Published by the Foundation for Open Access Statistics
Editors-in-chief: Bettina Grün, Torsten Hothorn, Edzer Pebesma, Achim Zeileis    ISSN 1548-7660; CODEN JSSOBK
The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC | Rizopoulos | Journal of Statistical Software
Authors: Dimitris Rizopoulos
Title: The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC
Abstract: Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markov chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis.

Page views:: 2084. Submitted: 2014-05-10. Published: 2016-08-28.
Paper: The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC     Download PDF (Downloads: 2106)
Supplements:
JMbayes_0.8-0.tar.gz: R source package Download (Downloads: 149; 219KB)
v72i07.R: R replication code Download (Downloads: 175; 9KB)

DOI: 10.18637/jss.v072.i07

by
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.