEED. To compare the NEAT PSE and NEAT CE equatings given above
and plot the results, we write:

R> seedPSECE <- genseed(eqNEATPSE, eqNEATCE)

R> plot(seedPSECE)

The resulting figure can be seen in Figure 4. The difference between the equating functions
is outside of the error bands for many score values, indicating that the equatings significantly
differ from each other. In the above function calls, the default settings have been used. Under
the default settings, both a KE-equipercentile equating and a linear equating are done. The
continuization parameters will by default be set to the optimal value in the KE-equipercentile



20 kequate: Kernel Method of Test Equating in R

case and to 1000 · std error for the test scores in the linear case. It is possible to choose these
parameters manually by specifying additional arguments in the function call. With a NEAT
PSE design there are four continuization parameters to consider: hx, hy, hxlin, and hylin.
As an example, we can write:

R> eqNEATPSEh1 <- kequate("NEAT_PSE", 0:20, 0:20, glmsim1, glmsim2, hx = 1,

+ hy = 1, hxlin = 1000, hylin = 1000)

4.3. NEC design

In the NEC design, instead of using an anchor test to enable the equating of two tests when the
groups taking the test are not equivalent, we utilize background information on the individuals
taking the tests. In the example used here, an equating is made of two instances of a part
of the Swedish Scholastic Assessment Test (variable names testX and testY) with the aid
of covariates indicating high school math grade (variable name mattea1) and type of high
school education (utb1). Using the function glm() in R, the objects NECYglm and NECXglm

for each test have been specified.

R> summary(NECYglm)

Call:

glm(formula = frequency ~ I(testY) + I(testY^2) + I(testY^3) +

I(mattea1) + I(mattea1^2) + factor(utb1) + I(testY):I(mattea1) +

I(testY):factor(utb1) + I(mattea1):factor(utb1), family = "poisson",

data = testdata2, x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.4379 -0.9497 -0.0727 1.0324 4.3802

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0157230 0.1107351 27.234 < 2e-16 ***

I(testY) 0.1918915 0.0227800 8.424 < 2e-16 ***

I(testY^2) -0.0219865 0.0019919 -11.038 < 2e-16 ***

I(testY^3) -0.0005993 0.0000540 -11.098 < 2e-16 ***

I(mattea1) 0.7847179 0.0761327 10.307 < 2e-16 ***

I(mattea1^2) -1.2017467 0.0189962 -63.262 < 2e-16 ***

factor(utb1)2 0.3269224 0.0866072 3.775 0.00016 ***

factor(utb1)3 -4.5725554 0.1125338 -40.633 < 2e-16 ***

I(testY):I(mattea1) 0.2636119 0.0043871 60.088 < 2e-16 ***

I(testY):factor(utb1)2 0.1836241 0.0082557 22.242 < 2e-16 ***

I(testY):factor(utb1)3 0.4452775 0.0096066 46.351 < 2e-16 ***

I(mattea1):factor(utb1)2 -0.2730027 0.0524782 -5.202 1.97e-07 ***

I(mattea1):factor(utb1)3 0.2923510 0.0557851 5.241 1.60e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 36242.64 on 206 degrees of freedom

Residual deviance: 412.48 on 194 degrees of freedom

AIC: 1379.5

Number of Fisher Scoring iterations: 5

We included three univariate moments for the test scores and two moments for the grade
in mathematics. Additionally, interaction terms were added between the test scores and the
covariates and also between the covariates. The resulting model fits the data well. A similar
model was fitted for the scores of the other test administration. We now equate the two
versions of the test by writing:

R> NECeq <- kequate("NEC", 0:22, 0:22, NECYglm, NECXglm)

The results from the summary() function are given below, showing that the two tests are
fairly equal in difficulty when we have conditioned on relevant background variables. For
lower scores it appears that test X is slightly more difficult, while at the higher end test Y is
slightly more difficult. Due to the large sample sizes for the two tests, the estimated standard
errors are small and our equating is quite reliable.

R> summary(NECeq)

Design: NEAT/NEC PSE equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 19587

Test Y: 16607

Score Ranges:

Test X:

Min = 0 Max = 22

Test Y:

Min = 0 Max = 22

Bandwidths Used:

hx hy hxlin hylin

1 0.5749784 0.58995 4306.685 4116.669

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 0.09485327 0.07349573

2 1 1.17900980 0.12298033
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3 2 2.24120888 0.13666122

4 3 3.28252507 0.12961135

5 4 4.30832447 0.11459671

6 5 5.32114109 0.09779945

7 6 6.32204026 0.08225010

8 7 7.31137161 0.06936471

9 8 8.28922787 0.05960339

10 9 9.25578121 0.05274700

11 10 10.21156497 0.04811199

12 11 11.15769936 0.04485671

13 12 12.09602853 0.04229809

14 13 13.02913160 0.04009804

15 14 13.96019747 0.03830472

16 15 14.89279942 0.03729549

17 16 15.83064933 0.03760529

18 17 16.77744941 0.03959559

19 18 17.73701331 0.04307497

20 19 18.71394777 0.04705997

21 20 19.71553704 0.04948802

22 21 20.75659872 0.04608867

23 22 21.85710257 0.02953481

Comparing the Moments:

PREYx

1 -0.002719536

2 -0.007614830

3 -0.013701588

4 -0.024243657

5 -0.042056328

6 -0.069436523

7 -0.108144263

8 -0.159468379

9 -0.224306751

10 -0.303241828

In addition to the default gaussian kernel kequate enables the usage of logistic and uniform
kernels. To utilize a different kernel the argument kernel is specified in the kequate()

function call. Below, the previously defined log-linear models are used to equate the two tests
in the NEC design using a logistic and a uniform kernel.

R> NECeqL <- kequate("NEC", 0:22, 0:22, NECYglm, NECXglm,

+ kernel = "logistic")

R> NECeqU <- kequate("NEC", 0:22, 0:22, NECYglm, NECXglm,

+ kernel = "uniform")

In this case the equating function is almost identical between the three kernels, but there are
some slight differences in the standard error of equating, which can be seen in Figure 5.
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Figure 5: SEE for gaussian, logistic and uniform kernels in the NEC design.

For all designs it is also possible to specify the constants KPEN and wpen used in finding the
optimal continuization parameters. Defaults are KPEN = 0 and wpen = 1/4. Additionally, the
logical argument linear can be used to specify that only a linear equating is to be performed,
where the default is linear = FALSE.

5. Concluding remarks

In standardized achievement tests the most essential part is for all tests to be fair to test takers
and between test takers. Since standardized tests are typically given at different time periods
and with different test forms, it is essential to make sure that which test a test taker is given
does not affect his or her results. In this paper the R package kequate was proposed in order
to implement and to make available the kernel method of test equating. This method can
be used by researchers, the testing industry, and practitioners, i.e., anyone with an interest
in equating. In addition the package includes a new extension of the kernel method when
we have collateral information. Finally, IRT observed-score equating was added to allow for
comparisons with a well-known frequently used equating method. In the future the kernel
method of test equating might be extended to incorporate more methods, and in those cases
it will be easy to implement new methods in this package.
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