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Abstract

Empirical analysis of statistical algorithms often demands time-consuming experi-
ments. We present two R packages which greatly simplify working in batch computing
environments. The package BatchJobs implements the basic objects and procedures to
control any batch cluster from within R. It is structured around cluster versions of the
well-known higher order functions Map, Reduce and Filter from functional programming.
Computations are performed asynchronously and all job states are persistently stored in
a database, which can be queried at any point in time. The second package, BatchEx-
periments, is tailored for the still very general scenario of analyzing arbitrary algorithms
on problem instances. It extends package BatchJobs by letting the user define an array
of jobs of the kind “apply algorithm A to problem instance P and store results”. It is
possible to associate statistical designs with parameters of problems and algorithms and
therefore to systematically study their influence on the results.

The packages’ main features are: (a) Convenient usage: All relevant batch system
operations are either handled internally or mapped to simple R functions. (b) Portability:
Both packages use a clear and well-defined interface to the batch system which makes
them applicable in most high-performance computing environments. (c) Reproducibility:
Every computational part has an associated seed to ensure reproducibility even when
the underlying batch system changes. (d) Abstraction and good software design: The
code layers for algorithms, experiment definitions and execution are cleanly separated
and enable the writing of readable and maintainable code.
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1. Introduction

Time-consuming computer experiments play an increasingly important role in modern statis-
tical applications for researchers and practitioners alike. While many scientists have access
to powerful cluster systems or could purchase computing resources from cloud providers such
as Amazon, the effort required to harness the computational power of these systems is still
substantial. The time spent to familiarize oneself with their ins and outs is a major hindrance
to adoption. But even after overcoming this hurdle, practitioners are burdened by spartanic
tooling and little or no automation to support their typical computing workflow.

In traditional high performance computing (HPC), many nodes of a cluster are often combined
for hours or days at a time to solve a single problem. Statistical simulations on the other
hand usually call for many repetitions of the same or very similar (often smaller) tasks. Most
of the time, these tasks are “embarrassingly parallel”, i.e., they do not have to communicate
with each other.

To understand the intricacies of typical HPC clusters we have to examine how they are
managed. Here, job schedulers come into play, sometimes also referred to as batch queuing
systems. It is their duty to assign tasks to worker nodes, manage job submissions, handle
the job accounting and perform routine housekeeping. On these systems it is not possible to
directly start a process on a given node. Instead, we have to submit special job definition
files to the batch system which in turn — based on our resource requirements — decides when
and where our task is executed. All jobs are placed in queues and processed in some order to
guarantee efficiency and fair share among users.

On such HPC clusters, the user has basically two different options to parallelize a collection
of independent tasks. He could request a large number of nodes/CPUs for a lengthy amount
of time in a single batch job and then synchronously work on them by using one of the
already existing packages for explicit parallelism (see Section 2). But depending on the
requested resources, this single batch job might get queued for an unacceptably long time
or the approach is completely infeasible due to excessive resource requirements. Because of
this disadvantage the user might resort to creating many small batch jobs, exactly one for
each logical task. This is usually done by shell or R (R Core Team 2014) scripting for job
definitions, job submissions, reconstruction of result objects (because individual job return
values must be stored on disk) and so on. The outcome is often unportable boilerplate code.
Matters get worse if errors occur and the user has to effectively “crawl” through a large number
of log files to identify the potential problems.

From these considerations we can already draw some important conclusions: (a) The user
has to cope with many technicalities to operate such clusters. This includes commands on
the operating system level for submission and status overview as well as file formats for job
definitions. Even worse, both commands and file formats are not standardized across different
batch systems. (b) Being able to conveniently track and query the computational state of each
logical job would be beneficial. One obvious reason is that for very large statistical experiments
we will in general not be able to submit all jobs at once because due to queue management
overhead many systems impose technical limits on the number of job submissions. Also,
errors can occur in all stages and some jobs might have to be resubmitted. (¢) The smaller
we can construct our tasks, the more efficiently the batch system can schedule them on the
cluster because our resource requirements will be lower and we can exploit smaller gaps of
low load in the schedule. Many small jobs that require only a few minutes or hours will be
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scheduled much earlier than few large ones that require days of computation time and many
nodes. But this more efficient approach requires a considerable programming effort for the
client programmer and makes projects less portable and maintainable.

Our packages follow this more efficient “one batch job per independent task” approach, but
perform all necessary, tedious scripting internally and completely hide it from the end user.
Instead we export a convenient and portable application programming interface (API) built
on top of it. It does not replace the job scheduler, instead it is a front-end and abstraction
layer which feeds the many tasks into the batch system as resources allow and tracks their
processing.

Our R package BatchJobs (Bischl, Lang, and Bengtsson 2015a) implements the core infras-
tructure required to interact with, in principle, any cluster system. It enables a user to
conveniently define batch jobs, submit them to the scheduler, query the jobs’ status and col-
lect the results. Its main interface is designed to mimic the powerful functional programming
concepts of Map, Reduce and Filter — which are also available in R’s base package under
these names. Package BatchJobs transparently manages a persistent database to provide
live information on the computational state and cluster status. We also offer a mechanism
— coined “chunking” — to combine a number of quickly terminating tasks into a single batch
job to reduce overhead. As the cluster management is clearly separated from the user, user
written code must not be adjusted to work on other batch systems. Furthermore, seeding
mechanisms ensure reproducibility even when facing a batch system migration. Results can
be processed sequentially on a single machine or again in parallel on the batch system by
mapping over them again.

The second package, BatchExperiments (Bischl, Lang, and Mersmann 2015b), is tailored
for the general problem of studying combinations of algorithms on problem instances. This
subsumes among other things: benchmarking experiments, sensitivity analysis, statistical
simulation studies, parameter tuning or meta learning. Package BatchExperiments builds
upon the BatchJobs framework by letting the user quickly define sets of problems P and
algorithms A. Problems and algorithms can then be connected using statistical designs to
create batch jobs of the kind “apply algorithm A € A to problem instance P € P using
parameter settings D”.

Both packages are written in such a way that they can be used with almost any cluster. Even
a loosely coupled set of nodes, which are only accessible via the secure shell (SSH), can be
employed as a makeshift cluster. This is achieved by using an abstract interface to specify how
the BatchJobs package interacts with the cluster. Several implementations of these so-called
“cluster functions” are provided in the package, but system administrators and users are free
to implement their own versions which fit their environments. It should be noted that this
is a one-time effort for a site and we have invested a considerable amount of time to provide
flexible generic cluster functions which should work for a large number of installations.

The rest of the paper is organized as follows: Section 2 gives a brief overview of other com-
parable work. The following two sections introduce the packages BatchJobs and BatchEx-
periments. Section 5 addresses the aspects of reproducibility in computational statistics
and Section 6 finally provides conclusions as well as an outlook. Both packages are avail-
able from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/
package=BatchJobs and http://CRAN.R-project.org/package=BatchExperiments. For
further technical details we refer the reader to the material on the project web page at
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https://github.com/tudo-r/BatchJobs.

2. Review of other relevant work

A wealth of R packages for HPC are available. As of writing, the CRAN Task View “High-
Performance and Parallel Computing with R” (Eddelbuettel 2015) lists 80 packages for HPC
and parallel computing in R. The packages can roughly be split into three groups:

e Packages providing low level interfaces. The most widely used packages are Rmpi (Yu
2002, 2014) and nws (Revolution Analytics and Pfizer 2010). They allow R processes
to communicate with each other using the respective standardized protocol interface.
Their advantages shine in traditional HPC settings when there is one big task that
should be parallelized and there is significant communication between its subtasks to
synchronize or exchange temporary results. As they usually require inconvenient and
extensive reworking of the source code and are somewhat cumbersome to use, there is
a variety of more convenient high-level APIs.

o Packages providing high level interfaces, serving as bridge to other computing resources
or frameworks. Arguably most popular are package multicore (Urbanek 2014) to utilize
multiple CPU cores on a single host machine and package snow (Tierney, Rossini, Li,
and Sevcikova 2013) which offers different back ends, e.g., local and network sockets or
message passing interface (MPI), to utilize the computing power of up to a few dozen
machines. Both packages provide, among others, parallel Map-like functionality — a
concept well-known to experienced R programmers due to the popularity of R’s apply-
family of functions (e.g., lapply, sapply and mapply/Map). Most of the functionality
of multicore and snow is combined in the R package parallel which ships with R as of
version 2.14.0 as a base package and is maintained by the R Core Team. Another package
worth mentioning is the snowfall package (Knaus 2013) which is very similar to snow
but provides additional helper functions for common tasks in parallel computation. The
package foreach (Kane, Emerson, and Weston 2013; Revolution Analytics 2014) mimics
for-loop like semantic. Yet the functionality is conceptually similar to the apply-family
of functions as the iterations have to be independent. There are many different packages
on CRAN that can serve as a back end for foreach, they are all named do< Technology>.
A good overview of all functions and their respective advantages and disadvantages is
given in Schmidberger, Morgan, Eddelbuettel, Yu, Tierney, and Mansmann (2009).

o Packages tailored for specific tasks. In addition to the already mentioned packages,
there is a plethora of packages that implement parallel versions of statistical algorithms.
They usually employ one of the discussed packages internally to access the parallel
computing resources. The SPRINT package (Hill, Hambley, Forster, Mewissen, Sloan,
Scharinger, Trew, and Ghazal 2008) instead contains a few highly optimized routines
that are explicitly tuned to run well on large HPC clusters. There are also packages to
tap into the vast computing power of modern graphics processors, but these currently
require considerable low-level programming skills w.r.t. the graphics processing unit,
and it is especially hard to map memory-intensive algorithms to these architectures.

All of the packages described so far are “synchronous” in that they require a running R process
to orchestrate the parallel execution on multiple nodes that have been allocated and that all
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nodes must be in contact with the “master” R process during the whole execution. While this
is certainly feasible for, e.g., small benchmark studies, larger experiments tend to result in
job allocations that are too large for the cluster to satisfy because they would require tens
to hundreds of nodes for days or maybe even weeks at a time. What we really aim for is a
mechanism to run our tasks in an “asynchronous” fashion. That means, we want to define
all our independent tasks a priori and then let the job scheduler deal with their execution to
optimally exploit available computational resources.

Package BatchJobs is not intended to replace packages such as parallel or snowfall, but comple-
ments them by providing infrastructure and tools for large scale tasks which cannot or should
not be run synchronously. The mentioned packages for explicit parallelism are better suited
when one wants to implement a parallel version of an algorithm or parallelize over a (large)
data set. They can even be fruitfully combined with package BatchJobs, when one wants to
run an existing algorithm multiple times, which already allows explicit parallelization. In this
case multiple BatchJobs jobs can be spawned, where each individual job allocates more than
one core and internally uses explicit parallelization via one of the mentioned packages.

Package BatchJobs is not the first package which implements this idea. There is another R
package named batch (Hoffmann 2011), which is similar, but less fully featured. It provides
facilities to submit an R script to a batch system and combine the results as data frames. Pa-
rameters have to be passed as command line arguments and error handling is less sophisticated
compared to our package.

Another package under active development is RHIPE (Cleveland, Guha, Hafen, Li, Rounds,
Xi, and Xia 2011) which integrates R into a Hadoop (Apache Software Foundation 2014)
environment. Apache’s Hadoop is a derivation of Google’s MapReduce framework (Dean and
Ghemawat 2008) to support running applications in distributed environments, especially for
the purpose of handling very large data. The scope of the Hadoop system is however not as
broad as what we are aiming for. Hadoop focuses on efficiently processing massive amounts
of data distributed over many nodes by running the actual analysis code as “close” to the
data as possible, ideally on the node where the data is stored. This may fit some problems
naturally, but many statistical tasks do not map well to the Hadoop framework.

Finally it should be mentioned that there are language agnostic approaches to describe these
types of workflows. An example of such a system is makeflow (Bui, Yu, Thrasher, Carmichael,
Lanc, Donnelly, and Thain 2011).

3. The package BatchJobs

The R package BatchJobs provides the basic infrastructure and abstractions to work with R
on any cluster or batch system. First, you create a so-called registry object which defines a
directory where all relevant information, files and results of the computational jobs will be
stored. We currently require the cluster to provide a shared file system for all computational
nodes. All jobs are declared at the registry and their computational status is held in a
database. You do not have to query the database yourself (or be aware of its existence for that
matter), as it is transparently managed. Therefore, the registry bundles the access to both the
database and the information stored on the file system. The registry is automatically saved to
its associated project directory when it is created or its state is altered. It can be reused later,
e.g., when you login to the system again, by calling the function loadRegistry(file.dir).
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Jobs are not submitted when they are created, instead their definitions are stored in the
database until they are explicitly sent to the cluster. Every job has a unique ID that you can
use as a reference. Most functions of the BatchJobs and BatchExperiments packages allow
or require a vector of these IDs as an argument. During job submission short R scripts and
cluster job files are created, which are submitted to the batch system via operating system
(OS) commands (e.g., by an internal call to gsub). Jobs report their status to the database
and write results to disk as .RData files. Therefore, the status of each job is available to you
on the master node at all times.

Let us begin by looking at a first instructive toy example. Assume we want to optimize a cer-
tain objective function using simulated annealing, as provided by the R function optim. Since
we suspect that the function might be multimodal, we want to perform multiple optimization
runs from 10 random start points. These 10 runs shall now be performed in parallel.

R> library("BatchJobs")

R> library("soobench")

R> reg <- makeRegistry(id = "optimexample",

+ file.dir = "optimexample-files", packages = "soobench")

R> starts <- replicate(10, runif(5, min = -5, max = 5), simplify = FALSE)
R> myoptim <- function(start)

+ optim(par = start, fn = rosenbrock_function(5), method = "SANN")
R> batchMap(reg, myoptim, starts)

R> submitJobs(reg)

R> waitForJobs (reg)

R> reduceResultsVector(reg, fun = function(job, res) res[["value"]])

In the above code snippet, we have told our registry to store all relevant files in the directory
optimexample-files, which will be created in the current directory. We have also made
sure that the package soobench (Mersmann and Bischl 2012), which provides our objective
function (in this case the Rosenbrock function in 5 dimensions) will be loaded on every slave.
We then create 10 random start points and map the optim function over this list. After we
have submitted our jobs (and they have terminated), we collect all results in a numeric vector
by iterating over all stored result objects and picking out the final objective value of each run.

Figure 1 provides a visual overview of all common tasks which we can perform using the
packages. All functions mentioned in the diagram will be explained in more detail in this and
the following section.

3.1. Functional programming idioms for parallelization

The higher order functions Map, Reduce and Filter are arguably the most important building
blocks of functional programming and — as the name suggests — also appear in the famous
MapReduce framework (Dean and Ghemawat 2008). Package BatchJobs provides a paral-
lelized version of Map to the end user, which is in line with many other R packages for explicit
parallelism (see Section 2). The most important difference is that — as we work under the
control of a scheduler — the corresponding jobs are not executed at once but only defined and
stored. Their execution happens asynchronously after arbitrary subsets of jobs have been
submitted for execution.
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BatchJobs functions Shared functions BatchExperiments functions
Creating the registry | makeRegistry ) (' makeExperimentRegistry )
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reduceResults

filterResults
reduceResults<AggregationResultType>

Collecting results (reduceResultsExperiments)

Figure 1: Overview of the most important functions grouped by package and task. Shared
functions are functions from package BatchJobs that are also useful when working with pack-
age BatchExperiments.

The following overview lists the most important operations provided in package BatchJobs
for computing on the cluster:

batchMap: Applies a function over a list or vector. A batch version of R’s Map function which
is basically the same as lapply. One job is one function application.

batchExpandGrid: Generates a cross product of parameter vectors and applies a function to
each combination. A simple wrapper for expand.grid and batchMap.

batchReduce: Reduces (aggregates) a list or vector with a binary function. The binary
function is successively called to combine the elements of the vector — think of reducing
a numeric vector with the “+”-operation. In other languages this concept is also known
as folding or accumulation. batchReduce is nothing more than a batch aware version
of R’s Reduce function. Note that one job is not one step of the reduction but instead
a combination of several reduction steps. The results must then be reduced one final
time on the master node to obtain a single result object.

batchMapResults, batchReduceResults: Same as batchMap and batchReduce but operate
on the results of a previous registry to further transform them in parallel.

3.2. Submitting jobs

Jobs can be submitted to the batch system via the submitJobs function, which already
appeared in the previous example. It takes the registry and the selected job IDs as arguments,
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as well as an arbitrary list of resource requirements, which are to be handled by the cluster
back end. Usual examples for the latter are wall time and required memory.

R> submitJobs(reg, resources = list(walltime = 3600, memory = 4 * 1024))

Here, we have passed the wall time in seconds and requested 4 gigabytes of memory per job.
The function tries to submit as many jobs as possible. If either system limits or user limits
are exhausted (e.g., due to queue limits), the function waits until submission is possible again
and then continues to submit further jobs.

In some cases it may be advantageous to assign different computational resources to certain
subsets of the jobs. This can be achieved by submitting only a certain subset of job IDs. As
this is more likely to happen with package BatchExperiments, where your experimental setup
might contain algorithms of very different run times or problems that vastly differ in size, we
will discuss this more in-depth in Section 4.4.

3.3. Status queries

After you have submitted all or a subset of your jobs to the batch system, you can query their
status by using the showStatus function.

R> showStatus(reg)

Status for jobs: 200

Submitted: 200 (100.00%)
Started: 200 (100.00%)
Running: 100 ( 50.00%)
Done: 100 ( 50.00%)
Errors: 0 ( 0.00%)
Expired: 0 ( 0.00%)

Time: min=0.00 avg=0.00 max=1.00

The resulting output includes the number of jobs in the registry, how many have been sub-
mitted, have started to execute on the batch system, are currently running, have successfully
completed, have terminated due to an R exception or have expired because they hit the wall
time or required too much memory.

The last line shows the minimum, mean and maximum run times for all selected jobs. This is
useful if the user has to set wall times and is unsure how long each job will take or if there are
vast differences in execution times. If errors occurred, the first error messages are displayed
as well, see Section 3.6 for further remarks on debugging.

Simple helper functions that query the computational state of your jobs and which all re-
turn a vector of corresponding job IDs are: findSubmitted, findOnSystem, findRunning,
findDone, findErrors, findTerminated, findExpired. Negated versions exist in the form
findNot<State>.

If you want to access individual, detailed information regarding the computational state and
execution of jobs, you can use getJobInfo(reg, ids) to obtain a data.frame which contains
(among other things) job event and job run times, error messages, node names and batch job
IDs.
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3.4. Collecting results

After jobs have successfully terminated, we can load their results on the master. This can be
done in a simple fashion by using either loadResult(reg, id) or loadResults(reg, ids),
which return a single result exactly in the form it was calculated during mapping or load a
couple of these objects into a list.

The function reduceResults allows a more flexible aggregation and works very similar to
R’s usual Reduce. The passed reduce function must have the formal arguments aggr, job
and res. The argument aggr contains the so far aggregated results, while job holds a job
description object and the job result is passed as res. The argument job is rarely needed,
but can be useful in package BatchExperiments when a job contains the description of an
experiment, e.g., names of the current problem and algorithm and their respective parameters.

We now show a simple example of operating on results of numeric vectors, reducing them
into a vector by summing them up. Additionally we will cbind all result vectors into a single
matrix.

R> reg <- makeRegistry(id = "reduceexample")

R> batchMap(reg, function(x) rnorm(2), 1:3)

R> submitJobs(reg)

R> waitForJobs (reg)

R> reduceResults(reg, fun = function(aggr, job, res) aggr + res)

R> reduceResults(reg, fun = function(aggr, job, res) cbind(aggr, res))
R> reduceResultsMatrix(reg, rows = FALSE)

The last two lines in the above example are equivalent, the last one simply shows a more con-
venient way to perform the same operation. We provide the following wrappers to aggregate
results into the respective R data types: reduceResults[Vector,Matrix,DataFrame,List].
The following binary combination functions are used in the four wrappers respectively: c
(vector), cbind / rbind (matrix), rbind (data.frame) and c (list).

There is also a filterResults function which filters all results with a predicate, similar to
R’s Filter function, but instead of returning a subset of the results, it only returns the subset
of jobs IDs for which the predicate returns TRUE.

3.5. Chunking of small jobs

In a scenario with thousands of fast executing jobs, computation on classical HPC systems is
problematic. The vast number of jobs puts much stress on the scheduler and the starting of
R sessions on the slaves will likely introduce a considerable overhead.

In order to increase efficiency in such cases, we offer a mechanism that combines multiple
jobs together into chunks which are executed sequentially on the slaves within one R instance.
If you pass ids to submitJobs as a list of IDs, then each list element defines a chunk and
submitJobs internally combines them into one job for the batch system. You can either create
such a list yourself or use the helper function chunk.

In order to increase database throughput in the case of many quickly terminating jobs, we
cache the write operations on the worker for some time and then efficiently flush them to the
database in one go. To ensure efficiency we recommend to build chunks with an execution
time of at least 10 minutes.
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3.6. Debugging tools

In any large scale experiment many things can and will go wrong. The cluster might have
an outage, jobs may run into resource limits or crash, subtle bugs in your code could be
triggered or any other error condition might arise. In these situations it is important to
quickly determine what went wrong and to recompute only the minimal number of required
jobs.

While package BatchJobs cannot handle all conceivable error conditions, it does include ex-
tensive functionality to aid in debugging. Large parts of your code can and should be tested
independently of the batch system. For complex projects you can turn to test-driven de-
velopment and use either testthat (Wickham 2011a, 2014) or RUnit (Burger, Juenemann,
and Koenig 2015) to define your unit tests, possibly by directly developing an R package.
But other parts directly have to do with the execution of the experiment. Nearly everybody
forgets to load a required package or makes other trivial or less trivial mistakes in first code
versions. It is not very efficient to figure out these types of things while working live on the
batch system. Therefore, before you submit anything you should use testJob(reg, id) to
catch errors that are easy to spot because they are raised in many or all jobs. This function
runs the job without side effects in an independent R process on your local machine via R CMD
BATCH exactly as on the slave, redirects the output of the process to your R console, loads the
job result and returns it.

When you have submitted jobs and suspect that something is going wrong, the first thing to
do is to run showStatus to display a summary of the current state of the system. Suppose
we run the following artificial example on our cluster:

R> flakeyFunction <- function(value) {
+ if (value 7inj, 2:3) stop("Ooops.")

+ value™2
+ }
R> reg <- makeRegistry(id = "error")

R> batchMap(reg, flakeyFunction, 1:4)
R> submitJobs(reg)

Two of our four jobs will fail. If we call showStatus after all jobs have been processed, we
get the following output:

R> waitForJobs (reg)
R> showStatus(reg)

Status for jobs: 4

Submitted: 4 (100.00%)
Started: 4 (100.00%)
Running: 0 ( 0.00%)
Done: 2 ( 50.00%)
Errors: 2 ( 50.00%)
Expired: 0 ( 0.00%)

Time: min=0.00 avg=0.00 max=1.00
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Showing first 2 errors:
Error in 2: Error in function (value) : Ooops.
Error in 3: Error in function (value) : QOoops.

If we want to get the IDs of all jobs that failed due to an error we can use findErrors(reg).
And if we want to peek into the R log file of a job to see more context for the error we can
use showLog(reg, id).

Finally we can fix our code by using setJobFunction. This function allows us to redefine
the function that is mapped. This is meant as a last measure when errors have occurred and
we want to keep our already calculated results. We can then resubmit the jobs with missing
results by running:

R> failed <- findErrors(reg)
R> setJobFunction(reg, failed, fun = function(value) value~2)
R> submitJobs(reg, failed)

Please note that changing the mapped function is a dangerous operation. If the value of the
“new” map function for completed jobs is different from the value of the “old” map function,
the results will not be meaningful.

If unwanted jobs or jobs with programming bugs are still running on the cluster, you can
manually terminate them with the function killJobs(reg, ids).

3.7. Job database back end

We use RSQLite (Wickham, James, and Falcon 2014) as interface to SQLite (Hipp 2015).
SQLite calls itself a “self-contained, serverless, zero-configuration, transactional SQL database
engine”. This means that you do not have to install or configure a database server yourself.
Also, you do not have to worry whether it is possible that your jobs are allowed to communicate
with the database server when they get executed on a node, because they can directly access
the database file on the shared file system. As the jobs are concurrently executed, we write
their status into the database, making sure that the ACID (atomicity, consistency, isolation,
durability) properties hold.

Although we have not experienced any problems with SQLite up to now, for an extremely
large number of jobs with short computation times, lock congestion might get a serious issue
to deal with. To deal with this problem, we provide for these situations the Boolean option
staged.queries to cache all database queries sent from the nodes in files. These files are then
parsed and merged with the SQLite database on the master. Further technical information
regarding this topic is available on our project page.

3.8. Supported batch systems

Package BatchJobs is designed to work on any cluster using any type of batch system. To
communicate with the cluster internally, all interactions with the batch system are delegated
to a so-called “cluster functions” interface which must provide three low-level operations to
submit an R script as a job, kill a job based on its ID on the batch system and list current jobs
by ID on the batch system. All high-level functionality is built upon these simple operations.
The package currently provides the following implementations:

11
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Interactive execution (makeClusterFunctionsInteractive): All jobs are executed se-
quentially in the same R session. This setting is the default and provided for small
toy examples and to try out the package.

Multicore execution (makeClusterFunctionsMulticore): All jobs are executed in paral-
lel on the local machine in independent R processes. The multicore cluster functions
are very similar to the following SSH cluster functions and offer the same resource
management.

SSH cluster (makeClusterFunctionsSSH): Jobs are distributed to different (Linux) nodes
using the SSH as the underlying communication layer. All nodes must be accessible
without manually entering passwords (e.g., by ssh-agent or passwordless public key).
This mode is suited for ad-hoc clusters of workstations when you do not have access
to a true batch system. Resource management is possible in a rudimentary fashion:
The user can specify an upper limit on the total load for each worker and the maximal
number of jobs that should be run in parallel for the current registry on the worker.
This allows to avoid overallocating workers in general and also to leave computational
power available for competing users. The user can also exploit the waiting mechanism of
submitJobs by running this command in a terminal multiplexer (e.g., screen or tmux)
to submit jobs at once when computational resources become available.

True batch cluster mode (makeClusterFunctions[Torque,SGE,LSF,SLURM]): Currently
we support systems managed by TORQUE (Terascale Open-Source Resource and QUEue
Manager; Adaptive Computing Inc. 2014), Load Sharing Facility (Platform Computing
2012), Oracle / Sun Grid Engine (Gentzsch 2001) or SLURM (Simple Linux Utility for
Resource Management; Yoo, Jette, and Grondona 2003). Jobs are submitted, listed
and killed with the respective command line utilities (e.g., gsub, gselect and qdel for
TORQUE). Since each cluster is different and has different requirements for the job files,
a flexible approach is used where the user refers to a template and package brew (Horner
2011) is used to turn this into a job file. We provide examples of such templates in the
examples directory of the package which will run on many systems with only minor
modifications.

While the above cluster function implementations cover a wide variety of situations and sys-
tems, they may not work with the system available to you. In that case you will have to
write code to implement the three operations described previously. But this is not hard
and a one time effort. Anyone interested in writing a custom cluster function implementa-
tion is encouraged to look at the interface specification! and the source code of the existing
implementations.

3.9. Package configuration and status mailer

After installing the package you should set up a short configuration file. The configuration is
a concise description of your computing environment and personal settings. The file itself is
an R script that is sourced when package BatchJobs is loaded. To understand its content, let
us look at a simple example configuration:

"ttps://github.com/tudo-r/BatchJobs/wiki/Cluster-Functions
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R> cluster.functions <- makeClusterFunctionsTorque("torque.tmpl")
R> mail.start <- "first"; mail.done <- "last"; mail.error <- "all"
R> mail.from <- "<me@cluster.system>"

R> mail.to <- "<me@my.domain>"

R> mail.control <- list(smtpServer = "mx.uni.edu")

The first line specifies the batch system you are using. Here, we use a TORQUE-based
system and have therefore specified the path to the template portable batch system (PBS)
file as already explained in the previous section. Working on another architecture simply
means exchanging this single line in your configuration. This enables you to swap the back
end on the fly if you need to switch to a different cluster system. Examples are scaling up
from a local lab cluster to a larger cluster at a remote computing facility or if a different user
wants to replicate the results, but does not have access to the same type of cluster as you.

Package BatchJobs also contains a configurable status mailer that internally uses the package
sendmailR (Mersmann 2014). Mail sending is triggered at the start of a job (mail.start),
the successful completion (mail.done) and the termination by an R exception (mail.error).
For each of these events you can define for which jobs mails should be sent. You can set these
options to "none" to receive no mails at all, "first" for the first job, "last" for the last job,
"first+last" for both the first and last job and finally "all" for all jobs. The remaining
options set the return and recipient address fields for the status mails and the options passed
to sendmailR. For the latter, setting the SMTP server should be sufficient in most cases.

The configuration file must be named .BatchJobs.R and placed at one of three possible lo-
cations. If multiple configuration files are found, the more user-specific settings will overwrite
the more general settings in the following order: package directory < user home directory <
working directory. The configuration file in the package directory allows site administrators
to define reasonable global settings for all users. Placing a configuration file in your home
directory should suffice for most users, but for some scenarios it might be necessary to define
project specific configurations in the working directory of your current R session. The default
settings are to run jobs sequentially in the same R session and never to send any status mails.

Other configuration options include setting default resources, raising R warnings to errors,
enabling a debug mode and switching to the staged SQL queries already mentioned in Sec-
tion 3.7. All these options are in-depth explained in the wiki of the project web page?.

4. The package BatchExperiments

The package BatchExperiments expands package BatchJobs with an abstraction layer for the
very general task of applying a set of algorithms A to a set of problems P and recording
some arbitrary results. Both, problems and algorithms, may be parametrized using statistical
designs D. Here, the elements D € D contain both problem specific parameters Dp and
algorithm specific parameters D 4 so that D potentially consists of two parts: D = (Dp, Dy).
We call a problem P € P applied to specific parameter settings Dp a problem instance I =
P(Dp). An experiment E is defined to be an application of an algorithm A € A to a problem
instance I and it returns a final result R: E(P, A, D) = A(P(Dp),Da) = A(I,D4) = R. As
experiments might be stochastic, each one can be replicated any number of times. Such a
replicated experiment constitutes a batch job.

*https://github.com/tudo-r/BatchJobs/wiki/Configuration
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In our opinion, a wide range of statistical tasks can be mapped to this abstraction, espe-
cially in the domains of benchmarking and statistical evaluation. Many articles nowadays
include simulation studies and comparisons to alternative methods. Moreover, for a lot of
statistical domains comprehensive and meaningful comparison studies are still missing. Many
researchers have experienced the fact that theoretical results and guarantees quite often tell
only part of a method’s story, as mathematical assumptions will nearly always be violated to
some degree in practice. Empirical knowledge about a method’s behavior and characteristics
are equally important. In order to generate the data for such an analysis, we need two fun-
damental ingredients: First, enough computational power. This is already accessible to many
scientists and the situation will further improve when we take general technological progress
and specifically the rapid development in the cloud computing area into account. Secondly,
a framework to succinctly define these experiments; in a clean, convenient and reproducible
fashion.

Package BatchExperiments combines exactly these two aspects. It allows you to compare
many candidate methods to each other and work with large problem domains instead of a
few, possibly unrepresentative instances. Another option is to investigate the influence of
algorithm parameters and problem characteristics on performance measures (sensitivity anal-
ysis). “Benchmarking experiments” might subsume all of this under a single term, although
package BatchExperiments does not force you to follow a specific, formal methodology in
your experiments or analysis. You are free to set them up and focus on individual aspects
as you like. You might even start to build large, shared, growing databases of such empirical
results (see Vanschoren, Blockeel, Pfahringer, and Holmes 2012 for a recent example). From
these, sophisticated statistical models might be derived to further enhance our understanding
of statistical algorithms. Or one might be able to construct automatic algorithm selection
mechanisms, see for example the area of meta-learning in machine learning or hyper-heuristics
in optimization. Actually, we believe that an organized, machine-readable, publicly accessible
collection of such results would be a huge step forward in many areas of statistics.

In the following sections, we will stick to a rather simple, but not unrealistic example to explain
the package’s functionality. We will apply two classification algorithms on the famous iris
data set (Anderson 1935), vary a few of their hyper-parameters and evaluate the classification
performance.

Just as in package BatchJobs, we use a registry as the central meta-data object which records
technical details and the setup of the experiments. The internals are slightly different, there-
fore a special experiment registry is needed, which is created with makeExperimentRegistry
in the same way as before:

R> library("BatchExperiments")
R> reg <- makeExperimentRegistry(id = "iris_example")

Once the registry is created, you can start to add problems, algorithms and designs. Experi-
ments can afterwards be created from these building blocks.

4.1. Problems and algorithms

Some problems we encounter in practice are based on a “static” data object like a matrix,
data frame or a multidimensional array that always stays the same for all subsequent exper-
iments. Other problems are of a more “dynamic” nature, e.g., random numbers drawn from
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static problem part dynamic problem function | problem algorithm function
static in addProblem() dynamic in addProblem() | instance |algorithm in addAlgorithm()
problem é parameters algorithm é parameters
[ problem iterator ) [ algorithm iterator ]
problem design algorithm design
design/exhaustive in makeDesign () design/exhaustive in makeDesign()

Figure 2: Relationship of BatchExperiment functions. Grey rectangles require user input.
White boxes represent internal functions. A straight arrow stands for direct passing of the
object or function, a squiggly line denotes passing of the evaluated result.

a probability distribution. And yet others depend on a static object but are also stochastic
(e.g., subsampling) and/or depend on parameters so that the resulting problem instance can
also be marked as being dynamic in that regard. With this in mind, we opted for a unified
interface, which deals with all three possibilities.

To already illustrate the interplay of problems, algorithms and designs, we provide Figure 2
as a schematic overview. All further details will be covered in this section. As a reminder,
Figure 1 in the previous section may again prove to be useful to keep track of the general
tasks to perform.

The problem-defining function addProblem requires the registry reg and a unique problem
identifier id as its first two arguments. The latter is solely used for referencing purposes.
Additionally, at least one of the arguments static or dynamic must be given. The static
part may be any R object. The dynamic argument on the other hand is restricted to be a
function, which may have arbitrary parameters, which can later be filled in from a connectible
statistical design. If the dynamic function has static as a named argument in its signature,
then the static problem part will be loaded on the node and passed to the function. If your
problem does not have a dynamic part, you are of course free to omit the dynamic argument.

We now illustrate a typical workflow with our already mentioned toy classification example
for the iris data set. The iris data frame embodies the static part whereas resampled
observation indices — used for evaluation — may be interpreted as the “dynamic” part of the
problem instance. In the following snippet we use a simple subsampling strategy and therefore
define a function subsample, which takes the additional argument ratio to define the ratio
of training to test observations.

R> subsample <- function(static, ratio) {
n <- nrow(static)

train <- sample(n, floor(n * ratio))
test <- setdiff(seq(n), train)
list(test = test, train = train)

+ + + + +

}

R> data("iris", package = "datasets")
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R> addProblem(reg, id = "iris", static = iris, dynamic = subsample,
+ seed = 123)

The function addProblen files the problem (including the static part and the dynamic func-
tion) to the file system and the problem gets recorded in the registry. The dynamic function
call will be evaluated at a later stage on the workers. In this process, the static part will
be loaded and passed to the dynamic function. Note that we set a special problem seed to
synchronize the experiments in the sense that the same resampled training and test sets are
used for the algorithm comparison in each distinct replication. See Section 5 for detailed
information on the seeding mechanism.

Algorithms are added to the registry in a similar manner. The first two arguments to
addAlgorithm should again be the registry reg as well as a unique algorithm identifier id.
The third argument fun has to be a function with the two optional formal arguments static
and dynamic. Further arguments (e.g., hyper-parameters or strategy parameters), which can
later be connected to a statistical design may be analogously defined as for the dynamic
function in addProblem. When a job gets executed on the node the static object and the
evaluated result of the dynamic function (the problem instance) are passed to your algorithm.
Both arguments are optional, and if they do not show up in the algorithm’s signature, they
will neither be loaded nor calculated. The return value of an algorithm can be any R object
and will automatically be stored the file system for later retrieval.

For our example we define functions for a classification tree (package rpart, Therneau and
Atkinson 1997) and a random forest (package randomForest, Liaw and Wiener 2002). Note
that instead of loading these two packages via library in the wrappers, we could have also
used the packages option of the registry.

R> tree.wrapper <- function(static, dynamic, ...) {

+ library("rpart")

+ mod <- rpart(Species ~ ., data = static[dynamic$train, 1, ...)
+ pred <- predict(mod, newdata = static[dynamic$test, ], type = "class")
+ table(static$Species[dynamic$test], pred)

+ }

R> addAlgorithm(reg, id = "tree", fun = tree.wrapper)

R> forest.wrapper <- function(static, dynamic, ...) {

+ library("randomForest")

+ mod <- randomForest(Species ~ ., data = static,

+ subset = dynamic$train, ...)

+ pred <- predict(mod, newdata = static[dynamic$test, ])

+ table(static$Species[dynamic$test], pred)

+ }

R> addAlgorithm(reg, id = "forest", fun = forest.wrapper)

Here, we compute a confusion matrix for the predictions on the test set, which will later be
used to calculate the misclassification rate. Note that using the ... argument in the wrapper
definitions allows us to circumvent naming specific design parameters for now. This is an
advantage if we later want to extend the set of algorithm parameters in the experiment. The
algorithms get recorded in the registry and the corresponding functions are stored on the file
system.
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4.2. Parametrization with statistical designs

The parametrization of both problems and algorithms is covered by makeDesign. This func-
tion takes a problem or algorithm ID as its first argument, which defines the object of refer-
ence. The parameters for the respective problem or algorithm can be passed as either design,
exhaustive or a combination of both. The argument design takes a user generated design
as a data frame, where parameter names correspond to column names. This way you are
free to use any statistical design — and corresponding R package as listed on the CRAN Task
View on experimental designs (Gréomping 2014) — you deem fit for your experiments. The
argument exhaustive can be used to create exhaustive grid designs, i.e., crossproducts of
vectors. makeDesign expects exhaustive to be a named list of atomic vectors or factors. If
both design and exhaustive are provided, a crossproduct of each row of design and each
row of exhaustive’s grid is generated.

For our example we will try two different cross-validation ratios as problem parameters. We
will also vary the complexity parameter cp and the parameter minsplit of the classification
tree, as well as the number of trees in the random forest.

R> pars <- list(ratio = c(0.67, 0.9))

R> iris.design <- makeDesign("iris", exhaustive = pars)

R> pars <- list(minsplit = c(5, 10, 20), cp = c(0.01, 0.1))
R> tree.design <- makeDesign("tree", exhaustive = pars)

R> pars <- list(ntree = c(100, 500, 1000))

R> forest.design <- makeDesign("forest", exhaustive = pars)

It is worth mentioning that the exhaustive grid will never be expanded in memory. Instead,
an iterator object is used internally, which traverses all defined rows. This minimizes the
memory footprint on the master and allows experiments with rather large grid designs.

4.3. Adding experiments

In the previous sections we have shown how to register problems as well as algorithms and
how to associate statistical designs with them. Now it is time to connect all these parts to
actually define an experiment. addExperiments takes the arguments prob.designs for the
problem designs and algo.designs for the algorithm designs to define experiments in the
registry reg. You may pass any number of designs, either as single object or wrapped inside a
list. String IDs for problems/algorithms mean that these objects are applied unparametrized
in the experiments. In addition you can set the integer parameter repls to define any number
of replications for your experiments.

Suppose we want to subsample the iris data set 50 times and apply both classifiers. To do
this, we combine both algorithm designs into a list and then pass this list to addExperiments:

R> addExperiments(reg, repls = 50, prob.designs = iris.design,
+ algo.designs = list(tree.design, forest.design))

Adding 18 experiments / 900 jobs to DB.

Internally, addExperiments checks problems and algorithms for their existence in the registry,
generates the rows of the designs for the respective problems and algorithms and utilizes
package BatchJobs to finally create batch jobs.

17
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To list all known problem and algorithm names, we provide the functions getProblemIds and
getAlgorithmIds. Given an ID you can obtain the respective problem or algorithm by using
getProblem or getAlgorithm. The function summarizeExperiments returns a data frame,
which gives an overview over the defined experiments:

R> summarizeExperiments (reg)

prob algo .count
1 iris tree 600
2 iris forest 300

Once the experiments are added to the registry, you can use testJob to test and submitJobs
to submit your jobs, as described in Section 3.2.

4.4. Subsetting experiments

Before submitting all jobs to your batch system, we encourage you to test each algorithm
individually. Or sometimes you want to submit only a subset of experiments because the jobs
vastly differ in runtime. Another reoccurring task is the collection of results for only a subset of
experiments. For all these use cases, findExperiments can be employed to conveniently select
a particular subset of jobs. It expects a registry as its first argument and always returns the
IDs of all experiments that match the given criteria. Your selection can depend on substring
matches of problem or algorithm IDs using prob.pattern or algo.pattern, respectively.
You can also pass R expressions, which will be evaluated in your problem parameter setting
(prob.pars) or algorithm parameter setting (algo.pars). The expression is then expected
to evaluate to a Boolean value. Furthermore, you can restrict the experiments to specific
replication numbers.

To illustrate findExperiments, we will select two experiments, one with a decision tree and
the other with a random forest and the parameter ntree = 1000. The selected experiment
IDs are then passed to testJob.

R> id1 <- findExperiments(reg, algo.pattern = "tree")[1]
R> id2 <- findExperiments(reg, algo.pattern = "forest",
+ algo.pars = (ntree == 1000))[1]

R> testJob(reg, id1)

R> testJob(reg, 1id2)

As findExperiments returns job IDs, you can combine findExperiments with any member
of the status querying find<State>-family of functions (see Section 3.3) using set opera-
tions: The next snippet would kill all currently running jobs which use the classification tree
algorithm:

R> idsl1 <- findExperiments(reg, algo.pattern = "tree")
R> ids2 <- findRunning(reg)
R> killJobs(reg, intersect(idl, id2))
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4.5. Collecting results

To collect the results of your experiments you are free to use the collection functions introduced
in Section 3.4. In addition to these, we provide reduceResultsExperiments to conveniently
collect parameters and atomic (performance) values into a data frame. It works very similar
to the already explained reduceResultsDataFrame and requires a function argument fun
with the signature function(job, res). The result of fun must be a named list containing
desired values. reduceResultsExperiments converts these lists to data frames, stacks them
and automatically prepends problem and algorithm IDs and parameters.

The next snippet reduces the confusion matrix returned by the algorithms in our toy example
to a misclassification rate:

R> reduce <- function(job, res) {

+ n <- sum(res)
+ list(mcr = (n - sum(diag(res))) / n)
+ }

R> res <- reduceResultsExperiments(reg, fun = reduce)
R> print(res[c(1:2, 899:900), 1)

id prob ratio algo cp minsplit repl mcr ntree
1 1 iris 0.67 tree 0.01 5 1 0.08000000 NA
2 2 iris 0.67 tree 0.01 5 2 0.06000000 NA
899 899 iris 0.90 forest NA NA 49 0.06666667 1000
900 900 iris 0.90 forest NA NA 50 0.06666667 1000

After the results have been collected, the data can be summarized, explored, visualized,
modeled or analyzed with any method of your choice. An encompassing overview of these
topics is of course out of the scope of this paper. But as a final step let us quickly peek into our
complete results by calculating the mean misclassification rate for all algorithm variants. We
use ddply from package plyr (Wickham 2011b) to partition the data frame into groups and
aggregate the misclassification rates w.r. t. the problem, the algorithms and their parameters.

R> library("plyr")
R> vars <- setdiff (names(res), c("id", "repl", "mcr"))
R> print(head(ddply(res, vars, summarise, mean.mcr = mean(mcr))))

prob ratio algo cp minsplit ntree mean.mcr

1 iris 0.67 forest NA NA 100 0.0468
2 iris 0.67 forest NA NA 500 0.0456
3 iris 0.67 forest NA NA 1000 0.0456
4 iris 0.67 tree 0.01 5 NA 0.0524
5 iris 0.67 tree 0.01 10 NA 0.0520
6 iris 0.67 tree 0.01 20 NA  0.0596
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5. Reproducibility and seeding

Reproducibility of experiments is an important aspect of modern day computational statistics,
but a somewhat disregarded topic. Even for simpler experiments that do not require hundreds
of lines of code or parallelization, the current situation is still not ideal. As Hothorn and
Leisch (2011) point out, the number of papers contributing both data and source code for
simulation studies or analyses is still rather limited. Even for the ones that do, reproducibility
is sometimes arguable. Code often contains important details unmentioned in the respective
article, and — if it is well written — constitutes a precise documentation of methods and
experiments. Another current stumbling block is that published code is not treated with the
same kind of diligence in the review process that ensures the quality of the published article
itself. Our personal opinion is that code is an integral part of the scientific text as a whole
and should be treated as such: It must be published, read and criticized. Only then we can
critically compare our results and build upon them. A recent remedy is the proposal of the
R? platform by Leisch, Eugster, and Hothorn (2011). It aims at the publication of R packages
that specifically contain supplementary code as well as input and result data for scientific
articles.

For computationally expensive experiments that require parallelization or batch computation
the situation is more complicated for two different reasons: First, if we want to reproduce
such scientific experiments, we need to have access to sufficient computational power and the
skills to manage it. Even if assuming all of this as given, a general problem still remains:
As different institutions and individuals have access to or prefer different operating systems,
hardware and computational management systems, everybody writes their own, sometimes
extensive code for parallelizing such experiments — quite often in an ad-hoc manner. In our
experience it is not a trivial undertaking to cleanly separate the code parts of the actual
algorithms and experiments from their scheduling on the computational system. Even if this
is done by the original authors, we would still have to rewrite the latter part for our system
to perform replicated or similar experiments.

A major advantage of both packages BatchJobs and BatchExperiments is their independence
of the underlying batch system. By using abstract experiment descriptions where the mapping
to the computational jobs, their submission to the batch system and the collection of results
is out-sourced, your calculations become portable. If you publish your file.dir everybody
can reproduce the results on their own batch system by simply exchanging the cluster func-
tions back end. Smaller up to moderately sized experiments you could even reproduce with
some patience on your personal multicore machine or some ad-hoc connection of a few Unix
machines by using our SSH cluster functions if you do not have access to a high performance
cluster. Moreover, due to the separation of problems, algorithms, experiments and batch
system specific parts you can write clear, understandable and well structured code. On top
of that, other researchers might easily expand your registry with their own problems, algo-
rithms or evaluation methods, without touching or recomputing your results. Or you can do
this yourself when you later want to extend your own study. Comparison and exchange of
problems and algorithms is thereby easily achieved.

Especially in simulation studies seeding is crucial and special care has to be taken if jobs are
executed in parallel. Packages BatchJobs and BatchExperiments provide a seeding mechanism
for each job to ensure reproducibility. The registry of package BatchJobs allows the definition
of an initial seed. A job’s seed is defined by incrementing this initial seed when the job is added
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to the database. For package BatchExperiments the situation is slightly more complicated as
two potentially stochastic computational parts exist: The dynamic problem generation and
the subsequent algorithm application. If the problem is simply static the mechanism works
exactly as in package BatchJobs. Each job has one unique seed, automatically defined by
incrementing the initial seed. For dynamically generated problems we assign a second seed to
the stochastic problem part. We differentiate between “unsynchronized” and “synchronized”
problem generation. Per default, by not setting a problem seed in addProblem, problems
are generated in an unsynchronized fashion where the problem seed is randomly defined and
stored. For synchronized problems, i.e., when you explicitly provide a problem seed, this
problem seed is incremented only depending on the experiment replication so that all your
algorithms will retrieve the same problem instances for each distinct replication.

6. Conclusion and outlook

We have presented two packages for performing statistical calculations on high performance
computing clusters. Package BatchJobs is intended as a general purpose tool which is appli-
cable in as many scenarios as possible. It also allows users to extend it to build their own
special purpose parallel systems on top of it. Most people will find package BatchExperiments
more convenient for analyzing their problems and algorithms. As an abstraction for statistical
experiments, BatchExperiments allows to write clear, understandable, easily extensible and
well structured R scripts for statistical experiments which are both reproducible and portable.

The first obvious extension is to support more batch systems and schedulers. Package
BatchJobs is already applicable in many common environments, and, as pointed out in Sec-
tion 3.8, the cluster functions interface is general enough for further extensions. The most
important ones are probably Amazon EC2 (Amazon Inc. 2015) and standalone, multicore
Windows machines. EC2 support would probably require a custom Amazon Machine Im-
age (AMI) and some sort of globally shared file system between the nodes. We will of course
support anybody who would like to integrate other systems and happily accept contributions
of this kind.

Another option would also be to support architectures where the computational nodes only
have local file systems. This requires a file staging mechanism which defines a set of files to
transfer before and after each job’s execution.

Furthermore, it might also be beneficial to have a system that allows for scheduling workflows
of dependent jobs. The idea is to specify a graph of dependent computational steps where
the parents of a node define its required results, possibly with the option of recalculating only
the required parts if some of the input data change.

In the near future we will apply package BatchExperiments to perform broad benchmark stud-
ies in the areas of machine learning, optimization and survival analysis. Furthermore, we are
generally interested in solving computationally expensive black-box optimization algorithms
and analyzing computer experiments. Often, either evolutionary algorithms, model-based
approaches or a combination of both are combined for such problems. Especially the notion
of model-based optimizers originates from the desire to efficiently produce approximate so-
lutions for expensive problems. We think it might be worthwhile to create an interface on
top of package BatchJobs that allows such optimizers to create cluster jobs on-the-fly, collect
their results and iterate asynchronously.
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