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Abstract

The informR package greatly simplifies the analysis of complex event histories in R by
providing user friendly tools to build sufficient statistics for the relevent package. Histor-
ically, building sufficient statistics to model event sequences (of the form a //b) using the
egocentric generalization of Butts’ (2008) relational event framework for modeling social
action has been cumbersome. The informR package simplifies the construction of the
complex list of arrays needed by the rem() model fitting for a variety of cases involving
egocentric event data, multiple event types, and/or support constraints. This paper in-
troduces these tools using examples from real data extracted from the American Time
Use Survey.
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1. Introduction

The relational event framework (Butts 2008) is an approach to modeling complex interaction
sequences (e.g., among social actors, or between actors and their environments) as discrete
events in continuous time. The relevent package (Butts 2015) for R (R Core Team 2014)
provides one implementation of this framework, with specialized functionality for easily fitting
dyadic relational event models, as well as a general purpose function, rem(), that supports
a broader class of models (including models with multiple event types, endogenous support
constraints, etc.). Unfortunately, rem() requires the use of user-generated inputs that can be
quite difficult to construct, historically limiting its usefulness. The informR package (Marcum
2015) for R contains a set of functions that assist in the creation and manipulation of sufficient
statistics to be modeled using the rem() function, thereby broadening the class of models that
can be easily fit using relevent. In the simplest case, and given some data, the package creates
the two objects required by the rem() regression function for ego-centric relational event model
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fitting: eventlist and statslist. These two objects can be complex and non-intuitive to
create without specialized code; informR greatly simplifies the procedure. The package allows
users to specify sufficient statistics for general families of event sequences (or patterns, called
s-forms as introduced below) to include in statslists. Additionally, tools for adding and
dropping covariates from statslists are included in the package. This paper illustrates how
to use the informR package using included data from a subset of the US Department of Labor
Statistics’ American Time Use Survey. Package informR is available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=informR.

While informR is intended to interface with relevent, we note that various other packages
for R support event modeling through survival analysis (often called event history analysis in
the social sciences, or failure/reliability analysis in engineering fields; Blossfeld and Rohwer
2002). Mills (2011) provides a good introduction to those packages and methods involving
the estimation of event hazards for, e.g., the timing of death or the likelihood of marrying by
a particular age. Additionally, in the CRAN Task View on “Survival Analysis” (Allignol and
Latouche 2014) a list is maintained that describes packages for the analysis of time to event
data. Packages such as survival (Therneau and Grambsch 2000; Therneau 2014) and muhaz
(Gentleman 2010) can be used to fit closely related models, although they do not currently
support the full range of models described e.g., by Butts (2008). Users of these packages
may be able to employ informR to help generate inputs for their associated functions as well,
although we do not explore these potential applications in this paper.

1.1. The relational event modeling framework

Before discussing the use of the informR package, it is useful to briefly review the relational
event modeling framework. A relational event as discussed by Butts (2008) is a discrete
event (taken to have zero duration in continuous time) in which some actor (e.g., person,
organization, or other entity) directs some action towards some target (e.g., another person,
a location or object, or even the actor him/her/itself).1 Events may be of distinct types, but
are here treated as otherwise unvalued (though see e.g., Brandes, Lerner, and Snijders (2009)
for valued extensions); the risk set of events at any given time point (a subset of the Cartesian
product of the set of possible senders, possible receivers, and possible event types) may be
fixed, or may itself evolve as a function of the past event history. These features make the
relational event framework useful for modeling complex social dynamics (e.g., conversation,
radio or email communication, or adversarial interactions) or behavioral sequences involving
complex interactions between an individual and his or her environment (so-called “egocentric”
relational events).

Most relational event modeling to date has focused on the case in which event hazards can
be taken to be piecewise constant functions of sender, receiver, or higher-order covariates,
and the past event history. The inputs to these functions are taken to represent factors that
enhance or inhibit the propensity for actors to take particular actions, as determined by their
associated parameters. A typical development (per Butts 2008, pp. 159–166) is as follows. Let
S be the set of all potential senders, R the set of all potential receivers, and C the set of all
potential event types. A relational event a is defined as a tuple (s, r, c, t) ∈ S×R×C×R, with

1By considering sets of individuals or objects to be valid senders or receivers one can likewise represent
“hypergraphic” events involving multiple interactants; likewise, actions emitted by a sender having no well-
defined target can be represented by adding a “null receiver” to the set. For an example of the former, see e.g.,
DuBois, Butts, McFarland, and Smyth (2013).
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the last element representing the time at which the event occurs. For notational convenience,
we also define s(a) ∈ S, r(a) ∈ R, c(a) ∈ C, and τ(a) ∈ R to be the event’s sender, receiver,
type, and time (respectively). Let At = (a1, . . . , aM ) be the set of all events to have occurred
by time t (i.e., the event history at t); the set of possible (i.e., non-zero hazard) events at t is
then designated by A(At) ⊆ S ×R× C × {t}. The hazard of an arbitrary event, a, at time t
is then parameterized as

λ(a, θ,Xt) =

{
exp

[
θ>u (s(a), r(a), c(a), At, Xt)

]
a ∈ A(At)

0 a 6∈ A(At)
(1)

≡ λaAtθ, (2)

where u is a p-vector of statistics, θ ∈ Rp, and Xt is a set of covariates. In the piecewise
constant model, it is assumed that hazards change only when events occur (hence λ does not
depend directly on t), and hence Xt may likewise change only at realized events. The impact
of this latter restriction may be easily relaxed by the introduction of exogenous events (not
discussed in Butts 2008), as described below. We note that while the log-linear form is a
natural choice for hazard modeling (as it guarantees non-negativity and allows coefficients
to be interpreted in terms of logged rate multipliers), other functions can also be employed;
since the relevent package supports only the log-linear case, this is our focus here.

Given the above formulation, the development of the likelihood for an observed event history
is fairly straightforward. We extend the above-cited development only by the introduction
of exogenous events, which are implemented in package relevent but were not discussed in
the above paper. We assume that we observe an event history At over time interval [0, t),
treating time 0 as the onset of risk for all potential events; for notational convenience, we
define the null event a0 with τ(a0) = 0 to mark the onset of the observation period. In
general, we model the event history as being the result of a continuous time event process
in which the hazard of any potential event is given by Equation 1. Some events, however,
may be considered exogenous, in the sense that (1) their hazards are assumed unrelated to
the observed events, and (2) their hazards are not a function of θ. Exogenous events may
represent the actions of environmental or other entities that affect (but are not affected by)
the system under study, or they may be used as “book keeping” devices to model systems in
which hazards change for reasons other than endogenous events. For instance, “clock events”
that occur deterministically at fixed periods in time (e.g., every hour, day, etc.) can be used
to model changes in hazards due to time period, and exogenous events can also be used
to capture the impact of changes in covariates (i.e., Xt changing at times other than those
associated with endogenous events). We here denote endogeneity via the indicator ε, such
that ε(ai) = 1 if ai ∈ At is endogenous, and 0 otherwise. Subject to this minor extension, the
joint likelihood of At under the above-described process becomes (per ibid., Equation 2)

p(At|θ,X) =

M∏
i=1

[(
λaiAτ(ai−1)

θ

)ε(ai) ∏
a′∈A(Aτ (ai))

exp
[
−λa′Aτ(ai−1)θ

(τ(ai)− τ (ai−1))
] ]

×
∏

a′∈A(Aτ )

exp [−λa′Aτθ (t− τ (aM ))] . (3)

Butts (2008) also considers the case in which the temporal order of events is known, but the
event times are not. The observed data likelihood of At here becomes a product of categorical
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distributions with outcome probabilities proportional to the event hazards. With the minor
addition of exogenous events, this likelihood is given by (per ibid., Equation 3)

p(At|θ,X) =
M∏
i=1

[
λaiAτ(ai−1)

θ∑
a′∈A(Aτ (ai)) λa′Aτ (ai−1)θ

]ε(ai)
, (4)

which depends only on the hazards of the potential and realized events (and not the inter-
event times). Note that, like Equation 3, the likelihood of Equation 4 depends upon the
assumption of piecewise constant hazards.

The estimation function rem() in the relevent package, along with its dyadic-data cousin
rem.dyad(), fits both ordinal and interval time relational event models (Butts 2015). As
discussed below, the interval time likelihood model is fit by supplying data on event types
and complete timing of events to rem() with timing argument timing = "interval", while
the ordinal time model is fit by supplying only the ordered events with timing = "ordinal".
The scope of the discussion here will cover how to construct model statistics and to format
data in both cases using the informR toolkit.

As discussed in detail in subsequent sections, the basic model specification for rem() involves
two arguments: the eventlist (a matrix, or list thereof, containing the observed event se-
quence in one column and, optionally, the timing information in another) and the statslist

(a three dimensional – event number by event type by statistic – array, or list thereof, con-
taining the sufficient statistics for the model). Package informR aids in the construction of
these objects. The complete signature of rem() is documented as follows:

rem(eventlist, statslist, supplist = NULL, timing = c("ordinal",

"interval"), estimator = c("BPM", "MLE", "BMCMC", "BSIR"),

prior.param = list(mu = 0, sigma = 1000, nu = 4), mcmc.draws = 1500,

mcmc.thin = 25, mcmc.burn = 2000, mcmc.chains = 3, mcmc.sd = 0.05,

mcmc.ind.int = 50, mcmc.ind.sd = 10, sir.draws = 1000, sir.expand = 10,

sir.nu = 4, verbose = FALSE).

As there are no “canned” sufficient statistics for the rem() model-fitting routine, users must
supply their own properly formatted data structure to eventlist and array of sufficient
statistics to statslist. The purpose of package informR is to simplify the construction of
the eventlist and statslist objects for a variety of egocentric relational event models,
greatly reducing the difficulty of specifying and fitting such models in practice. The balance
of the paper focuses on the informR tools, and how they may be used to assist with common
modeling tasks of sequence analysis in the REM framework.

2. Getting started

The informR package can be downloaded and installed from CRAN; the package depends
upon the abind (Plate and Heiberger 2011) and relevent packages for R, which can also be
obtained from CRAN as of the time of this writing. Load the package in the usual way using
library("informR"). The example data used in this paper is packaged in informR and
can be loaded with data("atus80ord", package = "informR") and data("atus80int",

package = "informR"), respectively for the ordinal and interval cases. The only individual
level covariate included in this subset is the sex of the respondent (1 = Male).
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The example data come from the pooled 2003–2008 American Time Use Survey (ATUS). The
ATUS is a nationally representative sample of the non-institutionalized adult US population.
The survey collects information on how people spend their time during a single randomly
selected day. The type of each activity and its duration is recorded. The included subset
represents event histories from respondents aged 80 and above. In addition to the activity
variables, unique identifiers and respondent’s gender are also included in the subset. The
two data.frames that hold the event history data differ in that atus80ord contains only
sequences of activity spells and atus80int restructures each activity spell observation into two
event types, a starting event and a stopping event. Thus, in atus80ord, the first informant’s
(20030101031049) first activity spell is coded as Sleeping but in atus80int, this same activity
spell is recorded as two observations Sleeping|START and Sleeping|STOP and associated with
event timing in the Time column. Naturally, nrow(atus80int) == 2 * nrow(atus80ord).
There are 62,352 and 124,704 respective observations on 3,430 individuals. To make this clear,
consider the print output of the first five activity spells from the following code snippet:

R> library("informR")

R> data("atus80ord", package = "informR")

R> data("atus80int", package = "informR")

R> atus80ord[1:5, ]

Activities TUCASEID SEX

1348 Sleeping 20030101031049 2

1349 Eating 20030101031049 2

1350 Private personal care 20030101031049 2

1351 Household Production 20030101031049 2

1352 Eating 20030101031049 2

R> atus80int[1:10, ]

Events Time TUCASEID SEX

200301010310491 Sleeping|START 0 20030101031049 2

200301010310492 Sleeping|STOP 240 20030101031049 2

200301010310493 Eating|START 240.001 20030101031049 2

200301010310494 Eating|STOP 270 20030101031049 2

200301010310495 Private personal care|START 270.001 20030101031049 2

200301010310496 Private personal care|STOP 300 20030101031049 2

200301010310497 Household Production|START 300.001 20030101031049 2

200301010310498 Household Production|STOP 780 20030101031049 2

200301010310499 Eating|START 780.001 20030101031049 2

2003010103104910 Eating|STOP 810 20030101031049 2

The Time column of the atus80int data set records the time, in cumulative minutes, that
the event took place in each respondent’s event history. The duration elapsed between each
pair of “starting” and “stopping” events constitute a spell of that type of activity. Each
“stopping” event is offset from the next starting event by 0.001 minutes, which enforces the
“no simultaneous events” assumption of the relational event framework. For example, actor
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20030101031049 started sleeping at time 0, woke up 4 hours later (240/60), then she began
to eat breakfast a fraction of a second later, which took about 30 minutes to eat etc.

Having summarized the structure of the example data, we next discuss how package informR
can be used to construct sequence statistics for the rem() function. The first step is to create
an eventlist object using the gen.evl() function. For ordinal time relational event models,
the gen.evl() function takes two arguments: (1) eventlist, which is a two-column matrix
or a data frame consisting of event observations in the first column and an event history
grouping factor in the other (e.g., a unique informant id), and (2) an optional parameter
called null.events which is a character vector of event types that should be treated as
exogenous or otherwise not modeled directly. In this case, we are going to use the respondent
id variable, TUCASEID, as the grouping factor and since there are no truly exogenous events in
this data, we treat missing spell types (NA) as exogenous (i.e., for illustrative purposes only):

R> atus80ord[which(is.na(atus80ord[, "Activities"])), "Activities"] <-

+ "MISSING"

R> rawevents <- cbind(atus80ord$Activities, atus80ord$TUCASEID)

R> evls <- gen.evl(rawevents, null.events = "MISSING")

R> names(evls)

[1] "eventlist" "event.key" "null.events"

R> evls$eventlist[[1]]

[1] 1 2 3 4 2 4 1

attr(,"char")

[1] "a" "b" "c" "d" "b" "d" "a"

R> evls$event.key

id event.type

[1,] "a" "Sleeping"

[2,] "b" "Eating"

[3,] "c" "Private personal care"

[4,] "d" "Household Production"

[5,] "e" "Travel"

[6,] "f" "Communication"

[7,] "g" "Leisure"

[8,] "h" "Personal Care"

[9,] "i" "MISSING"

[10,] "j" "Waiting"

[11,] "k" "Volunteering"

[12,] "l" "Caregiving"

[13,] "m" "Education"

[14,] "n" "Work Production"

R> evls$null.events

[1] "MISSING"
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The resulting object evls stores the eventlist in evls$eventlist. Inevls$eventlist each
element is a vector of numeric unique event type ids, which have a corresponding alphabetic
attribute that is used in regular expression matching in other methods – the character vector
attribute of the first eventlist can be obtained using attr(evls$eventlist[[1]], "char").
The package currently supports event histories with 52 event types or less. The event types
are mapped to their respective alphabetic ids in evls$event.key. Because we passed a
vector to null.events in gen.evl(), the evls object contains a list of the exogenous events
in evls$null.events. Correspondingly, any event type listed in null.events is assigned
a numeric id value of 0 in the eventlist for consistency with how rem() handles exogenous
events.2

Because event histories with fewer than two events cannot identify standard relational event
models, any event history in the data having fewer than two events is dropped and a warning
is issued. Additionally, gen.evl() can be used to build eventlist objects for the interval time
relational event model; the only difference is that eventlist is passed as a three-column
matrix where the first two columns index the events and the temporal information, respec-
tively, and the third column indexes the event history grouping factor. Finally, as gen.evl()
conditions on the observed event types to generate the event key, users may need to append
non-observed yet potential events to it after the fact. We revisit both of these latter points
below.

With the eventlist stored in evls$eventlist, we can create the second object required to
fit a model using rem(), the statslist. A simple statslist object will store the intercept
sufficient statistics for the egocentric relational event model. This is accomplished through the
gen.intercepts() function. This function takes four arguments, evl, basecat, type and
contr. The evl argument expects an object passed from gen.evl(), as above. The basecat

parameter allows a user to specify which event type should be treated as the baseline category
for the ordinal relational event model – if not specified, the default behavior is to take the
first event type in alphabetic order. The type argument is used to indicate whether effects
specified within the statslist are to be considered“global” (type = 1) or“local” (type = 2)
by rem(); global effects are assumed to be homogeneous (i.e., pooled) across event histories,
while local effects are allowed to vary for each event history. The default behavior is to assign
all statistics to be global. Though not used in this example, the logical argument contr is
used to indicate whether or not the resulting statslist should include contrasts by dropping
a baseline category. When generating statistics for the interval relational event model, this
parameter should usually be passed as contr = FALSE – which also overrides any value passed
to basecat.

R> alpha.ints <- gen.intercepts(evls, basecat = "Sleeping")

R> length(alpha.ints)

[1] 3430

R> dim(alpha.ints[[1]][[1]])

[1] 7 13 12

2Exogenous events are not directly modeled but may affect the sufficient statistics of an event sequence, as
described in Section 1.1. See the documentation in help("rem") for additional details.
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R> alpha.ints[[1]][[1]][1, , ]

Eating Private personal care Household Production Travel

Sleeping 0 0 0 0

Eating 1 0 0 0

Private personal care 0 1 0 0

Household Production 0 0 1 0

Travel 0 0 0 1

Communication 0 0 0 0

Leisure 0 0 0 0

Personal Care 0 0 0 0

Waiting 0 0 0 0

Volunteering 0 0 0 0

Caregiving 0 0 0 0

Education 0 0 0 0

Work Production 0 0 0 0

Communication Leisure Personal Care Waiting Volunteering

Sleeping 0 0 0 0 0

Eating 0 0 0 0 0

Private personal care 0 0 0 0 0

Household Production 0 0 0 0 0

Travel 0 0 0 0 0

Communication 1 0 0 0 0

Leisure 0 1 0 0 0

Personal Care 0 0 1 0 0

Waiting 0 0 0 1 0

Volunteering 0 0 0 0 1

Caregiving 0 0 0 0 0

Education 0 0 0 0 0

Work Production 0 0 0 0 0

Caregiving Education Work Production

Sleeping 0 0 0

Eating 0 0 0

Private personal care 0 0 0

Household Production 0 0 0

Travel 0 0 0

Communication 0 0 0

Leisure 0 0 0

Personal Care 0 0 0

Waiting 0 0 0

Volunteering 0 0 0

Caregiving 1 0 0

Education 0 1 0

Work Production 0 0 1

Once both an eventlist and a statslist is generated, we can fit a baseline egocentric
discrete relational event model using rem(). In this example, we employ the Bayesian posterior
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mode (BPM) estimator, along with a weakly informative independent Student’s t prior:

R> alpha.fit <- rem(eventlist = evls$eventlist, statslist = alpha.ints,

+ estimator = "BPM", prior.param = list(mu = 0, sigma = 100 , nu = 4))

R> summary(alpha.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

Post.Mode Post.SD Z value Pr(>|z|)

Eating -0.0524425 0.0156947 -3.3414 0.0008335 ***

Private personal care -0.6843110 0.0189127 -36.1827 < 2.2e-16 ***

Household Production 0.3306130 0.0143563 23.0292 < 2.2e-16 ***

Travel 0.0078847 0.0154572 0.5101 0.6099800

Communication -0.7191476 0.0191342 -37.5844 < 2.2e-16 ***

Leisure 0.5687237 0.0137056 41.4956 < 2.2e-16 ***

Personal Care -1.8716218 0.0299893 -62.4097 < 2.2e-16 ***

Waiting -3.6080413 0.0674144 -53.5203 < 2.2e-16 ***

Volunteering -3.5948544 0.0669831 -53.6681 < 2.2e-16 ***

Caregiving -3.3621502 0.0598342 -56.1911 < 2.2e-16 ***

Education -5.0212337 0.1352830 -37.1165 < 2.2e-16 ***

Work Production -3.7153701 0.0710354 -52.3031 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 319859.4 on 61537 degrees of freedom

Residual deviance: 245959.8 on 61525 degrees of freedom

Chi-square: 73899.6 on 12 degrees of freedom, asymptotic p-value 0

AIC: 245983.8 AICC: 245983.9 BIC: 246092.2

Log posterior: -124191.7

Prior parameters: mu=0 sigma=100 nu=4

The Bayesian“p values”here can be interpreted as two times the posterior probability that the
true value of the associated parameter has a sign opposite that of the posterior mode (under
an asymptotic z-approximation); this is equivalent to the result that would be obtained via
a standard (frequentist) two-sided z-test of the hypothesis that the parameter value is zero,
under the assumption that the posterior standard deviation is the standard error.

The results of this crude baseline model suggest that all endogenous events except Household
Production and Leisure are significantly less likely to occur than Sleeping, and that Travel
is not significantly more likely to occur than Sleeping. Note that, in the ordinal timing case
of the egocentric relational event model, an intercept-only model such as this is equivalent
to a series of Poisson models, and the sample means are approximately equal to the BPM
estimates in this case:

R> pois.mle <- log(prop.table(table(atus80ord$Activities))[-c(7, 10)] /

+ prop.table(table(atus80ord$Activities))[10])

R> round(cbind(BPM = alpha.fit$coef[order(names(alpha.fit$coef))],

+ pois.mle), 4)
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BPM pois.mle

Caregiving -3.3622 -3.3622

Communication -0.7191 -0.7191

Eating -0.0524 -0.0524

Education -5.0212 -5.0212

Household Production 0.3306 0.3306

Leisure 0.5687 0.5687

Personal Care -1.8716 -1.8716

Private personal care -0.6843 -0.6843

Travel 0.0079 0.0079

Volunteering -3.5949 -3.5949

Waiting -3.6080 -3.6080

Work Production -3.7154 -3.7154

3. Sequence statistics

While intercept-only models are interesting, the real strength of the informR tools comes from
their ability to generate sufficient statistics to model complex event sequences using rem().
Here, we introduce the term s-form (or “sequence form”) to describe canonical sequences of
events that we wish to model. Each s-form has a prefix and suffix. The prefix may consist
of any combination of valid event types and represents the event sequence that precedes an
event to be predicted. Correspondingly, the suffix should be a single event type representing
the event to be predicted by the preceding events of the prefix. The suffix is always the final
event type in the s-form framework.

For example, a simple s-form might consist of the event sequence a //b //c , which is read as
“event a leads to event b which predicts event c” – or, less deterministically, “event a followed
by event b predicts event c” Here, the prefix is “a //b” and the suffix is event “c.” As discussed
below, it is possible to parameterize s-forms in several different ways using package informR.

The informR package uses simple regular expressions (regex) based on the alphabetic ids
mapped to the event types in the event.key element in an eventlist object to represent
s-forms. Two special regex operators are permitted in s-form expressions: the “|” character
(alternation operator) and the “+” character (repetition operator) (Friedl 2006, pg. 18). The |
operator is used to differentiate between two possible event paths and the + operator is used
to indicate repetition, or persistence, of the preceding event. A single + operator may be
nested within an | statement (see Section 3.1 on complex sequences, below, for example code)
but nested | statements are not currently supported. The columns of Table 1 respectively
report various useful canonical s-forms, their corresponding regex form, and their definitions.

Building sufficient statistics using the s-form framework is accomplished through the func-
tions gen.sformlist() and glb.sformlist(). The first function, gen.sformlist(), can be
used to construct statistics for specific sequences. For example, digram and trigram s-forms
(e.g, a //b and a //b //c) are easily constructed using this function. The second function,
glb.sformlist(), pools multiple s-form regular expressions into a single statistic. This is
particularly handy for modeling, say, a class of behaviors that is characterized by multiple
s-forms sharing a common feature. Both functions are wrappers for an internal function,
gen.sform(), which has limited functionality to the user. The mandatory arguments for
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s-form regex Definition

a //a aa Inertial term: s-form of the type “event a pre-
dicts event a”.

a //b ab Basic digram transition term: s-form of the type
“event a predicts event b”.

aNN //b a+ b Transition term with persistence: s-form of the
type “some series of events a predicts event b”.

a //b //c abc Basic trigram transition term: s-form of the type
“event a followed by event b predicts event c”.

a
  
c

b
@@

(a|b)c Transition term with disjunction: s-form of the
type “event a OR event b predicts event c”.

Table 1: Examples of canonical s-forms, s-form regular expression representations, and s-form
definitions for modeling relational events using informR and rem().

gen.sformlist are: evl, an eventlist object, and sforms, a character vector of regex s-
forms. The mandatory arguments for glb.sformlist are: evl, an eventlist object, sforms,
a list of character vectors of regex s-forms, and new.names, which is a character vector of
variable names that has the same length as sforms. Additional optional arguments for both
functions include: cond = FALSE, interval = FALSE, and warn = TRUE, which I will discuss
below. Using the examples provided in Table 1, generating sufficient statistics for modeling
inertial (or persistence) effects of the endogenous events is done by:

R> a1 <- paste(evls$event.key[-9, 1], evls$event.key[-9, 1], sep = "")

R> beta.sforms <- gen.sformlist(evls, a1)

The beta.sforms object is a list of three dimensional arrays, the length of which is equal
to the number of valid event histories in the dataset (i.e., the length of evls$eventlist).
Each element of beta.sforms consists of an i, j, k array where i indexes the event, j indexes
the event type, and k indexes the sufficient statistic to a corresponding element passed to
gen.sformlist by sforms. Examining the first event of the first element of beta.sforms
reveals the structure of the output:

R> beta.sforms[[1]][1, , ]

aa bb cc dd ee ff gg hh jj kk ll mm nn

a 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0 0 0 0 0 0
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j 0 0 0 0 0 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0 0 0 0 0 0 0

which shows that the row and column labels of each event matrix correspond to the alphabetic
ids of the event types in event.key and their inertial s-forms, respectively. For completeness,
it is useful to walk through the relationship between the inertial sufficient statistics and
the event history. Let us take the first three events from the event history associated with
atus80ord respondent “20030101033341” as our example.

R> evls$eventlist$"20030101033341"

[1] 1 2 2 7 1

attr(,"char")

[1] "a" "b" "b" "g" "a"

R> sapply(attr(evls$eventlist$"20030101033341", "char")[1:3],

sf2nms, event.key = evls$event.key)

a b b

"Sleeping" "Eating" "Eating"

This subsequence consists of the actor sleeping followed by two instances of eating. The
sf2nms() is a convenience function that substitutes the character representation of the event
types with their respective names. The corresponding inertial s-forms for these two event
types are a //a , b //b . These are located in the beta.sforms$"20030101033341" sformlist:

R> beta.sforms$"20030101033341"[1:4, , c("aa", "bb")]

, , aa

a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

, , bb

a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0
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Thus, the inertial statistics relate back to the eventlist in the following way: the first event
has alphabetic id “a”, so the “a” column in the next event row (row 2) is equal to 1 in the “aa”
element of the array. Likewise, the second and third events have alphabetic id “b,” so the “b”
column in the third and fourth rows are set equal to 1 in the “bb” element of the array. This
is the general framework for the underlying statistic construction methods of the informR
package.

To use the newly created sufficient statistics in a relational event model, the beta.sforms

sformlist object needs to be appended to a statslist. This is easily done using the
slbind() function, which takes an sformlist and a statslist in arguments sformstats

and statslist, respectively. Optionally, slbind() can “translate” the alphabetic ids back
into event type names (i.e., from “bb” to “EatingEating”) if optional arguments new.names

= TRUE and event.key = evls$event.key are passed to it. For convenience, the function
sfl2statslist() can be used to directly convert an sformlist object to a statslist (i.e.,
without appending it to an already existing statslist as above), though name translation is
not currently supported.

R> beta.ints <- slbind(beta.sforms, alpha.ints, new.names = TRUE,

+ event.key = evls$event.key)

The new statslist, beta.ints, can now be directly passed to rem():

R> beta.fit <- rem(evls$eventlist, beta.ints, estimator = "BPM",

+ prior.param = list(mu = 0, sigma = 100, nu = 4))$coef

R> round(cbind(beta.fit[13:25]), 4)

[,1]

SleepingSleeping -1.0863

EatingEating -3.8336

Private personal carePrivate personal care -2.5093

Household ProductionHousehold Production -0.0121

TravelTravel -0.3470

CommunicationCommunication 0.4067

LeisureLeisure -0.1748

Personal CarePersonal Care 0.3683

WaitingWaiting 1.6504

VolunteeringVolunteering 3.2567

CaregivingCaregiving 3.2422

EducationEducation -8.3913

Work ProductionWork Production 2.9646

The inertial statistics suggest that, for the older US population, most spells of activity are
not likely to be immediately repeated, net of the overall tendency for the event to occur at
all. The exceptions, obviously, include communication, personal care, waiting, volunteering,
caregiving, and work production. The conditional probabilities of each activity spell being
followed by exactly the same type of activity spell can be derived in the usual way from
Equation 4. Consider, for example, the conditional probability that a spell of communication
is immediately followed by another spell of communication. Given that the most recent event
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was a communication event, only the CommunicationCommunication sequence term has a
satisfied prefix and is hence active (adding 0.4067 to the log hazard of a Communication

event). The conditional probability of the next event being a communication spell is then
equal to the total hazard of a communication event (the baseline times the digram effect),
divided by the total hazard of all events (the communication hazard plus the baseline hazards
for all other events). This can be computed for the above model as follows:

R> comComHaz <- exp(sum(beta.fit[c(5, 18)]))

R> allOthHaz <- exp(beta.fit[(1:12)[-5]])

R> comComHaz / sum(comComHaz + allOthHaz)

[1] 0.05074562

Hence, we predict an approximately 5% chance of the next event being a communication spell
given a Communication event (small, but about 1.5 times the base rate for this spell type).

3.1. Constructing complex sequences

The inertial s-forms provide a relatively simple example of how to construct sequence statistics
for rem(). Let us now consider a couple more complex cases using some gerontological theories
about the older US population to motivate our statistics. For example, the older population
is believed to have their sleep frequently interrupted by the need to use the bathroom or
perform some other personal care activity, or interrupted in order to help another older person
(usually a spouse) with similar needs (Barker and Mitteness 1988). These types of activities
are captured in the data by “Private personal care”, “Personal Care”, and “Caregiving” spell
types. Without loss of generality, we can use the | operator to combine information from the
two slightly different personal care spell types in our s-form construction. Thus, we can model
the likelihood of sleep being interrupted by personal care by using the s-form:

c
""

a
??

��
a ,

h
>>

and the likelihood of sleep being interrupted by providing care with the s-form: a // l
��
//a .

We use the persistence + operator after the “l” in the latter s-form because the inertial effect
of caregiving was very large and significant in the previously fit model (beta.fit, above),
which gives us reason to suspect that if caregiving is going to interrupt sleep, it will do so as
a sequence of caregiving spells rather than a single instance. Specifying the special operators
causes gen.sformlist() to use a slower algorithm for identifying valid subsequences and a
note is issued:

R> a2 <- c("a(c|h)a", "al+a")

R> gamma.sforms <- gen.sformlist(evls, a2)

Note:

a(c|h)a S-form(s) contains special regex syntax.

Using slow search methods.

Note:

al+a S-form(s) contains special regex syntax.

Using slow search methods.
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R> gamma.ints <- slbind(gamma.sforms, beta.ints, new.names = TRUE,

+ event.key = evls$event.key)

R> gamma.fit <- rem(evls$eventlist, gamma.ints, estimator = "BPM",

+ prior.param = list(mu = 0, sigma = 100, nu = 4))

R> summary(gamma.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

Post.Mode Post.SD Z value Pr(>|z|)

Eating 0.100907 0.016147 6.2495 4.118e-10 ***

Private personal care -0.787081 0.019822 -39.7081 < 2.2e-16 ***

Household Production 0.339104 0.015493 21.8873 < 2.2e-16 ***

Travel 0.052881 0.016301 3.2440 0.001179 **

Communication -0.746241 0.020027 -37.2617 < 2.2e-16 ***

Leisure 0.616306 0.014958 41.2014 < 2.2e-16 ***

Personal Care -2.036929 0.030837 -66.0543 < 2.2e-16 ***

Waiting -3.621061 0.068077 -53.1903 < 2.2e-16 ***

Volunteering -3.672055 0.069781 -52.6227 < 2.2e-16 ***

Caregiving -3.432682 0.064196 -53.4723 < 2.2e-16 ***

Education -5.019067 0.135321 -37.0901 < 2.2e-16 ***

Work Production -3.766753 0.073064 -51.5542 < 2.2e-16 ***

SleepingSleeping -0.848855 0.066511 -12.7626 < 2.2e-16 ***

EatingEating -3.858526 0.189726 -20.3373 < 2.2e-16 ***

Private personal carePriva... -2.27346 0.201444 -11.2858 < 2.2e-16 ***

Household ProductionHouseh... -0.040021 0.027019 -1.4812 0.138548

TravelTravel -0.371463 0.038617 -9.6192 < 2.2e-16 ***

CommunicationCommunication 0.386483 0.058181 6.6428 3.078e-11 ***

LeisureLeisure -0.208772 0.023220 -8.9909 < 2.2e-16 ***

Personal CarePersonal Care 0.556270 0.171652 3.2407 0.001192 **

WaitingWaiting 1.632468 0.508972 3.2074 0.001339 **

VolunteeringVolunteering 3.238798 0.255101 12.6961 < 2.2e-16 ***

CaregivingCaregiving 3.214235 0.211677 15.1846 < 2.2e-16 ***

EducationEducation -4.440779 38.358737 -0.1158 0.907835

Work ProductionWork Production 2.946673 0.318480 9.2523 < 2.2e-16 ***

Sleeping(Priv... |Pers... )Sleeping 1.215852 0.031546 38.5421 < 2.2e-16 ***

SleepingCaregiving+Sleeping -0.370198 0.267511 -1.3839 0.166401

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 315678.6 on 61537 degrees of freedom

Residual deviance: 241397.7 on 61510 degrees of freedom

Chi-square: 74280.92 on 27 degrees of freedom, asymptotic p-value 0

AIC: 241451.7 AICC: 241451.7 BIC: 241695.4

Log posterior: -123425.3

Prior parameters: mu=0 sigma=100 nu=4

The results suggest that, ceteris paribus, spells of sleep tend to be interrupted by personal care
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activities (β = 1.216∗∗∗) but not by caregiving (β = −0.370n.s.). However, overall tendencies
for sleep interruption to occur from any activity are unaccounted for in this model. To
control for this, we could construct individual sufficient statistics for all possible trigrams
(or, if theoretically meaningful, higher order sequences) and estimate their individual effects.
Alternatively, we could pool those trigrams into a single sufficient statistic and save degrees
of freedom. To accomplish this, use the glb.sformlist() function:

R> sleep.sfs <- paste("a", letters[2:14], "a", sep = "")

R> sleep.sforms <- glb.sformlist(evls, sforms = list(sleep.sfs),

+ new.names = "InterSleep")

R> sleep.ints <- slbind(sleep.sforms, gamma.ints)

R> sleep.fit <- rem(evls$eventlist, sleep.ints, estimator = "BPM",

+ prior.param = list(mu = 0, sigma = 100, nu = 4))

R> round(cbind(BPM = sleep.fit$coef, Z = sleep.fit$coef /

+ sleep.fit$sd)[26:28, ], 4)

BPM Z

Sleeping(Private personal care|Personal Care)Sleeping 1.5334 44.7723

SleepingCaregiving+Sleeping -0.2575 -0.9647

InterSleep -1.2908 -22.2002

Interestingly, the negative coefficient for the overall tendency for sleep interruption trigrams
is negative (−1.291∗∗∗), strongly suggesting that interruptions to sleep are not likely. That
is, whatever happens following a spell of sleep is not likely to result in more sleeping. When
sleep interruptions do occur, however, they are most likely to be the result of some personal
care activity.

4. Additional s-form parametrizations

The preceding exercise demonstrates how the informR package can handle statslist construc-
tion of most combinations of canonical s-forms. For example, consider a relatively complex
s-form:

b
��

aNN

CC

��
d ,

c
??

which contains both a persistence term and a divergence term preceding the suffix and which
would be passed as “a+ (b|c)d.” One exception to this is when an s-form contains more than
one persistence term inside a divergence statement, such as:

b pp
��

a
BB

��
d .

cNN
==

To obtain a properly formed sufficient statistic for such cases, the best strategy is to write
down each possible valid outcome of the s-form regex and pass them to glb.sformlist with
the sform parameter. Using this s-form as an example, there are two possible paths from “a”
to “d” that the internal gen.evl function can interpret. These are expressed by the following
s-form regexes: “a(b+ |c)d” and “a(b|c+)d.”
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R> tmp.sforms <- glb.sformlist(evls, list(c("a(b+|c)d", "a(b|c+)d")),

+ new.names = "a(b+|c+)d")

Note:

a(b+|c)d S-form(s) contains special regex syntax.

Using slow search methods.

Note:

a(b|c+)d S-form(s) contains special regex syntax.

Using slow search methods.

R> evls$eventlist[[1]]

[1] 1 2 3 4 2 4 1

attr(,"char")

[1] "a" "b" "c" "d" "b" "d" "a"

Examine the sformlist output that corresponds with the “a(b+ |c+)d” s-form:

R> tmp.sforms[[1]]

, , a(b+|c+)d

a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

From the example output, we see that the first three events in the event history are “a”, “b”,
“c” (corresponding to spells of sleeping, eating, then personal care activities). This selected
sub-sequence of the event history, not coincidentally, fulfills one of the many possible outcomes
from the complex s-form that we specified. Following our prior discussion on the relationship
between the s-form, the event history, and the statslist, we can see that since “a” occurs the
sufficient statistic for the s-form predicts that “b” or “c” will happen next and both respective
columns are incremented in the second event row of the statslist. The second event is “b”, and
since we predict at least one “b” with the “+” character in the s-form, both “b” and the suffix
event “d” columns are incremented in the third event row. Event “c” is no longer a predicted
outcome because “c” did not occur after “a.” Recall that there may be more than one way
to specify s-form regexes. Here, we could have achieved the same result with c("ab+d",

"ac+d") in the sform parameter.

Creative use of the above strategy may provide a work-around for many cases that are not
natively supported by package informR, such as s-forms with nested disjunctions.
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4.1. Conditioning out the prefix

The default settings of gen.sformlist() and glb.sformlist() produce sufficient statistics
that allow the model to influence the hazards of each non-initial element in the s-form, given
what has happened up to that point in the event history. For example, an s-form term
a //b //c will add its corresponding parameter value to the hazard of b given that a has
just transpired and to the hazard of c given that a //b has just transpired. Thus, this
term’s contribution to the likelihood of the event history grows larger as events of a occur
and the subsequence of events a //b occur. For certain applications, however, it is useful to
estimate only the hazard of the suffix event given the preceding events (i.e., without realizing
contributions to the likelihood from any prefix elements). To accomplish this, set cond =

TRUE in gen.sformlist() and glb.sformlist().

The names of the s-forms in the output will be slightly different when using gen.sformlist

with cond = TRUE as the prefix is enveloped between parentheses to indicate a conditional
s-form. Here is an example comparing the a //b //c s-form with and without the prefix
contributions to the likelihood:

R> abc.sform <- gen.sformlist(evls, c("abc"), cond = FALSE)

R> abc.cond.sform <- gen.sformlist(evls, c("abc"), cond = TRUE)

R> abc.sform[[1]]

, , abc

a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

R> abc.cond.sform[[1]]

, , (ab)c

a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

It should be clear that, in the case of simple digrams, there is no distinction between a //b
and (a) //b because only the hazard of the suffix event is affected in both cases. By contrast,
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a //b //c and (a //b) //c , are different: specifically, the former term is equivalent to the
combination of terms (a) //b and (a //b) //c with the paramaters for the latter constrained
to be equal. Unconditional s-forms are thus a parsimonious way to capture the tendency for
a given chain of events to take place, while conditional s-forms allow for the specification of
terms that affect only the end of a complex event sequence.

4.2. Modifying statslists

The above examples illustrate how easy it is to build complex statslists using the informR
package, including how multiple statslist models may be combined using the slbind() func-
tion. This section demonstrates how to modify statslists to create new models by dropping
and adding elements. Dropping elements of statslists is easy using the sldrop() function.
This function takes three arguments, statslist, varname, and type and returns a new
statslist that omits any sufficient statistic column matching any name in varname. The
type argument is used to indicate whether the new statslist should be “global” or “local”
– as in previously discussed methods.

Our example will create s-forms to test for communication-terminated sequences of events
(i.e., sequences of events that ultimately lead to a Communication spell):

R> sforms <- c("bf", "ef", "gf", "cf", "egf", "cef", "af")

R> delta.sforms <- gen.sformlist(evls, sforms)

R> delta.ints <- slbind(delta.sforms, alpha.ints)

R> delta.fit <- rem(evls$eventlist, delta.ints)

R> summary(delta.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

Post.Mode Post.SD Z value Pr(>|z|)

Eating -0.0524428 0.0156947 -3.3414 0.0008335 ***

Private personal care -0.6843113 0.0189127 -36.1827 < 2.2e-16 ***

Household Production 0.3306127 0.0143563 23.0291 < 2.2e-16 ***

Travel -0.0029505 0.0157808 -0.1870 0.8516886

Communication -0.9306083 0.0315665 -29.4809 < 2.2e-16 ***

Leisure 0.5750562 0.0141408 40.6664 < 2.2e-16 ***

Personal Care -1.8716223 0.0299893 -62.4097 < 2.2e-16 ***

Waiting -3.6080436 0.0674145 -53.5203 < 2.2e-16 ***

Volunteering -3.5948566 0.0669832 -53.6681 < 2.2e-16 ***

Caregiving -3.3621520 0.0598343 -56.1911 < 2.2e-16 ***

Education -5.0212453 0.1352840 -37.1163 < 2.2e-16 ***

Work Production -3.7153727 0.0710355 -52.3030 < 2.2e-16 ***

bf 0.2833377 0.0533442 5.3115 1.087e-07 ***

ef 0.7859901 0.0463006 16.9758 < 2.2e-16 ***

gf 0.3104193 0.0440410 7.0484 1.810e-12 ***

cf -0.3320642 0.0864922 -3.8392 0.0001234 ***

egf -0.0497697 0.0276494 -1.8000 0.0718562 .

cef 0.1498079 0.0418826 3.5769 0.0003478 ***

af -0.4283528 0.0821778 -5.2125 1.863e-07 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 315678.6 on 61537 degrees of freedom

Residual deviance: 245476.3 on 61518 degrees of freedom

Chi-square: 70202.27 on 19 degrees of freedom, asymptotic p-value 0

AIC: 245514.3 AICC: 245514.3 BIC: 245685.8

Log posterior: -141756.8

Prior parameters: mu=0 sigma=1000 nu=4

The coefficients for communication preceded by travel leads to leisure ("egf") and "Travel"

are not significant. We can drop the sufficient statistics for these terms from the model using
the sldrop() function and then compare the models by BIC:

R> delta.ints2 <- sldrop(delta.ints, c("egf", "Travel"))

R> delta.fit2 <- rem(evls$eventlist, delta.ints2)

R> names(delta.fit2$coef)

[1] "Eating" "Private personal care" "Household Production"

[4] "Communication" "Leisure" "Personal Care"

[7] "Waiting" "Volunteering" "Caregiving"

[10] "Education" "Work Production" "bf"

[13] "ef" "gf" "cf"

[16] "cef" "af"

R> c(delta.fit$BIC, delta.fit2$BIC)

[1] 245685.8 245667.1

The more parsimonious model is preferred by BIC.

The function slbind.cond() allows to add interaction variables to a statslist object.
The slbind.cond() function adds actor-by-event conditional or interaction variables to a
statslist object. This function is useful when an event history, or part thereof, depends
upon some variable (actor characteristics, temporality, etc). The function takes seven argu-
ments: intvar, a numeric variable; statslist, the statslist object; var.suffix, a character
string to append to the name of the new variable; sl.ind, the column indexes of the events
to be interacted with the intvar in each matrix element of the statslist; who.evs, for local
statistic construction, the indexes of the actors to receive the new variable; and, type, an
indicator for local or global statistics. Additional arguments can be passed to abind() using
R’s ellipsis arguments (...).

In the following example, a model that interacts an indicator for whether or not the respondent
is female with the terms in the sleep interruption s-forms modeled above is fit to the data.
This is motivated by the hypothesis that older males, due to declining bladder and prostate
function, are more likely to have their sleep interrupted to urinate (Tikkinen, Tammela,
Huhtalal, and Auvinen 2006) and that older females are more likely to be caretakers of their
afflicted spouses (Willette-Murphy, Todera, and Yeaworth 2006).
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R> sl.ind <- 26:27

R> fem.evs <- unlist(glapply(atus80ord$SEX, atus80ord$TUCASEID, unique,

+ regroup = FALSE))

R> fem.evs <- ifelse(fem.evs == 1, 1, 0)

R> gamma.ints2 <- slbind.cond(fem.evs, gamma.ints, sl.ind = sl.ind,

+ var.suffix = "FEM")

R> sl.ind <- 26:29

R> gamma.fit2 <- rem(evls$eventlist, gamma.ints2, estimator = "BPM",

+ prior.param = list(mu = 0, sigma = 100, nu = 4))

R> round(cbind(BPM = gamma.fit2$coef[sl.ind], Z = gamma.fit2$coef[sl.ind] /

+ gamma.fit2$sd[sl.ind]), 4)

BPM Z

Sleeping(Private personal care|Personal Care)Sleeping 1.2195 32.9940

SleepingCaregiving+Sleeping -0.5895 -1.6327

Sleeping(Private personal care|Personal Care)Sleeping.FEM -0.0120 -0.1929

SleepingCaregiving+Sleeping.FEM 0.5522 1.0512

Despite the gender interaction coefficients being in the hypothesized direction, the effects are
not statistically significant in this model. Older men are not more likely to have their sleep
interrupted for personal care activities and older women are not more likely to have their
sleep interrupted to perform caregiving activities in this population.

5. Using interval time data

The rem() function can fit models for sequences of events when the exact (or nearly exact)
timing of the events is known by providing the appropriate data in eventlist and setting the
timing argument to “interval.” In general, generating s-form sufficient statistics for interval
time models is the same as the ordinal time case, though there are subtle differences. We will
review how to construct s-forms for the interval time likelihood relational event model in this
section.

First, recall that the interval time data must contain three columns where the first column
indexes the events, the second column indexes the temporal information of when the event
transpired, and the third column indexes an event history grouping factor. In the example
data, atus80int, an “event” is recorded when an actor either starts or stops a particular
activity spell. Eventlist objects and statslist objects for intercept models are created for this
data using gen.evl() and gen.intercepts(), respectively, but with the interval time data
arguments needing to be specified. As the interval timing models take slightly longer to fit,
the example uses only a random subset (N = 500) of the data:

R> evlsint <- gen.evl(atus80int[, 1:3])

R> set.seed(570819)

R> evlsint$eventlist <- evlsint$eventlist[sample(1:length(evlsint$eventlist),

+ 500)]

R> evlsint$event.key
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id event.type

[1,] "a" "Sleeping|START"

[2,] "b" "Sleeping|STOP"

[3,] "c" "Eating|START"

[4,] "d" "Eating|STOP"

[5,] "e" "Private personal care|START"

[6,] "f" "Private personal care|STOP"

[7,] "g" "Household Production|START"

[8,] "h" "Household Production|STOP"

[9,] "i" "Travel|START"

[10,] "j" "Travel|STOP"

[11,] "k" "Communication|START"

[12,] "l" "Communication|STOP"

[13,] "m" "Leisure|START"

[14,] "n" "Leisure|STOP"

[15,] "o" "Personal Care|START"

[16,] "p" "Personal Care|STOP"

[17,] "q" "NA|START"

[18,] "r" "NA|STOP"

[19,] "s" "Waiting|START"

[20,] "t" "Waiting|STOP"

[21,] "u" "Volunteering|START"

[22,] "v" "Volunteering|STOP"

[23,] "w" "Caregiving|START"

[24,] "x" "Caregiving|STOP"

[25,] "y" "Education|START"

[26,] "z" "Education|STOP"

[27,] "A" "Work Production|START"

[28,] "B" "Work Production|STOP"

R> evlsint$eventlist$"20040706041558"

[,1] [,2]

[1,] 1 0.000

[2,] 2 240.000

[3,] 3 240.001

[4,] 4 300.000

[5,] 7 300.001

[6,] 8 310.000

[7,] 13 310.001

[8,] 14 340.000

[9,] 13 340.001

[10,] 14 450.000

[11,] 3 450.001

[12,] 4 510.000

[13,] 1 510.001

[14,] 2 570.000
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[15,] 13 570.001

[16,] 14 870.000

[17,] 13 870.001

[18,] 14 1020.000

[19,] 1 1020.001

[20,] 2 1650.001

attr(,"char")

[1] "a" "b" "c" "d" "g" "h" "m" "n" "m" "n" "c" "d" "a" "b" "m" "n" "m" "n"

[19] "a" "b"

R> int.base <- gen.intercepts(evlsint, type = 1, contr = FALSE)

Note that we now have twice as many event types as we did during the ordinal data example.
Each event list in evlsint$eventlist is now a two-column matrix where the first column
indexes the numeric code of the event type and the second column indexes the timing infor-
mation. Failing to set contr = FALSE in gen.intercepts() in the interval case may result
in an improperly identified model.

Before we can proceed with fitting the intercepts-only model, we need to consider that not
all sequences of events are possible – the event support, A(At), is not in this case fixed. Since
events in the present formulation indicate onsets and terminii of activity spells, the most
trivial constraint we must enforce is that a START event for a given activity cannot occur
if there has been a previous START event for that activity without the most recent event of
that activity being a STOP spell (i.e., we cannot initiate an activity in which we are already
engaged). Likewise, we cannot terminate an activity without starting it: a STOP event for a
given activity cannot occur unless the most recent event for that activity is a START event.
Likewise, there are obvious physical constraints that should induce additional restrictions on
event ordering, such as the fact that one cannot, e.g., initiate eating without first ceasing to
sleep. In the particular case of the ATUS, many of these issues are simplified by the nature of
the study, which defines activities such that subjects can be engaged in at most one activity
at any given time, and that activity begins with the onset of the first spell of the day. This
amounts to a blanket constraint that (1) no START event can occur unless the previous event
was a STOP event and (2) the only event that can immediately follow a START event is a STOP

event of the same activity type. rem() allows for the specification of arbitrary constraints of
this type, using the supplist argument (which allows users to specify at each point in the
event history those events that were at risk for occuring). As documented in help("rem"),
supplist is defined as follows:

If desired, support constraints for the event histories can be specified using supplist.
supplist should be a list with one element per history, each of which should be
an event order by event type logical matrix. The ijth cell of this matrix should
be TRUE if an event of type j was a possible next event given the preceding code
i− 1 events, and FALSE otherwise. (By default, all events are assumed to be pos-
sible at all times.) As with the model statistics, the elements of the support list
must be user supplied, and will often be history-dependent. (E.g., in a model for
spell-based data, event types will come in onset/termination pairs, with terminal
events necessarily being preceded by corresponding onset events.) (Butts 2015)
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Failure to specify support constraints where applicable can badly bias coefficient estimates,
and it is hence important that they be considered when fitting complex relational event
models.

Turning back to our example data, we can create a support list satisfying the constraints of
the ATUS data with the following R code:

R> eT <- evlsint$event.key[, 2]

R> supplist <- list()

R> for (i in 1:length(evlsint$eventlist)) {

+ supplist[[i]] <- matrix(0, nrow = NROW(evlsint$eventlist[[i]]),

+ ncol = length(eT))

+ colnames(supplist[[i]]) <- eT

+ }

R> for (i in 1:length(evlsint$eventlist)) {

+ evl <- evlsint$eventlist[[i]]

+ supplist[[i]][1, grep("START", eT)] <- 1

+ for (j in 2:(NROW(evl))) {

+ CE <- evl[j, 1]

+ PE <- evl[j - 1, 1]

+ if (PE == 0) supplist[[i]][j, grep("STOP", eT)] <- 1

+ if (PE != 0) {

+ if (grepl("START", eT[PE])) supplist[[i]][j, eT[CE]] <- 1

+ if (grepl("STOP", eT[PE])) supplist[[i]][j,

+ grepl("START",eT)] <- 1

+ }

+ }

+ }

Now we can fit a new baseline model by passing supplist = supplist to rem():

R> intfit.base<-rem(evlsint$eventlist, int.base, supplist = supplist,

+ timing = "interval", estimator = "BPM")

R> summary(intfit.base)

Egocentric Relational Event Model (Interval Likelihood)

Post.Mode Post.SD Z value Pr(>|z|)

Sleeping|START 4.967864 0.028421 174.7954 < 2.2e-16 ***

Sleeping|STOP -5.690678 0.028421 -200.2278 < 2.2e-16 ***

Eating|START 4.900197 0.029399 166.6787 < 2.2e-16 ***

Eating|STOP -3.589547 0.029399 -122.0974 < 2.2e-16 ***

Private personal care|START 4.282762 0.040032 106.9833 < 2.2e-16 ***

Private personal care|STOP -3.497837 0.040032 -87.3759 < 2.2e-16 ***

Household Production|START 5.272565 0.024405 216.0465 < 2.2e-16 ***

Household Production|STOP -3.760817 0.024405 -154.1017 < 2.2e-16 ***

Travel|START 4.934185 0.028904 170.7114 < 2.2e-16 ***

Travel|STOP -2.790073 0.028904 -96.5301 < 2.2e-16 ***
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Communication|START 4.256786 0.040555 104.9624 < 2.2e-16 ***

Communication|STOP -3.899224 0.040555 -96.1457 < 2.2e-16 ***

Leisure|START 5.509079 0.021683 254.0755 < 2.2e-16 ***

Leisure|STOP -4.653257 0.021683 -214.6055 < 2.2e-16 ***

Personal Care|START 3.217249 0.068199 47.1741 < 2.2e-16 ***

Personal Care|STOP -3.998140 0.068199 -58.6242 < 2.2e-16 ***

NA|START 2.698641 0.088388 30.5316 < 2.2e-16 ***

NA|STOP -4.242211 0.088388 -47.9951 < 2.2e-16 ***

Waiting|START 1.343119 0.174078 7.7156 1.199e-14 ***

Waiting|STOP -3.856553 0.174078 -22.1542 < 2.2e-16 ***

Volunteering|START 1.213907 0.185695 6.5371 6.273e-11 ***

Volunteering|STOP -4.582844 0.185695 -24.6794 < 2.2e-16 ***

Caregiving|START 1.430130 0.166667 8.5808 < 2.2e-16 ***

Caregiving|STOP -4.013357 0.166667 -24.0801 < 2.2e-16 ***

Education|START -0.207479 0.377964 -0.5489 0.583

Education|STOP -4.302118 0.377964 -11.3823 < 2.2e-16 ***

Work Production|START 1.430130 0.166667 8.5808 < 2.2e-16 ***

Work Production|STOP -4.863244 0.166667 -29.1795 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 174603.4 on 18228 degrees of freedom

Residual deviance: 21536.87 on 18200 degrees of freedom

Chi-square: 153066.6 on 28 degrees of freedom, asymptotic p-value 0

AIC: 21592.87 AICC: 21592.96 BIC: 21811.57

Log posterior: -38795.9

Prior parameters: mu=0 sigma=1000 nu=4

Per Equation 1, the coefficients for the intercept model are estimates of the log hazards (log λ)
for each event type, at each point in the event history for which the corresponding event type
is possible (i.e., in A(At)). Under this model (and due to the exclusivity constraint of the
ATUS), the starting event coefficient for a given activity is proportional to the log probability
that any given spell in the event history will be of the corresponding activity type. This can
be verified by simple tabulation:

R> bpm.start <- (exp(intfit.base$coef[grep("START",

+ names(intfit.base$coef))]) /

+ sum(exp(intfit.base$coef[grep("START", names(intfit.base$coef))])))

R> in.ids <- which(atus80int$TUCASEID %in% names(evlsint$eventlist) &

+ grepl("START", atus80int$Events))

R> mle.start <- prop.table(table(atus80int[in.ids, "Events"]))

R> round(cbind(BPM = sort(bpm.start), MLE = sort(mle.start)), 4)

BPM MLE

Education|START 0.0008 0.0008

Volunteering|START 0.0032 0.0032

Waiting|START 0.0036 0.0036

Caregiving|START 0.0039 0.0039
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Work Production|START 0.0039 0.0039

NA|START 0.0140 0.0140

Personal Care|START 0.0236 0.0236

Communication|START 0.0667 0.0667

Private personal care|START 0.0685 0.0685

Eating|START 0.1269 0.1269

Travel|START 0.1313 0.1313

Sleeping|START 0.1358 0.1358

Household Production|START 0.1842 0.1842

Leisure|START 0.2334 0.2334

By turns, the inverse exponents of the stopping event coefficients can here be interpreted as
the average duration of a particular spell of activity. For example, the average length of a
spell of sleeping in this population is 1

e−5.690678 = 296.0943 minutes, or roughly 5 hours. This
follows from the piecewise constant hazard assumption, which (together with the support
constraints) results in an exponential waiting time distribution for STOP events following a
corresponding START event.

Sequence statistics for interval time models are created and manipulated in the usual way
(see above for details). Caution should be taken to ensure that sequences of events are
properly specified in the s-form to include the onset and termination of each spell. Here,
we illustrate the power of rem() to estimate highly complex conditional sequence statistics
with the help of package informR via our sleep interruption example. Specifically, we will
construct a model with terms for sleep interrupted by any other spell of activity and by
personal care spells. We are defining the sleep interruption effects to be conditional on (1)
sleeping, then (2) waking, then (3) doing something else, and finally, (4) going back to sleep.
The sufficient statistics will be parametrized to model both the onset of sleeping and the
duration of the spell, given that sleep followed by the other activities had previously oc-
curred. This may be represented by a pair of s-forms: (Sleeping |Start → Sleeping |Stop →
Something|Start → Something |Stop) → Sleeping |Start , for the onset of a conditional sleep-
ing spell, and (Sleeping |Start → Sleeping |Stop → Something |Start → Something |Stop →
Sleeping |Start) → Sleeping |Stop for the duration of the conditional spell. To construct the
model, we need to use glb.sformlist() as both s-forms pool information from multiple spells
into single elements of the statistic:

R> sleepA <- paste("ab", c(letters[seq(1, 26, 2)], "A"),

+ c(letters[seq(2, 26, 2)], "B"), "a", sep = "")

R> sleepB <- paste("ab", c(letters[seq(1, 26, 2)], "A"),

+ c(letters[seq(2, 26, 2)], "B"), "ab", sep = "")

R> sleep.glbs <- glb.sformlist(evlsint,

+ list(sleepA, sleepB, c("abefa", "abopa"), c("abefab", "abopab")),

+ cond = TRUE, new.names = c("Inter.Sl.Ons", "Inter.Sl.Dur",

+ "PerCare.Sl.Ons", "PerCare.Sl.Dur"))

R> sleep.int <- slbind(sleep.glbs, int.base)

R> intfit.sleep <- rem(evlsint$eventlist, sleep.int, supplist = supplist,

+ timing = "interval", estimator = "BPM")

R> summary(intfit.sleep)
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Egocentric Relational Event Model (Interval Likelihood)

Post.Mode Post.SD Z value Pr(>|z|)

Sleeping|START 4.989059 0.029361 169.9212 < 2.2e-16 ***

Sleeping|STOP -5.707896 0.029248 -195.1566 < 2.2e-16 ***

Eating|START 4.900197 0.029399 166.6787 < 2.2e-16 ***

Eating|STOP -3.589547 0.029399 -122.0974 < 2.2e-16 ***

Private personal care|START 4.282762 0.040032 106.9833 < 2.2e-16 ***

Private personal care|STOP -3.497837 0.040032 -87.3759 < 2.2e-16 ***

Household Production|START 5.272565 0.024405 216.0465 < 2.2e-16 ***

Household Production|STOP -3.760817 0.024405 -154.1017 < 2.2e-16 ***

Travel|START 4.934185 0.028904 170.7114 < 2.2e-16 ***

Travel|STOP -2.790073 0.028904 -96.5301 < 2.2e-16 ***

Communication|START 4.256786 0.040555 104.9624 < 2.2e-16 ***

Communication|STOP -3.899224 0.040555 -96.1457 < 2.2e-16 ***

Leisure|START 5.509079 0.021683 254.0755 < 2.2e-16 ***

Leisure|STOP -4.653257 0.021683 -214.6055 < 2.2e-16 ***

Personal Care|START 3.217249 0.068199 47.1741 < 2.2e-16 ***

Personal Care|STOP -3.998140 0.068199 -58.6242 < 2.2e-16 ***

NA|START 2.698641 0.088388 30.5316 < 2.2e-16 ***

NA|STOP -4.242211 0.088388 -47.9951 < 2.2e-16 ***

Waiting|START 1.343119 0.174078 7.7156 1.199e-14 ***

Waiting|STOP -3.856553 0.174078 -22.1542 < 2.2e-16 ***

Volunteering|START 1.213907 0.185695 6.5371 6.273e-11 ***

Volunteering|STOP -4.582844 0.185695 -24.6794 < 2.2e-16 ***

Caregiving|START 1.430130 0.166667 8.5808 < 2.2e-16 ***

Caregiving|STOP -4.013357 0.166667 -24.0801 < 2.2e-16 ***

Education|START -0.207479 0.377964 -0.5489 0.58305

Education|STOP -4.302118 0.377964 -11.3823 < 2.2e-16 ***

Work Production|START 1.430130 0.166667 8.5808 < 2.2e-16 ***

Work Production|STOP -4.863244 0.166667 -29.1795 < 2.2e-16 ***

Inter.Sl.Ons -0.890707 0.184920 -4.8167 1.459e-06 ***

Inter.Sl.Dur 0.353266 0.187985 1.8792 0.06021 .

PerCare.Sl.Ons 1.314628 0.232737 5.6485 1.618e-08 ***

PerCare.Sl.Dur 0.021551 0.243891 0.0884 0.92959

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 174603.4 on 18228 degrees of freedom

Residual deviance: 21489.30 on 18196 degrees of freedom

Chi-square: 153114.1 on 32 degrees of freedom, asymptotic p-value 0

AIC: 21553.30 AICC: 21553.41 BIC: 21803.24

Log posterior: -42776.04

Prior parameters: mu=0 sigma=1000 nu=4

We again note that, overall, sleep interruption is rare, the evidence for which is captured by the
negative coefficient for Inter.Sl.Ons (β = −0.891∗∗∗), which, is interpreted as the conditional
log hazard of returning to sleep versus doing some thing else; this has a correspondingly low
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conditional probability of 0.0568. However, given that sleep interruption occurs at all, it tends
to decrease the average sleeping spell by a factor of 0.7024 ( 1

e0.353266
), or roughly 90 minutes.

R> exp(-0.890707 + 4.989059) /

+ sum(exp(intfit.sleep$coef[grep("START", names(intfit.sleep$coef))]))

[1] 0.05677088

Moving onto interruptions directly caused by personal care needs, we see that, net of the
overall tendency for interruption to occur, a spell of personal care that follows a sleeping
spell increases the chances that the next event will indeed be sleeping. Ergo, personal care
activities, such as using the bathroom, or changing clothes, interrupt spells of sleeping in
this population (with conditional probability 0.5151). However, such interruptions do not
significantly affect the average duration of sleep.

5.1. Dyadic data

As we have discussed throughout this paper, the general modeling function in the relevent
package is rem(). For dyadic relational event data (where events are sender, receiver, action
type tuples), the rem.dyad() function is appropriate for modeling large numbers of dyadic
relational event statistics (currently, 34 classes of sufficient statistics are available, though
users could specify more than that using the covariate terms). In principle, rem() can be used
to fit models for dyadic relational event data as well as the ego-centric data demonstrated here;
this allows support for a wider range of event types, self-directed events, support constraints
etc., at the cost of the simplicity and computational optimizations afforded by rem.dyad().
While the primary purpose of the informR package is to aid in the construction of models for
ego-centric data, some of its functions may be useful for constructing such dyadic models to
use with rem(). As a proof-of-concept, a simple example of how informR tools can be used
to construct dyadic models based on the example in the rem.dyad() documentation from the
relevent package is provided in the Appendix A.

6. Conclusion

This paper has outlined the basic functionality of the informR package for R. Sufficient statis-
tics to model event sequences for both ordinal and interval time data were constructed and
employed in relational event models using real data and the relevent package. In addition,
code for manipulating these statistics and constructing conditional models was introduced.
The informR package greatly simplifies the use of the rem() modeling function, specifically,
and the modeling of event histories with dependent sub-features more generally. It is hoped
that this toolkit will lead to wider use of relational event models for complex event sequences,
particularly by researchers engaged with non-dyadic data.

Computational details

The version of package informR used in this tutorial is 1.0-5 and the version of package
relevent is 1.0-4.
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The average batch run-time (n = 30) of the examples employed in this tutorial was 12.5
minutes on a 2.2 GHz Intel T6600 processor with 3.8 GB of RAM (absolute maximum memory
consumption was 1.8 GB as estimated by the bourne-shell program top) using Linux kernel
v2.6.32.
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A. Dyadic models

In this appendix, we demonstrate a proof-of-concept for fitting a model of dyadic data with
rem() from the relevent package. Normally, dyadic data is modeled using rem.dyad() and
the examples here are derived from the example code in that relevent package function. Since
rem.dyad() and rem() are optimized using different routines – optim() and trust (Geyer
2014), respectively – results may differ slightly between models. The example is simple: we
fit a relational event model of fixed-effects for sending and receiving. Extension to other sorts
of dyadic relational event terms can be performed using techniques similar to those shown
here.

In this example, we estimate fixed effects for sending and receiving ties among an artifi-
cial network of five actors using both estimating functions: rem.dyad() and rem(). With
rem.dyad(), these terms are conveniently added to the dyadic relational events model by
passing c("FESnd", "FERec") to the argument effects of that function. With rem(), how-
ever, the burden of generating the sufficient statistics to add to the model falls entirely on the
user. Like the egocentric (non-dyadic) cases described in the main text of this manuscript,
the informR tools are also helpful in this case. Specifically, we can use gen.evl() and
gen.intercepts(), with minor modifications, to facilitate model fitting with rem(). For
completeness, we fit both ordinal and interval likelihood models. Also, we demonstrate the
use of maximum likelihood estimation (MLE) to fit these models.

We begin by drawing an artificial network from a simple relational events process unfolding
among five actors:

R> set.seed(867)

R> n <- 5

R> tmax <- 25

R> roweff <- rnorm(n)

R> roweff <- roweff - roweff[1]

R> coleff <- rnorm(n)

R> coleff <- coleff - coleff[1]

R> lambda <- exp(outer(roweff, coleff, "+"))

R> diag(lambda) <- 0

R> ratesum <- sum(lambda)

R> esnd <- as.vector(row(lambda))

R> erec <- as.vector(col(lambda))

R> time <- 0

R> edgelist <- vector()

R> while (time < tmax) {

+ drawsr <- sample(1:(n^2), 1, prob = as.vector(lambda))

+ time <- time + rexp(1, ratesum)

+ if (time < tmax)

+ edgelist <- rbind(edgelist, c(time, esnd[drawsr], erec[drawsr]))

+ else

+ edgelist <- rbind(edgelist, c(tmax, NA, NA))

+ }

To fit a dyadic relational event model with rem(), we must convert the edgelist data used by
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rem.dyad() to eventlist form. To do this, we first note that the set of all distinct event types
in the sense of rem() consists of all ordered sender/receiver pairs, of which there are 20. We
enumerate the set of event types here using simple sender/receiver concatenation, with the
informR function gen.evl() thus producing an eventlist suitable for use with other informR
routines. Also, since this relational events process occurs within a single observation period
on a single network, the grouping factor column is set to an arbitrary constant value (here,
1). We also specify an exogenous event at the end of observation.

R> evl <- gen.evl(cbind(apply(edgelist[, 2:3], 1, paste, collapse = "."),

+ rep(1, NROW(edgelist))), null.events = "NA.NA")

The evl object now contains the required combination of timing and event type information.
The latter can be found in the event key, i.e.:

R> evl$event.key

id event.type

[1,] "a" "1.5"

[2,] "b" "4.3"

[3,] "c" "2.5"

[4,] "d" "5.3"

[5,] "e" "4.5"

[6,] "f" "4.2"

[7,] "g" "5.2"

[8,] "h" "2.3"

[9,] "i" "1.3"

[10,] "j" "4.1"

[11,] "k" "3.2"

[12,] "l" "2.1"

[13,] "m" "3.5"

[14,] "n" "5.1"

[15,] "o" "3.1"

[16,] "p" "5.4"

[17,] "q" "1.2"

[18,] "r" "1.4"

[19,] "s" "2.4"

[20,] "t" "NA.NA"

Note that the order of the event codes is based on the order in which events are encountered
in the data, and hence the event key must be explicitly searched when creating statistics.
Also, upon inspection of the event key, we note that this particular model did not exhaust all
possible 20 (n2 − n) events; actor 3 never sends to actor 4. One of the limits of the informR
package is that it conditions on the observed set of actions and not on the set of possible
actions. As a result, we need to append this potential event to the event key.

R> evl$event.key <- rbind(evl$event.key, c("u", "3.4"))
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To fit the fixed effect model, we must create intercept dummies for each event involving the
same sender, and as well as a set for each receiver. We can accomplish this by first using
gen.intercepts() with the contrasts parameter set to FALSE (gen.intercepts(evl, contr

= FALSE) and then manipulating the resulting statslist array directly.

R> ev.ints <- gen.intercepts(evl, contr = FALSE)

R> sformlist <- c(

+ lapply(2:n, function(z) {

+ str <- paste(z, ".", sep = "")

+ grep(str, evl$event.key[-20, 2])}),

+ lapply(2:n, function(z) {

+ str <- paste(".", z, sep = "")

+ grep(str, evl$event.key[-20, 2])

+ })

+ )

R> b1 <- lapply(sformlist, function(x) ev.ints[[1]][[1]][, , x])

R> b1.l <- lapply(b1, apply, MARGIN = 1:2, sum)

R> FEs <- array(unlist(b1.l), dim = c(nrow(b1.l[[1]]), ncol(b1.l[[1]]),

+ length(b1.l)))

R> dimnames(FEs) <- list(dimnames(b1[[1]])[[1]], dimnames(b1[[1]])[[2]],

+ c(paste("FESnd", 2:n, sep = "."),paste("FERec", 2:n, sep = ".")))

We can then fit the models using rem.dyad() and rem(). There are minor differences in
function signatures and default behavior as the two functions have different development
histories. Here, we have set the argument fit.method in rem.dyad() to "MLE", which is
equivalent to the argument estimator in rem() and we set the argument hessian to TRUE

in rem.dyad().

R> fit.rem.dyad <- rem.dyad(edgelist, n, effects = c("FESnd", "FERec"),

+ fit.method = "MLE", hessian = TRUE)

R> fit.rem <- rem(evl$eventlist, sfl2statslist(list(FEs)), estimator = "MLE")

R> lapply(list(rem.dyad = fit.rem.dyad, rem = fit.rem), summary)

$rem.dyad

Relational Event Model (Ordinal Likelihood)

Estimate Std.Err Z value Pr(>|z|)

FESnd.2 0.115533 0.075571 1.5288 0.1263159

FESnd.3 -1.427850 0.137976 -10.3486 < 2.2e-16 ***

FESnd.4 0.581748 0.067459 8.6237 < 2.2e-16 ***

FESnd.5 -0.345661 0.101777 -3.3962 0.0006832 ***

FERec.2 -0.258956 0.112914 -2.2934 0.0218250 *

FERec.3 0.893957 0.085375 10.4709 < 2.2e-16 ***

FERec.4 -1.927157 0.226697 -8.5010 < 2.2e-16 ***

FERec.5 1.253683 0.084184 14.8922 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Null deviance: 4871.061 on 813 degrees of freedom

Residual deviance: 4074.199 on 805 degrees of freedom

Chi-square: 796.862 on 8 degrees of freedom, asymptotic p-value 0

AIC: 4090.199 AICC: 4090.378 BIC: 4127.804

$rem

Egocentric Relational Event Model (Ordinal Likelihood)

MLE Std.Err Z value Pr(>|z|)

FESnd.2 0.115526 0.075571 1.5287 0.1263399

FESnd.3 -1.427881 0.137977 -10.3487 < 2.2e-16 ***

FESnd.4 0.581745 0.067459 8.6236 < 2.2e-16 ***

FESnd.5 -0.345653 0.101777 -3.3962 0.0006833 ***

FERec.2 -0.258950 0.112913 -2.2934 0.0218271 *

FERec.3 0.893943 0.085375 10.4708 < 2.2e-16 ***

FERec.4 -1.927213 0.226701 -8.5011 < 2.2e-16 ***

FERec.5 1.253660 0.084183 14.8920 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 4871.061 on 813 degrees of freedom

Residual deviance: 4074.199 on 805 degrees of freedom

Chi-square: 796.862 on 8 degrees of freedom, asymptotic p-value 0

AIC: 4090.199 AICC: 4090.378 BIC: 4127.804

As can be seen by the output, the results of the two ordinal model fitting routines are quite
consistent. As we discussed above, there are minor differences in precision between the output
of rem.dyad() and rem(). These small discrepancies arise due to the fact that the two
functions use different optimizer routines: optim(), and trust(), respectively.

Finally, for completeness, we fit the interval timing likelihood models thusly:

R> evl2 <- gen.evl(cbind(apply(edgelist[, 2:3], 1, paste, collapse = "."),

+ edgelist[, 1], rep(1, NROW(edgelist))), null.events = "NA.NA")

R> evl2$event.key <- rbind(evl2$event.key, c("u", "3.4"))

R> fit.rem.dyad2 <- rem.dyad(edgelist, n, effects = c("FESnd", "FERec"),

+ fit.method = "MLE", ordinal = FALSE, hessian = TRUE)

R> fit.rem2 <- rem(evl2$eventlist, sfl2statslist(list(FEs)),

+ estimator = "MLE", timing = "interval")

R> lapply(list(rem.dyad = fit.rem.dyad2, rem = fit.rem2), summary)

As with the ordinal cases, these models are consistent and, happily, lack the null-deviance
bug:

$rem.dyad

Relational Event Model (Temporal Likelihood)

Estimate Std.Err Z value Pr(>|z|)

FESnd.2 0.109054 0.063964 1.7049 0.088207 .
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FESnd.3 -1.434714 0.131277 -10.9289 < 2.2e-16 ***

FESnd.4 0.575397 0.054698 10.5196 < 2.2e-16 ***

FESnd.5 -0.353124 0.090571 -3.8989 9.665e-05 ***

FERec.2 -0.269518 0.091848 -2.9344 0.003342 **

FERec.3 0.883657 0.056590 15.6152 < 2.2e-16 ***

FERec.4 -1.938053 0.216464 -8.9532 < 2.2e-16 ***

FERec.5 1.243079 0.052571 23.6457 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 835.564 on 813 degrees of freedom

Residual deviance: 38.71497 on 806 degrees of freedom

Chi-square: 796.849 on 7 degrees of freedom, asymptotic p-value 0

AIC: 54.71497 AICC: 54.89408 BIC: 92.32082

$rem

Egocentric Relational Event Model (Interval Likelihood)

MLE Std.Err Z value Pr(>|z|)

FESnd.2 0.109054 0.063964 1.7049 0.088207 .

FESnd.3 -1.434712 0.131277 -10.9289 < 2.2e-16 ***

FESnd.4 0.575397 0.054698 10.5196 < 2.2e-16 ***

FESnd.5 -0.353124 0.090571 -3.8989 9.665e-05 ***

FERec.2 -0.269519 0.091848 -2.9344 0.003342 **

FERec.3 0.883657 0.056590 15.6152 < 2.2e-16 ***

FERec.4 -1.938054 0.216464 -8.9532 < 2.2e-16 ***

FERec.5 1.243079 0.052571 23.6457 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 835.564 on 813 degrees of freedom

Residual deviance: 38.71497 on 805 degrees of freedom

Chi-square: 796.849 on 8 degrees of freedom, asymptotic p-value 0

AIC: 54.71497 AICC: 54.89408 BIC: 92.32082

Affiliation:

Christopher Steven Marcum
National Human Genome Research Institute
National Institutes of Health
Bethesda, MD, United States of America
E-mail: chris.marcum@nih.gov

mailto:chris.marcum@nih.gov


36 informR: Constructing Relational Event Sequence Statistics in R

Carter T. Butts
Departments of Sociology, Statistics, and EECS, and
Institute for Mathematical Behavioral Sciences
University of California, Irvine
Irvine, CA, United States of America
E-mail: buttsc@uci.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 64, Issue 5 Submitted: 2012-03-12
March 2015 Accepted: 2014-07-30

mailto:buttsc@uci.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The relational event modeling framework

	Getting started
	Sequence statistics
	Constructing complex sequences

	Additional s-form parametrizations
	Conditioning out the prefix
	Modifying statslists

	Using interval time data
	Dyadic data

	Conclusion
	Dyadic models

