Published by the Foundation for Open Access Statistics Editors-in-chief: Bettina Grün, Torsten Hothorn, Rebecca Killick, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
[test by reto]
Authors: Kristin A. Linn, Eric B. Laber, Leonard A. Stefanski
Title: iqLearn: Interactive Q-Learning in R
Abstract: Chronic illness treatment strategies must adapt to the evolving health status of the patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance for clinicians and intervention scientists on how to treat patients over time in order to bring about the most favorable clinical outcome on average. Methods for estimating optimal dynamic treatment regimes, such as Q-learning, typically require modeling non- smooth, nonmonotone transformations of data. Thus, building well-fitting models can be challenging and in some cases may result in a poor estimate of the optimal treatment regime. Interactive Q-learning (IQ-learning) is an alternative to Q-learning that only requires modeling smooth, monotone transformations of the data. The R package iqLearn provides functions for implementing both the IQ-learning and Q-learning algorithms. We demonstrate how to estimate a two-stage optimal treatment policy with iqLearn using a generated data set bmiData which mimics a two-stage randomized body mass index reduction trial with binary treatments at each stage.

Page views:: 1794. Submitted: 2013-09-17. Published: 2015-03-20.
Paper: iqLearn: Interactive Q-Learning in R     Download PDF (Downloads: 1021)
iqLearn_1.3.tar.gz: R source package Download (Downloads: 175; 658KB)
v64i01.R: R example code from the paper Download (Downloads: 229; 3KB)

DOI: 10.18637/jss.v064.i01

This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.