Published by the Foundation for Open Access Statistics
Editors-in-chief: Bettina Grün, Torsten Hothorn, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models | Gollini | Journal of Statistical Software
Authors: Isabella Gollini, Binbin Lu, Martin Charlton, Christopher Brunsdon, Paul Harris
Title: GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models
Abstract: Spatial statistics is a growing discipline providing important analytical techniques in a wide range of disciplines in the natural and social sciences. In the R package GWmodel we present techniques from a particular branch of spatial statistics, termed geographically weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localized calibration provides a better description. The approach uses a moving window weighting technique, where localized models are found at target locations. Outputs are mapped to provide a useful exploratory tool into the nature of the data spatial heterogeneity. Currently, GWmodel includes functions for: GW summary statistics, GW principal components analysis, GW regression, and GW discriminant analysis; some of which are provided in basic and robust forms.

Page views:: 4260. Submitted: 2013-06-02. Published: 2015-02-16.
Paper: GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models     Download PDF (Downloads: 3145)
Supplements:
GWmodel_1.2-5.tar.gz: R source package Download (Downloads: 432; 1MB)
v63i17.R: R example code from the paper Download (Downloads: 639; 16KB)

DOI: 10.18637/jss.v063.i17

by
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.