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Abstract

A major breakthrough in the visualization of dissimilarities between pairs of objects
was the formulation of the least-squares multidimensional scaling (MDS) model as defined
by the Stress function. This function is quite flexible in that it allows possibly nonlinear
transformations of the dissimilarities to be represented by distances between points in a
low dimensional space. To obtain the visualization, the Stress function should be mini-
mized over the coordinates of the points and the over the transformation. In a series of
papers, Jan de Leeuw has made a significant contribution to majorization methods for
the minimization of Stress in least-squares MDS. In this paper, we present a review of
the majorization algorithm for MDS as implemented in the smacof package and related
approaches. We present several illustrative examples and special cases.
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1. Introduction

The aim of multidimensional scaling (MDS) is to visualize objects as points in a low, often
two-dimensional space such that the Euclidean distance of pairs of points optimally represent
the observed dissimilarities between pairs of objects. Although any distance measure can be
used, we limit ourselves here to the Euclidean distance as it is the most popular one given
its ease of interpretation and calculation, and De Leeuw has made contributions using this
measure.
Amongst the earliest approaches to MDS is so-called “classical scaling”, also referred to as
Torgerson-Gower scaling after Torgerson (1958) and Gower (1966). They showed that a low
dimensional solution can be obtained through an eigendecomposition. Classical scaling is
closely related to principal component analysis and also referred to as principal coordinate
analysis by Gower (1966). A major breakthrough in calculating the parameters for the MDS
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model was achieved by Kruskal (1964a,b). His least-squares version of the MDS model allows
a direct fitting of Euclidean distances to possibly transformed dissimilarities. This approach
has become the most widely used version of MDS and will be the one we consider here.
The mathematical optimization problem underlying least-squares MDS is not trivial. Jan
de Leeuw has made many different theoretical contributions to the numerical algorithm used
for MDS. His work has led to one of the best algorithms for MDS: The SMACOF algorithm.
In doing so, De Leeuw laid the foundation of a whole class of majorization-based algorithms,
nowadays better known under the name MM algorithms. The purpose of this paper is to
present an overview of MDS, the SMACOF algorithm, and the contributions of De Leeuw,
and to provide practical illustrations through the smacof package in R (De Leeuw and Mair
2009; De Leeuw, Mair, and Groenen 2016d).
We start with an example of MDS followed by an explanation of the SMACOF algorithm.
The next section discusses another important contribution of De Leeuw, that is, extending
the SMACOF algorithm to impose constraints on the configuration thereby allowing a variety
of different models to be fit. We then discuss the occurrence of local minima in least-squares
MDS. Finally, we extensively discuss different usages of weights that follow as a direct conse-
quence of methods De Leeuw introduced for the addition of weights to the MDS loss function.

2. Least-squares MDS
To illustrate MDS, we use data from Bell and Lattin (1998) who followed 448 US house-
holds over a period of 104 weeks from June 1991 to June 1993 with the aim to study the
loyalty of these households with respect to different brands of cola. Our dataset (available
in cola.switch.RData) consists of switching behavior among fifteen different cola brands.
The rows indicate from which product the change is made and the columns correspond to
the product to which individuals switched. The interest lies in how easily households switch
between these brands and how this can be visualized through MDS.
The values in cola.switch are counts. They reflect how often households switched from one
brand to another. We can interpret these counts as follows: high counts indicate that there is
more switching, indicating that the brands were considered to be more similar in some respect.
For visualization through MDS, one usually starts from dissimilarities rather than similarities.
Large dissimilarities will be represented by large distances and small dissimilarities by small
distances. Therefore, we transform the switching counts sij (similarities) to dissimilarities by
using the function sim2diss() from the smacof package, using method = "counts". In this
way, the dissimilarity between any pair of brands i and j is calculated as

δij = − log
(
siisjj
sijsji

)
,

which is symmetric and contains no negative numbers as the diagonal elements are necessarily
larger than the corresponding off diagonal elements. Seven entries in the original data have
sij = 0 which causes the logarithm to be undefined. The standard approach would be to
replace them by missing values (NA). However, for illustrational purposes, we replace the NA by
δij = 1. In this particular case, this procedure hardly affects the solution (i.e., approximately
the same solution is obtained if we treat the values as missing).
A straightforward formalization of least-squares MDS was given by Kruskal (1964a) who
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defined the Stress-1 formula as

σ1(X, d̂) =
(∑

i<j(d̂ij − dij(X))2∑
i<j d

2
ij(X)

)1/2

, (1)

where X is n × p matrix with coordinates of n objects in p dimensions and the squared
dij(X) =

√∑p
s=1(xis − xjs)2 is the Euclidean distance between rows i and j of X. The d̂ijs

are called pseudo-distances (or disparities) and they are a function of the given dissimilarities
δij . We consider this explicit formulation of the least-squares error function (1) as one of
the major contributions of Kruskal to the development of least-squares MDS. Another major
contribution was his proposal for an ordinal version of MDS that allowed using only the
rankorder information of the dissimilarities. He did so by constraining the d̂ijs to have the
same order as the dissimilarities. Other transformations are possible such as the linear d̂ij =
a + bδij , the polynomial d̂ij = b0 +

∑
q bqδ

q
ij , and monotone spline transformations. In this

paper, the emphasis is on the ratio transformation d̂ij = bδij , as the main contributions of
De Leeuw for MDS concern fitting of the distances. Therefore, we shall assume that d̂ij = δij .
We also require δij ≥ 0 and, thus, d̂ij ≥ 0, as negative values can never be modeled by
nonnegative distances.
In all of his work, De Leeuw takes great care in employing effective and consistent mathe-
matical notation. Here, we will use his notation for MDS. In one of his first contributions to
least-squares MDS, De Leeuw (1977) focused on raw Stress, essentially the numerator of the
Stress-1 loss function, that is,

σ2
raw(X, d̂) =

∑
i<j

wij(d̂ij − dij(X))2. (2)

A noticeable extension to earlier formulations of raw Stress is the addition of the nonnegative
weights wij that indicate the importance of the residual d̂ij − dij(X) of object pair ij. These
weights can be used for handling missing data, that is, wij = 0 if δij is missing and wij = 1
otherwise. In Section 6, we review other usages as well. During a visit at the Department of
Statistics at UCLA in 1993, one of the coauthors asked De Leeuw why he had added the wijs
to Stress. The characteristic answer by Jan de Leeuw was that weights make the problem
more complex and thus more interesting.
As distances in a plot are interpreted relative to each other, their overall scaling does not mat-
ter. Thus, if all d̂ij are multiplied by some scalar a, it suffices to multiply all coordinates in X
by the same constant a so that the distances become dij(aX) = adij(X) due to the Euclidean
distance being homogeneous. Using this property, De Leeuw standardized the disparities to
some fixed constant, for example,

∑
i<j wij d̂

2
ij = n(n−1)/2. This standardization has the ad-

vantage that, irrespective of the number of objects n, the disparities are on average scattered
around 1. By explicitly standardizing the disparities, De Leeuw changed the minimization
problem from Stress-1 to σ2

raw(X, d̂) subject to the length constraint
∑
i<j wij d̂

2
ij = n(n−1)/2.

Consider the cola switching data again. The following code produces an MDS solution and a
Shepard plot showing the residuals in Figure 1.

R> load("cola.switch.RData")
R> library("smacof")
R> dis <- sim2diss(as.matrix(cola.switch), method = "counts")
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Figure 1: Configuration plot of cola brand switching data (left-hand panel) and a Shepard
plot (right-hand panel).

R> dis[is.infinite(dis)] <- 1
R> res2 <- mds(dis)
R> par(mfrow = c(1, 2))
R> plot(res2, las = 1, col = "red")
R> plot(res2, plot.type = "Shepard", las = 1,
+ sub = paste("Stress-1 =", formatC(res2$stress, digits = 6)))

The overall fit has Stress-1 equal to 0.263688 which is not too bad for ratio MDS. There seems
to be quite some switching between diet and decaf versions of Coke and Pepsi in the lower left
corner because these two points are close together. In contrast, there is little switching going
on between these diet and decaf versions and Private Label, Coke, and Wildwood as their
distances are large. Many more relations can be found by simply interpreting the distance
between pairs of points.
It is useful to decompose the raw Stress function as

σ2
raw(X, d̂) =

∑
i<j

wij d̂
2
ij +

∑
i<j

wijd
2
ij(X)− 2

∑
i<j

wij d̂ijdij(X) (3)

= η2
d̂

+ η2(X)− 2ρ(X) (4)

with η2
d̂
the total dispersion, η2(X) the reconstructed dispersion, and ρ(X) the codispersion.

It turns out that normalized Stress, σ2
norm(X∗) = σ2

raw(X∗)/η2
d̂
, has the convenient property

that it is between 0 and 1 at any stationary X and that its square root is equal to Stress-1.
These properties can be seen as follows. Suppose that X∗ is a local minimum of raw Stress
and assume that d̂ is fixed. As a consequence, the first derivative of σ2

raw(αX∗) with respect
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to α must be zero, that is,

∂σ2
raw(αX∗)
∂α

=
∂η2

d̂

∂α
+ ∂α2η2(X∗)

∂α
− 2∂αρ(X∗)

∂α
= 2αη2(X∗)− 2ρ(X∗) = 0 (5)

so that α∗ = ρ(X∗)/η2(X∗). Then,

σ2
raw(α∗X∗) = η2

d̂
+ ρ2(X∗)
η4(X∗)η

2(X∗)− 2 ρ(X∗)
η2(X∗)ρ(X∗) = η2

d̂
− ρ2(X∗)
η2(X∗) .

Now, normalized Stress is defined as

σ2
norm(X∗) = σ2

raw(X∗)
η2
d̂

= 1− ρ2(X∗)
η2
d̂
η2(X∗)

= 1− λ2(X∗)

where λ(X∗) may also be written as

λ(X∗) =
∑
i<j wij d̂ijdij(X∗)(∑

i<j wij d̂
2
ij

)1/2 (∑
i<j wijd

2
ij(X∗)

)1/2

which is Tucker’s congruence coefficient, or, equivalently, the cosine of the vectors of the
disparities and the distances. Because both vectors have nonnegative values only, their angle
is at most 90◦, so that the cosine is between 0 and 1. Therefore, at a local minimum,
normalized Stress is necessarily between 0 and 1, irrespective of the normalization of the
disparities. Note that λ2(X∗) is also referred to as dispersion accounted for (DAF) as an
analogy to variance accounted for in multiple regression.
In our example, it can be verified that this is indeed the case by the following code.

R> d <- dist(res2$conf)
R> eta.dhat <- sum(res2$dhat^2)
R> eta.X <- sum(d^2)
R> rho.X <- sum(res2$dhat * d)
R> lambda <- rho.X/(eta.dhat * eta.X)^0.5
R> lambda

[1] 0.964608

R> lambda^2

[1] 0.930468

R> 1 - lambda^2

[1] 0.0695316

R> sum((res2$dhat - d)^2)/eta.dhat

[1] 0.0695316
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In the MDS literature, the usage of reporting Stress-1 had been dominant. As a consequence,
the stress reported by mds() in the smacof package is Stress-1.

3. The SMACOF algorithm for MDS
One of the most important contributions of De Leeuw to MDS is the invention of the SMACOF
algorithm (implemented in the mds() function of the smacof package). With the introduction
of the SMACOF algorithm, De Leeuw in fact established a general optimization approach
that he termed majorization. In the context of a line search, the same principle was brought
forward by Ortega and Rheinboldt (1970) who also used the term majorization. This approach
was independently brought forward by Voss and Eckhardt (1980) who called it the generalized
Weiszfeld’s method. Currently, the method is better known as an MM algorithm, which stands
for minimization by majorisation and maximization by minorisation (see, for example, Hunter
and Lange 2004). In the machine learning literature, the method is better known as the
convex-concave procedure (CCCP, Yuille and Rangarajan 2003).
The basic idea of majorization is to replace the original function f(x) by a simpler function,
the majorizing function, g(x,y). Here, x ∈ Rn are the parameters over which one needs to
minimize f(x) and y ∈ Rn is a vector with known values, the supporting point, for example,
obtained from the previous iteration. Then, the majorizing function g(x,y) needs to satisfy
the following requirements:

1. f(y) = g(y,y), that is, equality at the supporting point y,

2. f(x) ≤ g(x,y), and

3. g(x,y) must be simple (usually linear or quadratic).

Let x+ be chosen such that g(x+,y) ≤ g(y,y), for example, by choosing x+ as argmin g(x,y).
From these requirements, the following chain of inequalities can be derived:

f(x+) ≤ g(x+,y) ≤ g(y,y) = f(y). (6)

De Leeuw referred to this chain as the sandwich inequality because the value of the minimum
of the majorizing function is sandwiched in-between the old and the new function value.
The important consequence of (6) is that repeatedly computing the update x+ and setting
y ← x+ yields an algorithm that has guaranteed descent. If f(x) is bounded from below
or x is sufficiently constrained, then the sequence of f(x+) values converges. In addition,
there is global convergence, which means that a start from any y ∈ Rn causes the sequence
to converge.
Standard nonlinear optimization methods such as steepest descent and the Newton method
require elaborate stepsize procedures to establish convergence properties. The beauty of ma-
jorization is that the idea is quite simple, powerful, and has guaranteed descent. In practice,
g(x,y) is often linear or quadratic so that argmin g(x,y) is easy to compute and no compli-
cated stepsize procedures are needed to guarantee descent.
Before deriving the update for raw-Stress through majorization, we introduce some convenient
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notation for the squared Euclidean distance

d2
ij(X) =

p∑
s=1

(xis − xjs)2 =
p∑
s=1

(x>s (ei − ej))2 =
p∑
s=1

x>s (ei − ej)(ei − ej)>xs

= trX>(ei − ej)(ei − ej)>X = trX>AijX (7)

with ei the i-th column of the identity matrix I and xs column s of X. The matrix Aij has
zeros everywhere except aii = ajj = 1 and aij = aji = −1. Then, η2(X) as defined in (4)

η2(X) =
∑
i<j

wijd
2
ij(X) =

∑
i<j

wijtrX>AijX = trX>
∑
i<j

wijAij

X = trX>VX.

which shows that the sum of squared Euclidean distances is quadratic in X. When all wij = 1,
the matrix V simplifies into V = nI− 11>. Assuming that all distances are positive, that is,
dij(X) > 0, (7) can also be used to express the Euclidean distance between rows i and j of
the matrix X as

dij(X) = trX>(d−1
ij (X)Aij)X

so that

ρ(X) =
∑
i<j

wij d̂ijdij(X) = trX>
∑
i<j

bijAij

X = trX>B(X)X.

with bij = wij d̂ij/dij(X).
To minimize σ2

raw(X, d̂) over X, we use the SMACOF approach. Initially, the acronym
SMACOF stood for ‘scaling by majorizing a convex function’ following the convex analysis
approach of De Leeuw (1977). Here we follow De Leeuw and Heiser (1980) and De Leeuw
(1988) who redefine the acronym as scaling by majorizing a complicated function.
In the expression of σ2

raw(X, d̂), the term η2(X) is quadratic in X and thus does not need
any further elaboration. The difficult part lies in −2ρ(X) which can be interpreted as a a
weighted sum of −dij(X). Through the Cauchy-Schwartz inequality we have

dij(X)dij(Y) ≥ trX>AijY
−dij(X)dij(Y) ≤ −trX>AijY

−dij(X) ≤ −trX>(d−1
ij (Y)Aij)Y assuming dij(Y) > 0.

This inequality shows that −dij(X) is linearly majorized by −trX>(d−1
ij (Y)Aij)Y which is

linear in X. Note that the inequality assumes that dij(Y) > 0. Figure 2 shows the function
−dij(X) and a linear majorizing function for a supporting point at coordinates (−1,−1).
In the special case of dij(Y) = 0, a simple constant majorizing function is obtained by
−dij(X) ≤ 0, so that the constant function 0 linearly majorizes −dij(X). Define

bij =
{
wij d̂ij/dij(Y) if dij(Y) > 0
0 if dij(Y) = 0 . (8)
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Figure 2: The function −dij(X) and a linear majorizing function at a supporting point with
coordinates (−1,−1).

Now,

−ρ(X) = −
∑
i<j

wij d̂ijdij(X) ≤ −trX>
∑
i<j

bijAij

X = −trX>B(Y)Y. (9)

with B(Y) =
∑
i<j bijAij and bij defined in (8).

Combining the results above gives the majorizing inequality

σ2
raw(X, d̂) = η2

d̂
+ η2(X)− 2ρ(X)

≤ η2
d̂

+ trX>VX− 2trX>B(Y)Y = g(X,Y). (10)

It is not difficult to see that g(X,Y) is quadratic in X. The update X+ is obtained by
equating the first derivative to zero, that is,

2VX− 2B(Y)Y = 0
VX = B(Y)Y
X+ = V−B(Y)Y, (11)

where V− is the Moore-Penrose inverse of V. In case of all wij = 1, (11) simplifies to
X+ = n−1B(Y)Y. In honour of the contributions of Guttman to MDS algorithms, De Leeuw
named update (11) the Guttman transform.
Apart from the guaranteed descent properties, De Leeuw (1988) proved several other proper-
ties. We mention four of them here.

1. After convergence, σ2
raw ≈ η2

d̂
− η2(X) which means that the more the points spread in

the space, the better the fit and the lower the Stress.

2. η2(X−X+) converges to zero. This property of SMACOF is very useful as it indicates
that the difference between subsequent updates decreases. Therefore, the SMACOF
algorithm is well suited for a dynamic visualization of the updates as the points will not
make large jumps from one iteration to another.



Journal of Statistical Software 9

3. The convergence rate, that is, η(Xk+1 −X+
k+1)/η(Xk −X+

k ) is linear with k being the
iteration counter here. This property implies that with a strong convergence criterion,
the SMACOF algorithm may need many iterations. Fortunately, the first iterations of
the algorithm have a much better convergence rate. In practise, often less than 500 or
even 100 iterations are needed to get sufficient convergence.

4. De Leeuw and Stoop (1984) showed that at a local minimum, if all wij > 0, and d̂ij > 0,
then necessarily all dij(X) > 0. Consequently, for such data no two points will coincide
at a local minimum and Stress is differentiable at this local minimum.

4. Constrained MDS
An important paper on MDS with constraints was written by De Leeuw and Heiser (1980).
For the first time within the framework of majorization, theory was developed that enabled
imposition of constraints on the configuration. As a consequence, a wide variety of models
became available in a single, coherent optimization algorithm.
The basic idea brought forward in De Leeuw and Heiser (1980) is quite simple. Let X be
constrained to be an element of a set C satisfying the constraints. One could for example
restrict X = HC with H a given n× q matrix of q external variables with information on the
objects and the q × q matrix C has unknown weights.
Two assumptions are needed to make the majorizing algorithm work: (a) the previous estimate
Y must satisfy the constraints and (b) a solution must exist for the least-squares problem.
Using (10) and (11), we can rewrite g(X,Y) as

g(X,Y) = η2
d̂

+ tr(X−X+)>V(X−X+)− trX+>VX+ (12)

so that finding an update for X that minimizes the least-squares problem tr(X−X+)>V(X−
X+) subject to the constraints also reduces raw Stress. For example, if X is linearly con-
strained as X = HC, then the update for C (and thus X) is obtained by

Cupd = (H>VH)−1H>VX+.

Constrained MDS can also be used for three-way MDS models where K replications of the
dissimilarity matrices are available. A well known model for three-way MDS is the dimension
weighting model (also called individual differences scaling or INDSCAL) that assumes a an
n× p matrix Z with the common space and individual spaces Xk = ZDk with Dk a diagonal
p× p matrix with dimension weights (Horan 1969; Carroll and Chang 1970). This model has
as its loss function

σ2
3-way(X, d̂) =

K∑
k=1

∑
i<j

wijk(d̂ijk − dij(ZDk))2. (13)

However, this model perfectly fits within the constrained majorization approach as follows.
Consider the block matrices

W =


W1 0 . . . 0
0 W2 . . . 0
...

... . . . 0
0 0 . . . WK

 ,∆ =


∆1 0 . . . 0
0 ∆2 . . . 0
...

... . . . 0
0 0 . . . ∆K

 , and X =


ZD1
ZD2
...

ZDK

 . (14)
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Then, the dimension weighting model can also be seen as a constrained MDS of the nK×nK
matrix of dissimilarities ∆ using weights W under the constraint Xk = ZDk. The functions
smacofIndDiff() and indscal() in the smacof implement this algorithm.
Some constraints do not have an easy solution when the least-squares metric is V. One such
example is a circular constraint, that is, a constraint requiring the coordinates to lie on a
circle of radius 1. For such cases, an additional majorization step is is needed for η2(X). Let
λ be the largest eigenvalue of V so that V − λI is negative semidefinite. As a consequence,
we have

tr(X−Y)>(V− λI)(X−Y) ≤ 0,
tr(X−Y)>V(X−Y) ≤ λtr(X−Y)>(X−Y),

trX>VX + trY>VY− 2trX>VY ≤ λtrX>X− 2λtrX>Y + λtrY>Y,
trX>VX ≤ λtrX>X− 2λtrX>(Y− λ−1VY)

+λtrY>(I− λ−1V)Y. (15)

Combining (15) and (10) yields for the majorizing inequality

σ2
raw(X, d̂) ≤ λtrX>X− 2λtrX>(Y− λ−1VY + λ−1B(Y)Y)

η2
d̂

+ λtrY>(I− λ−1V)Y
= λtr(X− Z)>(X− Z) + const = g(X,Y). (16)

with Z = Y − λ−1VY + λ−1B(Y)Y being the unconstrained update and “const” a term
with only constants. It may be verified that the least-squares update that minimizes tr(X−
Z)>(X − Z) subject to x>i xi = 1 (with x>i row i of X) is obtained by xi = zi/(z>i zi)1/2.
Consequently, this update ensures that the points are on a circle with radius 1 and that raw
Stress is reduced in each iteration. This additional majorization step has been implemented
in the smacofConstraint() function of smacof when allowing optimal scaling of the external
variables which can be used for imposing regional constraints, (see Borg, Groenen, Jehn,
Bilsky, and Schwartz 2011).

5. Local minima
While writing his Ph.D. thesis, which was for a large part devoted to local mimima in least-
squares MDS (Groenen 1993), the first author met Jan de Leeuw during the Distancia 1992
conference in Rennes, France. Casually, Jan mentioned having solved the local minimum
problem for least-squares MDS. Obviously, this remark rather shocked the first author who
feared that the work he had done so far had been a waste of time. Fortunately, this was
not the case. In fact, De Leeuw showed in Rennes for the first time his discovery that
full dimensional scaling does not suffer from the local minimum problem. Rather than the
total collapse of his Ph.D. thesis, the encounter in Rennes led to a research visit of the first
author to the University of California, Los Angeles (UCLA) in 1993 and a paper on inverse
multidimensional scaling1 (De Leeuw and Groenen 1997)
Below we discuss the local mininimum problem in unidimensional scaling first, before switch-
ing to full dimensional scaling and a brief discussion on local minima for other dimensionalities.

1Inverse MDS deals with finding the set S of dissimilarity data ∆ for a given given solution X such that
for each ∆ ∈ S the matrix of coordinates X is a local minimum (or a stationary point).
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The local minimum problem for MDS through Stress unidimensional scaling (p = 1) turns
out to be particularly severe. One of the reasons is that the effective part of the Guttman
update (11) can be written as

B(x)x =
∑
i<j

wijδij
xi − xj
|xi − xj |

=
∑
i<j

wijδijsign(xi − xj) (17)

with sign(xi−xj) is −1 if xi−xj < 0, 0 if xi−xj = 0, and 1 if xi−xj > 0. Consequently, B(x)x
is only dependent on the order of the elements x, not on the values themselves. Therefore,
the space x ∈ Rn can be subdivided into polyhedrons such that all x within a polyhedron
have the same ordering of the values in x and thus the same values of sign(xi − xj). Then,
within the polydron ρ(x) = x>B(x)x is linear in x so that the Stress function is quadratic
in x. Therefore, if the minimum of this quadratic function yields an update with the same
ordering (and thus in the same polyhedron), then the update is a local minimum and the
next iteration shows an improvement in Stress of zero. This dependency of the update on
the rank order of the coordinates was first observed in De Leeuw and Heiser (1977). We can
illustrate this effect by applying unidimensional scaling to the cola data by running the code
below.

R> res1 <- mds(dis, ndim = 1, verbose = TRUE)

Iteration: 1 Stress (raw): 0.21115017 Difference: 0.02842097
Iteration: 2 Stress (raw): 0.21099866 Difference: 0.00015151
Iteration: 3 Stress (raw): 0.21099866 Difference: 0.00000000

In this example, only three iterations are performed. The final iteration has zero improvement.
In general, the number of iterations may vary, but generally it is low (smaller than 10).
Defays (1978) showed that a consequence of the exclusive dependency on the rank order of the
coordinates is that the unidimensional scaling problem is combinatorial in nature. Therefore,
a single run of the MDS algorithm is simply not good enough. A crude solution is to simply
try out all possible n! rank orders of the coordinates, and retain the best. Obviously, this
crude approach is only feasible for small n. Other successful solutions that aim at finding a
global minimum for unidimensional scaling includes the unidimensional smoothing approach
of Pliner (1996) and its multidimensional extension by Groenen, Heiser, and Meulman (1999).
Using dynamic programming in a combinatorial approach, Hubert and Golledge (1981) were
able to guarantee a global optimum while at the same time reducing the complexity from
O(n!) to O(2n), which should be feasible on current computers for n < 35.
Alternatively, one could use multiple random starts and retain the best solution as a candidate
global minimum. The function multistart() can be used to achieve this. For example,

R> multistart <- function(dis, n.starts = 1000, seed = NULL, ...) {
+ stress <- rep(0, n.starts + 1)
+ res <- mds(dis, init = "torgerson", ...)
+ stress[n.starts + 1] <- res$stress
+ stress.best <- res$stress
+ x <- res$conf
+ if (!is.null(seed)) set.seed(seed)
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+ for (i in 1:n.starts) {
+ res <- mds(dis, init = "random", ...)
+ stress[i] <- res$stress
+ if (stress[i] < stress.best){
+ stress.best <- stress[i]
+ x <- res$conf
+ }
+ }
+ res <- mds(dis, init = x, ...)
+ return(list(res = res, stress = stress))
+ }

The default number of random starts (n.starts = 1000) will generally be too low to guar-
antee a globally optimal solution. However, this default usually gives a reasonable candidate
global minimum. The code below computes multiple random starts for unidimensional scaling
of the cola switching data.

R> res.multi <- multistart(dis, ndim = 1, seed = 1234)
R> x <- res.multi$res$conf
R> par(mfrow = c(2, 2))
R> plot(rep(0, length(x)), x, type = "p", pch = 20, xaxt = "n", xlab = "",
+ las = 1, ylab = "Dimension 1", xlim = c(-1, 1), col = "red")
R> text(rep(0, length(x)), x, labels = rownames(x), pos = 4)
R> plot(res.multi$res, plot.type = "Shepard", las = 1,
+ sub = paste("Stress-1 =", formatC(res.multi$res$stress, digits = 6)))
R> hist(res.multi$stress, las = 1, xlab = "Stress-1")
R> abline(v = res.multi$res$stress, col = "red")
R> abline(v = res.multi$stress[1], col = "blue")

The situation for full dimensional scaling (p = n−1) can be seen as the complete opposite from
unidimensional scaling. De Leeuw (1993) showed that full dimensional scaling necessarily has
a global minimum. This can be seen as follows. First of all, note that the squared Euclidean
distance can also be written as

d2
ij(X) = = trX>AijX = trAijXX> = trAijC (18)

with C an n × n matrix that is constrained to be in the convex cone of positive definite
matrices. Then, raw Stress can be written as

σ2
raw(C) =

∑
i<j

wijδ
2
ij +

∑
i<j

wijtrAijC− 2
∑
i<j

wijδij(trAijC)1/2. (19)

As a function of C, the quadratic Euclidean distance is linear and −dij(C) = −(trAijC)1/2

is convex. Therefore, σ2
raw(C) is a convex function in C over the convex constraint set of

positive semi-definite matrices. It is well known that minimizing a convex function over a
convex set yields a global minimum, and, thus, full dimensional scaling has a global minimum.
Even though in full dimensional scaling, the initial rank of C may be n− 1, it often happens
that at convergence the rank of C is smaller than n− 1. In fact, numerical experiments show
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Figure 3: Unidimensional scaling plot of cola brand switching data (top left-hand panel),
the Shepard plot (top right-hand panel), and a histogram of Stress-1 values of 1000 random
starts.

that the maximum rank is never larger than the number of positive eigenvalues in classical
scaling. The Gower conjecture (De Leeuw, Groenen, and Mair 2016a) states that this is
always the case, but so far no proof has been found. Recently, De Leeuw confessed to the
first author that he gave up on finding a proof for this conjecture.
More technical details on full dimensional scaling and its properties is given by De Leeuw
et al. (2016a). One of the properties they derive is that V − B(C) must be positive semi-
definite for a full dimensional scaling solution. Thus, if this matrix is positive semi-definite,
then the solution is a full dimensional scaling solution and hence a global minimum.
For other dimensionalities, the local minimum problem seems to be more severe whenever p
is small. In addition, the problem appears to be data dependent, (see Groenen and Heiser
1996, for more details).
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Figure 4: Histograms of Stress-1 values of 100 random starts for p = 2 (left-hand panel)
and full dimensional scaling with p = 14 (right-hand panel). The vertical blue lines gives
Stress-1 obtained by a classical MDS start and the red vertical lines give Stress-1 value of the
candidate global minimum.

For the cola switching data, the code below performs multistart for p = 2 and full dimensional
scaling with p = 14. The respective histograms of the Stress-1 values for 100 random starts
are presented in Figure 4.

R> res.multi.2 <- multistart(dis, n.starts = 100, ndim = 2, seed = 5678)
R> res.multi.14 <- multistart(dis, n.starts = 100, ndim = 14, seed = 9012)
R> par(mfrow = c(1, 2))
R> hist(res.multi.2$stress, las = 1, xlab = "Stress-1",
+ main = "", sub = "Dimensionality p = 2")
R> abline(v = res.multi.2$res$stress, col = "red")
R> abline(v = res.multi.2$stress[1], col = "blue")
R> tt <- hist(res.multi.14$stress, las = 1, xlab = "Stress-1",
+ main = "", sub = "Dimensionality p = 14",
+ xlim = c(0.15, 0.16), breaks = c(0.1535, 0.1545))
R> abline(v = res.multi.14$res$stress, col = "red")
R> abline(v = res.multi.14$stress[1], col = "blue")

One can clearly see that for p = 2 the algorithm stops at different Stress-1 values, whereas,
in accordance with the theory, full dimensional scaling with p = 14 yields a unique solution
irrespective of the type of start. For p = 2, the classical scaling start in Figure 1 yielded a
Stress-1 value of 0.263688 whereas the best out of 100 multiple random starts yields a slightly
lower Stress-1 value of 0.260253. The difference between the two configurations can be seen
by applying a generalized Procrustes transformation through the Procrustes() function in
smacof. This Procrustes transformation transforms the best multistart solution to the classical
scaling start using translation, scaling, and rotation. The code below produces Figure 5 with
the classical scaling start (light blue points) and the best random start (light red points).
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Figure 5: The two-dimensional solution obtained by a classical scaling start (light-blue points,
see Figure 1) and the best of 100 random starts (light red points).

The main differences concern the locations of Coke diet and Coke decaf. For interpretation,
it would be better to interpret the light red points as their Stress-1 is lower. However, the
visible relations are hardly affected.

R> res.procr <- Procrustes(res2$conf, res.multi.2$res$conf)
R> plot(res.procr, las = 1, main = "")

6. The use of weights
The introduction of weights wij by De Leeuw did not only complicate the problem, but
facilitated the following practices.

1. Handling missing data is done by specifying wij = 0 for missings and 1 otherwise thereby
ignoring the error corresponding to the missing dissimilarities.

2. Correcting for nonuniform distributions of the dissimilarities to avoid dominance of the
most frequently occurring dissimilarities.

3. Mimicking alternative fit functions for MDS by minimizing Stress with wij being a
function of the dissimilarities.

4. Using a power of the dissimilarities to emphasize the fitting of either large or small
dissimilarities.

5. Special patterns of weights for specific models.

6. Using a specific choice of weights to avoid nonuniqueness.

In the following, we assume that the weight matrix W is irreducible, that is, it is not possible
to partition the objects in sets such that all between set wij = 0. Should W be reducible,
then one should do separate MDS analyses for each of the sets of objects.
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6.1. Weighting for uniform distribution of dissimilarities
An important use of weights has to do with the distribution of the δij ’s. Consider the his-
togram of the dissimilarities of the cola data (second row, left-hand panel of Figure 6). Here,
the majority of the δijss are between 4 and 7. Consequently, these values will on average be
better fit by Stress. The corresponding Shepard diagram shows that these values are indeed
quite well-fit, whereas the few small and large dissimilarities have relatively large errors.
The smacof package has the function dissWeights() that with the option type = "unif" en-
sures all values to be equally important. Consequently, dissimilarities that are in a dense area
are down weighted, and those in less dense areas receive larger weights. The corresponding
weighted empirical distribution function and weighted histograms are in the right column of
Figure 6. The corresponding Shepard diagram shows indeed less error for the extremes (that
had few observations) and more error for the more densely middle values of the dissimilarities.
The code below can be used to create Figure 6.

R> w <- dissWeights(dis, type = "unif")
R> ind <- order(as.vector(dis))
R> res.unw <- mds(dis)
R> res.wgt <- mds(dis, weightmat = w)
R> par(mfrow = c(4, 2))
R> plot(dis[ind], 1:length(dis)/length(dis), type = "l", las = 1,
+ col = "blue", main = "EDF", xlab = "Dissimilarities",
+ ylab = "Proportion")
R> plot(dis[ind], cumsum(w[ind])/sum(w), type = "l", las = 1,
+ col = "blue", main = "Weighted EDF", xlab = "Dissimilarities",
+ ylab = "Proportion")
R> plot(res.unw, plot.type = "histogram", las = 1,
+ main = "Unweighted histogram", border = "blue")
R> plot(res.wgt, plot.type = "histogram", las = 1,
+ main = "Weighted histogram", border = "blue")
R> plot(res.unw, las = 1, col = "red")
R> plot(res.wgt, las = 1, col = "red")
R> plot(res.unw, plot.type = "Shepard", ylim = c(0, 2))
R> plot(res.wgt, plot.type = "Shepard", ylim = c(0, 2))

We may conclude that if the dissimilarity matrix is large, and the distribution of dissimilarities
is not uniform, it may be wise to correct the MDS solution by supplying weights in such a
way that the weighted distribution of the dissimilarities becomes approximately uniform. In
general, we believe that the larger n, the more important it becomes to apply this correction.

6.2. Mimicking other MDS loss functions

S-Stress
Another idea for using the weights stems from Heiser (1988). There, it was proposed to use
the weights to mimick other loss functions. Consider the S-Stress loss function

σ2
S-Stress(X) =

∑
i<j

(δ2
ij − d2

ij(X))2. (20)
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Figure 6: Empirical distribution, histogram, configuration, and Shepard diagram of the cola
dissimilarities with equal weights (left column) and weights that make the weighted density
of the cola dissimilarities uniform (right column).
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It is not hard to see that

(δ2
ij − d2

ij(X))2 = (δij − dij(X))2(δij + dij(X))2 ≈ (δij − dij(X))24δ2
ij (21)

where the approximation holds if dij(X) is close to δij . Therefore, choosing wij = 4δ2
ij causes

the minimization of raw Stress to approximate S-Stress.

Polynomial stress
A similar approximation can be done for polynomial Stress, that is,

σ2
poly(X) =

∑
i<j

wij(δrij − drij(X))2. (22)

A first order Taylor approximation of drij(X) can be given by drij(Y)+r(dij(X)−drij(Y))dr−1
ij (Y).

Assuming again that dij(X) is close to δij , the Taylor approximation reduces to δrij+r(dij(X)−
δij)δr−1

ij so that a residual becomes

δrij − δrij − r(dij(X)− δij)δr−1
ij = −r(dij(X)− δij)δr−1

ij . (23)

Hence, choosing the weights as wij = r2δ2r−2
ij causes raw Stress to resemble σ2

poly(X). It is not
so difficult to see that for r > 1, the raw-Stress function puts more emphasis on estimating
large δij , whereas for r < 1 the smaller δijs will be better fitted by raw Stress.

Multiscale
The multiscale loss function of Ramsay (1977) is given by

σ2
mult(X) =

∑
i<j

(log(δij)− log(dij(X)))2 =
∑
i<j

log2
(
dij(X)
δij

)
. (24)

The log(x) can be approximated by x− 1 so that

log
(
dij(X)
δij

)
≈ 1− dij(X)

δij
. (25)

Therefore, choosing wij = δ−2
ij ensures that raw Stress becomes

σ2
raw(X) =

∑
i<j

δ−2
ij (δij − dij(X))2 =

∑
i<j

(
1− dij(X)

δij

)2

and thus approximates σ2
mult(X).

Sammon mapping
In the machine learning literature, MDS is often referred to as Sammon mapping after Sam-
mon (1969). The loss function used by Sammon is raw Stress with weights wij = δ−1

ij .

6.3. Power weights
The previous subsection showed that power Stress can be mimicked by setting wij = δqij for
some q > 0. Buja and Swayne (2002) do exactly this. For large q, the fitting of the larger
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Figure 7: MDS solutions of cola switching data with power weight q = 10 (top row) and
q = −5 (bottom row)

dissimilarities is being emphasized, whereas for q close to 0, the fitting of smaller dissimilarities
is emphasized. The code below shows the effect of the power weights for q = 10 (emphasizing
the larger dissimilarities) and q = −5 (emphasizing the smaller dissimilarities). Note that we
first removed the effect of a nonuniform distribution of the dissimilarities by using type =
"unifpower" of the function dissWeights(). The Shepard diagrams for these two cases in
Figure 7 show almost zero error for the large dissimilarities when using wij = δ10

ij and almost
zero errors for the smaller dissimilarities for wij = δ−5

ij . The configuration for q = 10, shows
as the main distinction the clustering into two groups: one consisting of Coke Diet, Riet Diet,
Pepsi Diet, and Pepsi Decaf against a group of the remaining soft drinks. The difference in
overall scaling of between the two sets of points is due to the automatic scaling of the d̂ijs
in mds() to η2

δ =
∑
i<j wij d̂

2
ij = n(n − 1)/2. Therefore, one should interpret the relative

differences in the Shepard diagram.

R> par(mfrow = c(2, 2))
R> w <- dissWeights(dis, type = "unifpower", power = 10)
R> w <- w * (n * (n - 1) * 0.5/sum(w^2))^0.5
R> res.5 <- mds(dis, weightmat = w, ndim = 2)
R> plot(res.5, las = 1, main = "Configuration q = 10", col = "red")
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Figure 8: Points on a Swiss roll (left panel) and 2D MDS solution (right-hand panel).

R> plot(res.5, plot.type = "Shepard", las = 1, main = "Shepard q = 10")
R> w <- dissWeights(dis, type = "unifpower", power = -5)
R> w <- w * (n * (n - 1) * 0.5/sum(w^2))^0.5
R> res.minus.5 <- mds(dis, weightmat = w, ndim = 2)
R> plot(res.minus.5, las = 1, main = "Configuration q = -5", col = "red")
R> plot(res.minus.5, plot.type = "Shepard", las = 1, main = "Shepard q = -5")

Another application of weights concerns focusing on fitting dissimilarities that are nearby.
This has been the goal of what has been called parametric mapping. To illustrate this,
consider 500 points randomly distributed on a Swiss roll, which may be visualized using the
plot3D package (Soetaert 2016) as shown in the left-hand panel of Figure 8. The option type
= "knn" of the function dissWeights() computes a weight matrix such that each object i is
connected to the k other objects j with the smallest δij . The code below makes the Swiss roll,
computes the Euclidean distances in 3 dimensions, calculates the weights wij corresponding
to the k = 15 nearest neighbors, and does an MDS.

R> par(mfrow = c(1, 2))
R> n <- 500
R> y <- runif(n, min = -1, max = 1)
R> theta <- runif(n)
R> x <- theta * cos(3 * pi * theta)
R> z <- theta * sin(3 * pi * theta)
R> lims <- c(-1.2, 1.2)
R> points3D(x, y, z, col = "red", pch = 20, cex = 0.5, phi = 10,
+ theta = -10, xlim = lims, ylim = lims, zlim = lims)
R> X <- cbind(x, y, z)
R> dis <- dist(X)
R> w <- dissWeights(dis, type = "knn", k = 15)
R> w <- w * (n * (n - 1) * 0.5/sum(w^2))^0.5
R> res <- mds(dis, weightmat = w, init = "torgerson")
R> plot(res, col = "red", pch = 20, cex = 0.5, las = 1,
+ label.conf = list(label = FALSE))
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While using only the smallest 3.5% of the distances in 3 dimensions, MDS is able to unroll
the Swiss roll in 2D.

6.4. Solving nonuniqueness for sparse data
A powerful application of weights for sparse data has been proposed by Buja, Swayne,
Littman, Dean, Hofmann, and Chen (2008). Consider a social network of weddings be-
tween 16 Florentine families in flo from the network package (Butts 2008). In these data,
the δij = 1 and wij = 1 if there is a marriage between families i and j, and otherwise the
δij = 0 and wij = 0.
Consider a family that is connected to only one other family, for example, the Pazzi family
that is connected only to the Salviati family. Then, the point for the Pazzi family could be
located anywhere on a circle with distance 1 from the the Salviati family without changing
Stress. This form of nonuniqueness is unpleasant as it may produce a clutter of points. The
idea of Buja et al. (2008) is to introduce adapted weights w∗ij and dissimilarities δ∗ij such that
a small force is created that is outward oriented. Let c be a small constant, say c = 0.1 or
c = 0.01. Then, choosing

w∗ij =
{

1 if δij is not missing,
c if δij is missing, δ∗ij =

{
1 if δij is not missing,
1/c if δij is missing

introduces these small outward forces. Then, raw Stress can be decomposed as

σ2
raw(X) =

∑
i<j

w∗ij

(
δ∗ij − dij(X)

)2
=
∑
i<j

wij (δij − dij(X))2 + c
∑
i<j

(1− wij) (1/c− dij(X))2 .

The last term of this decomposition indicates that there should be a large distance of prefer-
ably 1/c between pairs of points that have missing dissimilarities although its contribution to
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Figure 9: Marriages amongst Florentine families.
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the Stress is minor due to the multiplication by the small value of c. So, the smaller c, the
smaller the contribution to the fit.
The following code computes the adapted dissimilarities δ∗ij and weights w∗ij , does the MDS,
produces Figure 9 of the MDS solution, and adds lines between families that are connected.

R> library("network")
R> data("flo")
R> c <- 0.1
R> dis <- flo
R> w <- flo
R> dis.star <- w + (1 - w)/c
R> w.star <- w + (1 - w) * c
R> res <- mds(dis.star, weightmat = w.star, init = "torgerson", ndim = 2)
R> plot(res, col = "red")
R> n <- nrow(res$conf)
R> k <- 0
R> w.mat <- as.matrix(w)
R> for (j in 1:(n - 1)) {
+ for (i in (j + 1):n) {
+ if (w.mat[i, j] == 1) {
+ lines(res$conf[c(i, j), 1], res$conf[c(i, j), 2], col = "lightpink")
+ }
+ }
+ }

The resulting MDS configuration is shown in Figure 9. We see that the Medici family was
the most central one, with five connections to other families, followed by the Strozzi and
Guadagni families with four connections. The families with a single connection are nicely
pointing outwards. The Pucci family has no connection to other families. Note that the
standard majorization algorithm would not be able to handle this case as the weight matrix
W is reducible. The adapted weights w∗ij and dissimilarities δ∗ij make W∗ irreducible, allowing
the standard SMACOF algorithm to handle these data.

7. Concluding remarks
In this paper, we presented a review of several important contributions that Jan de Leeuw
has made to MDS. An important contribution has been the development of the SMACOF
algorithm and its algorithmic properties. The algorithm is based on the principle of majoriza-
tion and as such has been one of the first instances of majorizing (or MM algorithms) under
this name. Arguably, the development of majorization is one of Jan’s most important scien-
tific contributions. This optimization principle has become standard methodology at many
(statistical) departments and is expanding to computer science and engineering. Although its
linear convergence rate is necessarily slower than the golden standard of the Newton method,
it has many applications in large scale optimization and is useful when high precision is not
needed. Besides the MDS applications reviewed in this paper, majorization has been used in
many other statistical techniques, such as, for example, support vector machines (Groenen,
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Nalbantov, Bioch, and C 2008) and logistic regression (De Leeuw 2006). It is our expecta-
tion that a decade from now majorization will be included in many nonlinear optimization
textbooks.
Another key contribution of Jan de Leeuw has been the inclusion of weights for the residuals in
least-squares MDS models. This inclusion has had several important practical consequences.
We illustrated, for example, how using such weights to emphasize or deemphasize certain
dissimilarities has led to important usages and insights in the area of MDS.
The present review has been limited to Euclidean distances and raw Stress. It seems that this
form of MDS has become the most popular form of MDS in practice. A Bayesian approach
for MDS was proposed by Oh and Raftery (2001) but it has not yet gained the popularity of
least-squares MDS.
It is expected that De Leeuw stays active in the area of algorithmic and theoretical properties
of MDS with recent contributions on his RPubs page (De Leeuw 2016) a majorization algo-
rithm for MDS with power Stress (De Leeuw, Groenen, and Mair 2016c) and a small power
(De Leeuw, Groenen, and Mair 2016b). Consequently, we foresee several complex, original,
and, most importantly, interesting contributions to the field in the near and distant future.

References

Bell DR, Lattin JM (1998). “Shopping Behavior and Consumer Preference for Store Price
Format: Why ‘Large Basket’ Shoppers Prefer EDLP.” Marketing Science, 17, 66–88. doi:
10.1287/mksc.17.1.66.

Borg I, Groenen PJF, Jehn KA, Bilsky W, Schwartz SH (2011). “Embedding the Organiza-
tional Culture Profile into Schwartz’s Theory of Universals in Values.” Journal of Personnel
Psychology, 10, 1–12. doi:10.1027/1866-5888/a000028.

Buja A, Swayne DF (2002). “Visualization Methodology for Multidimensional Scaling.” Jour-
nal of Classification, 19, 7–44. doi:10.1007/s00357-001-0031-0.

Buja A, Swayne DF, Littman ML, Dean N, Hofmann H, Chen L (2008). “Data Visualization
with Multidimensional Scaling.” Journal of Computational and Graphical Statistics, 17(2),
444–472. doi:10.1198/106186008x318440.

Butts CT (2008). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2), 1–36. doi:10.18637/jss.v024.i02.

Carroll JD, Chang JJ (1970). “Analysis of Individual Differences in Multidimensional Scaling
via an n-Way Generalization of ‘Eckart-Young’ Decomposition.” Psychometrika, 35, 283–
320. doi:10.1007/bf02310791.

De Leeuw J (1977). “Applications of Convex Analysis to Multidimensional Scaling.” In
JR Barra, F Brodeau, G Romier, B van Cutsem (eds.), Recent Developments in Statistics,
pp. 133–145. North-Holland, Amsterdam, The Netherlands.

De Leeuw J (1988). “Convergence of the Majorization Method for Multidimensional Scaling.”
Journal of Classification, 5, 163–180. doi:10.1007/bf01897162.

http://dx.doi.org/10.1287/mksc.17.1.66
http://dx.doi.org/10.1287/mksc.17.1.66
http://dx.doi.org/10.1027/1866-5888/a000028
http://dx.doi.org/10.1007/s00357-001-0031-0
http://dx.doi.org/10.1198/106186008x318440
http://dx.doi.org/10.18637/jss.v024.i02
http://dx.doi.org/10.1007/bf02310791
http://dx.doi.org/10.1007/bf01897162


24 Multidimensional Scaling by Majorization: A Review

De Leeuw J (1993). “Fitting Distances by Least Squares.” Technical Report 130, Interdivi-
sional Program in Statistics, UCLA, Los Angeles.

De Leeuw J (2006). “Principal Component Analysis of Binary Data by Iterated Singular
Value Decomposition.” Computational Statistics & Data Analysis, 50(1), 21–39. doi:
10.1016/j.csda.2004.07.010.

De Leeuw J (2016). Date accessed 06-06-16, URL http://rpubs.com/deleeuw.

De Leeuw J, Groenen PJF (1997). “Inverse Multidimensional Scaling.” Journal of Classifica-
tion, 14(1), 3–21. doi:10.1007/s003579900001.

De Leeuw J, Groenen PJF, Mair P (2016a). “Full Dimensional Scaling.” doi:10.13140/rg.
2.1.1038.4407.

De Leeuw J, Groenen PJF, Mair P (2016b). “Minimizing qStress for Small q.” doi:10.
13140/rg.2.1.4843.1764.

De Leeuw J, Groenen PJF, Mair P (2016c). “Minimizing rStress Using Majorization.” doi:
10.13140/rg.2.1.3871.3366.

De Leeuw J, Heiser WJ (1977). “Convergence of Correction-Matrix Algorithms for Multidi-
mensional Scaling.” In JC Lingoes, EE Roskam, I Borg (eds.), Geometric Representations
of Relational Data, pp. 735–752. Mathesis Press, Ann Arbor, MI.

De Leeuw J, Heiser WJ (1980). “Multidimensional Scaling with Restrictions on the Config-
uration.” In PR Krishnaiah (ed.), Multivariate Analysis, volume V, pp. 501–522. North-
Holland, Amsterdam, The Netherlands.

De Leeuw J, Mair P (2009). “Multidimensional Scaling Using Majorization: SMACOF in R.”
Journal of Statistical Software, 31(3), 1–30. doi:10.18637/jss.v031.i03.

De Leeuw J, Mair P, Groenen PJF (2016d). Multidimensional Scaling in R: SMACOF. URL
https://cran.r-project.org/web/packages/smacof/vignettes/smacof.pdf.

De Leeuw J, Stoop I (1984). “Upper Bounds of Kruskal’s Stress.” Psychometrika, 49, 391–402.
doi:10.1007/bf02306028.

Defays D (1978). “A Short Note on a Method of Seriation.” British Journal of Mathematical
and Statistical Psychology, 31, 49–53. doi:10.1111/j.2044-8317.1978.tb00571.x.

Gower JC (1966). “Some Distance Properties of Latent Root and Vector Methods Used in
Multivariate Analysis.” Biometrika, 53, 325–338. doi:10.1093/biomet/53.3-4.325.

Groenen PJ, Nalbantov G, Bioch, C J (2008). “SVM-Maj: a Majorization Approach to
Linear Support Vector Machines with Different Hinge Errors.” Advances in Data Analysis
and Classification, 2(1), 17–43. doi:10.1007/s11634-008-0020-9.

Groenen PJF (1993). The Majorization Approach to Multidimensional Scaling: Some Prob-
lems and Extensions. DSWO Press, Leiden, The Netherlands.

Groenen PJF, Heiser WJ (1996). “The Tunneling Method for Global Optimization in Multi-
dimensional Scaling.” Psychometrika, 61, 529–550. doi:10.1007/bf02294553.

http://dx.doi.org/10.1016/j.csda.2004.07.010
http://dx.doi.org/10.1016/j.csda.2004.07.010
http://rpubs.com/deleeuw
http://dx.doi.org/10.1007/s003579900001
http://dx.doi.org/10.13140/rg.2.1.1038.4407
http://dx.doi.org/10.13140/rg.2.1.1038.4407
http://dx.doi.org/10.13140/rg.2.1.4843.1764
http://dx.doi.org/10.13140/rg.2.1.4843.1764
http://dx.doi.org/10.13140/rg.2.1.3871.3366
http://dx.doi.org/10.13140/rg.2.1.3871.3366
http://dx.doi.org/10.18637/jss.v031.i03
https://cran.r-project.org/web/packages/smacof/vignettes/smacof.pdf
http://dx.doi.org/10.1007/bf02306028
http://dx.doi.org/10.1111/j.2044-8317.1978.tb00571.x
http://dx.doi.org/10.1093/biomet/53.3-4.325
http://dx.doi.org/10.1007/s11634-008-0020-9
http://dx.doi.org/10.1007/bf02294553


Journal of Statistical Software 25

Groenen PJF, Heiser WJ, Meulman JJ (1999). “Global Optimization in Least-Squares Mul-
tidimensional Scaling by Distance Smoothing.” Journal of Classification, 16, 225–254.
doi:10.1007/s003579900055.

Heiser WJ (1988). “Multidimensional Scaling with Least Absolute Residuals.” In HH Bock
(ed.), Classification and Related Methods, pp. 455–462. North-Holland, Amsterdam.

Horan CB (1969). “Multidimensional Scaling: Combining Observations When Individu-
als Have Different Perceptual Structures.” Psychometrika, 34, 139–165. doi:10.1007/
bf02289341.

Hubert LJ, Golledge RG (1981). “Matrix Reorganisation and Dynamic Programming: Appli-
cations to Paired Comparison and Unidimensional Seriation.” Psychometrika, 46, 429–441.
doi:10.1007/bf02293800.

Hunter DR, Lange K (2004). “A Tutorial on MM Algorithms.” The American Statistician,
39, 30–37. doi:10.1198/0003130042836.

Kruskal JB (1964a). “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric
Hypothesis.” Psychometrika, 29, 1–27. doi:10.1007/bf02289565.

Kruskal JB (1964b). “Nonmetric Multidimensional Scaling: A Numerical Method.” Psy-
chometrika, 29, 115–129. doi:10.1007/bf02289694.

Oh MS, Raftery AE (2001). “Bayesian Multidimensional Scaling and Choice of Dimen-
sion.” Journal of the American Statistical Association, 96(455), 1031–1044. doi:
10.1198/016214501753208690.

Ortega JM, Rheinboldt WC (1970). Iterative Solutions of Nonlinear Equations in Several
Variables. Academic Press, New York.

Pliner V (1996). “Metric, Unidimensional Scaling and Global Optimization.” Journal of
Classification, 13, 3–18. doi:10.1007/bf01202579.

Ramsay JO (1977). “Maximum Likelihood Estimation in Multidimensional Scaling.” Psy-
chometrika, 42, 241–266. doi:10.1007/bf02294052.

Sammon JW (1969). “A Non-Linear Mapping for Data Structure Analysis.” IEEE Transac-
tions on Computers, 18, 401–409. doi:10.1109/t-c.1969.222678.

Soetaert K (2016). plot3D: Plotting Multi-Dimensional Data. R package version 1.1, URL
https://CRAN.R-project.org/package=plot3D.

Torgerson WS (1958). Theory and Methods of Scaling. John Wiley & Sons, New York.

Voss H, Eckhardt U (1980). “Linear Convergence of Generalized Weiszfeld’s Method.” Com-
puting, 25(3), 243–251. doi:10.1007/bf02242002.

Yuille AL, Rangarajan A (2003). “The Concave-Convex Procedure.” Neural Computation,
15(4), 915–936. doi:10.1162/08997660360581958.

http://dx.doi.org/10.1007/s003579900055
http://dx.doi.org/10.1007/bf02289341
http://dx.doi.org/10.1007/bf02289341
http://dx.doi.org/10.1007/bf02293800
http://dx.doi.org/10.1198/0003130042836
http://dx.doi.org/10.1007/bf02289565
http://dx.doi.org/10.1007/bf02289694
http://dx.doi.org/10.1198/016214501753208690
http://dx.doi.org/10.1198/016214501753208690
http://dx.doi.org/10.1007/bf01202579
http://dx.doi.org/10.1007/bf02294052
http://dx.doi.org/10.1109/t-c.1969.222678
https://CRAN.R-project.org/package=plot3D
http://dx.doi.org/10.1007/bf02242002
http://dx.doi.org/10.1162/08997660360581958


26 Multidimensional Scaling by Majorization: A Review

Affiliation:
Patrick J. F. Groenen
Econometric Institute
Erasmus School of Economics
Erasmus University Rotterdam
P.O. Box 1738
3000 DR Rotterdam, The Netherlands
E-mail: groenen@ese.eur.nl
URL: http://people.few.eur.nl/groenen/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

September 2016, Volume 73, Issue 8 Submitted: 2016-03-24
doi:10.18637/jss.v073.i08 Accepted: 2016-06-01

mailto:groenen@ese.eur.nl
http://people.few.eur.nl/groenen/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v073.i08

	Introduction
	Least-squares MDS
	The SMACOF algorithm for MDS
	Constrained MDS
	Local minima
	The use of weights
	Weighting for uniform distribution of dissimilarities
	Mimicking other MDS loss functions
	S-Stress
	Polynomial stress
	Multiscale
	Sammon mapping

	Power weights
	Solving nonuniqueness for sparse data

	Concluding remarks

