Published by the Foundation for Open Access Statistics
Editors-in-chief: Bettina Grün, Torsten Hothorn, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi | Murray | Journal of Statistical Software
Authors: Lawrence M. Murray
Title: Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Abstract: LibBi is a software package for state space modelling and Bayesian inference on modern computer hardware, including multi-core central processing units, many-core graphics processing units, and distributed-memory clusters of such devices. The software parses a domain-specific language for model specification, then optimizes, generates, compiles and runs code for the given model, inference method and hardware platform. In presenting the software, this work serves as an introduction to state space models and the specialized methods developed for Bayesian inference with them. The focus is on sequential Monte Carlo (SMC) methods such as the particle filter for state estimation, and the particle Markov chain Monte Carlo and SMC2 methods for parameter estimation. All are well-suited to current computer hardware. Two examples are given and developed throughout, one a linear three-element windkessel model of the human arterial system, the other a nonlinear Lorenz '96 model. These are specified in the prescribed modelling language, and LibBi demonstrated by performing inference with them. Empirical results are presented, including a performance comparison of the software with different hardware configurations.

Page views:: 766. Submitted: 2013-06-16. Published: 2015-10-07.
Paper: Bayesian State-Space Modelling on High-Performance Hardware Using LibBi     Download PDF (Downloads: 499)
Supplements:
LibBi-1.2.0.tar.gz: Source code package Download (Downloads: 50; 909KB)
Lorenz96-1.0.1.tar.gz: Source code package Download (Downloads: 54; 17KB)
Windkessel-1.0.1.tar.gz: Source code package Download (Downloads: 52; 25KB)

DOI: 10.18637/jss.v067.i10

by
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.