Authors: | Patrick E. Brown | ||||||
Title: | Model-Based Geostatistics the Easy Way | ||||||
Abstract: | This paper briefly describes geostatistical models for Gaussian and non-Gaussian data and demonstrates the geostatsp and dieasemapping packages for performing inference using these models. Making use of R’s spatial data types, and raster objects in particular, makes spatial analyses using geostatistical models simple and convenient. Examples using real data are shown for Gaussian spatial data, binomially distributed spatial data, a logGaussian Cox process, and an area-level model for case counts. | ||||||
Page views:: 4998. Submitted: 2013-06-06. Published: 2015-02-13. |
|||||||
Paper: |
Model-Based Geostatistics the Easy Way
Download PDF
(Downloads: 5591)
|
||||||
Supplements: |
| ||||||
DOI: |
10.18637/jss.v063.i12
|
![]() This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |