
JSS Journal of Statistical Software
February 2017, Volume 76, Issue 10. doi: 10.18637/jss.v076.i10

Interactive Dendrograms: The R Packages idendro
and idendr0

Tomáš Sieger
Czech Technical University in Prague

Catherine B. Hurley
National University of
Ireland Maynooth

Karel Fišer
Charles University in Prague

Claudia Beleites
Chemometrix GmbH

Abstract

Hierarchical cluster analysis is a valuable tool for exploring data by describing their
structure using a dendrogram. However, proper visualization and interactive inspection
of the dendrogram are needed to unlock the information in the data. We describe a new
R package, idendro, that enables the user to inspect dendrograms interactively: to select
and color clusters, to zoom and pan the dendrogram, and to visualize the clustered data
not only in a built-in heat map, but also in any interactive plot implemented in the cranvas
package. A lightweight version idendr0 with reduced dependencies is also available from
the Comprehensive R Archive Network.

Keywords: interactive graphics, visualization, cluster analysis, exploratory data analysis, high-
dimensional data, R.

1. Introduction
Modern experiments often produce moderate- or high-dimensional data. These data can
be challenging to explore, as one usually needs to consider information from all dimensions
simultaneously. Hierarchical clustering analysis (HCA; for an overview, see Hastie, Tibshirani,
and Friedman 2009, Section 14.3.12) is a valuable tool that can give an insight into the
structure of such data. In brief, HCA tries to reveal the structure of data by modeling it in
terms of a hierarchy of clusters of observations. HCA can follow an agglomerative (bottom up)
approach, or a divisive (top down) approach. In the agglomerative approach, HCA initially
considers each observation to form an elementary cluster, and then builds a hierarchy of

http://dx.doi.org/10.18637/jss.v076.i10


2 Interactive Dendrograms: The R Packages idendro and idendr0

clusters by iteratively merging the two most similar clusters into a new one, until there is just
a single cluster comprising all the observations. Following the divisive approach, HCA starts
from the cluster of all observations, and builds a hierarchy by iteratively splitting each cluster
of at least two observations into two clusters. In both cases, HCA results in a hierarchy of
clusters, which can be represented by a tree-like structure called a dendrogram. Given that
we performed agglomerative (or divisive) HCA over n observations, the dendrogram consists
of n − 1 pairs of branches representing the n − 1 merge (or split) operations. The height of
each pair of branches represents the distance of the two subclusters merged (split) at each
step. Without loss of generality, and in order to simplify the text, in the rest of this paper
we assume that agglomerative clustering was used.
A comprehensive study of the structure of data requires proper visualization and interactive
inspection of the dendrogram. While plotting the whole dendrogram presents the overall
structure of the data, any finer structure becomes visible only when focused on, i.e., by
zooming into the dendrogram. Moreover, inspecting the dendrogram alone cannot tell which
observations form particular clusters. Decorating elementary clusters (i.e., observations) with
their labels can help. However, we may still want to know what the values of individual
features of observations in particular clusters are. This can be resolved by plotting feature
space projections of the data (e.g., a 2D marginal distribution of the data displayed in a scatter
plot1, or using principal component analysis or a projection pursuit tour2.) and linking them
to the dendrogram.
While HCA can be performed easily in R (R Core Team 2016), e.g., using the hclust func-
tion in the stats package (part of R), or the agnes or diana functions in the cluster package
(Maechler, Rousseeuw, Struyf, Hubert, and Hornik 2016); for an overview, see Leisch and
Grün (2016), truly interactive dendrogram visualization tools are missing. The low-level den-
drogram plotting and interaction functions consisting of the plot methods for ‘dendrogram’
and ‘hclust’ objects and the identify method for ‘hclust’ objects are in the stats package,
which, however, can satisfy basic needs only, as they offer limited interactivity.
This paper describes the idendro package for R (Sieger 2017b), an interactive dendrogram
visualization and inspection tool. idendro enables the user to plot large dendrograms, which
can be zoomed, panned and inspected interactively by selecting and coloring clusters anywhere
in the dendrogram. Feature space projections of the data can be visualized in a built-in heat
map, or also in any interactive plot implemented in the cranvas package (Xie et al. 2013,
e.g., a scatter plot, or a parallel coordinate plot). Such plots can be used to visualize the
data, or to highlight observations forming selected clusters, or the user can also select (brush)
observations there and then look back in the dendrogram what clusters contain the selected
observations.
This text is structured as follows. Installation is covered in Section 2. Section 3 describes
idendro invocation by way of examples using simple low-dimensional data. The graphical
user interface (GUI) of idendro is described in Section 4 and its interactivity in Section 5.
Section 6 is more technical, and discusses the data structures enabling the interaction between
idendro, cranvas, and the user’s code. Finally, Section 7 provides a case study demonstrating
how idendro can be used to explore flow cytometry data, and Section 8 illustrates the use of
idendro for exploring high-dimensional spectroscopic data.

1As shown in the idendroWithCranvas demo.
2As shown in the idendroTour demo



Journal of Statistical Software 3

2. Installation

We decided to implement graphic functionality using the qtbase (Lawrence and Sarkar 2015a)
and qtpaint (Lawrence and Sarkar 2015b) packages based on Qt, a cross-platform application
and UI framework (Qt Project 2015). A comparison with alternative frameworks revealed
that the R interfaces to Qt were more convenient for implementing fast interactive graphics
due to their stability, speed, and rich features, including the ability to build a powerful GUI.
In addition, the use of qtbase and qtpaint enabled seamless integration with interactive plots
from the cranvas package, which also builds on top of qtbase and qtpaint. On the other hand,
the support for qtbase and qtpaint was (at the time of writing) limited on the Windows
platform (see below).
Prior to installing idendro, its prerequisites must be installed, namely the qtbase, qtpaint
and cranvas packages. The availability of these packages depended on the operating system
that was to be used. On Linux systems, they could be installed quite easily. However,
we experienced trouble with NVIDIA Optimus graphics (“errors linking simple shader”),
which could be resolved by installing Bumblebee (Bumblebee Project 2015). On Mac OS
X, manual installation was needed. On Windows, demanding manual installation involving
getting additional libraries and software and building from sources was essential. Readers are
referred to the idendro installation instructions at https://github.com/tsieger/idendro/
wiki to learn details.
Provided you have the qtbase, qtpaint, and cranvas packages installed, you can install iden-
dro from https://github.com/tsieger/idendro using the devtools package (Wickham and
Chang 2016):

R> devtools::install_github("tsieger/idendro", args = "--no-multiarch")

To ease idendro adoption for users who have not the packages qtbase, qtpaint, and cranvas in-
stalled, we have implemented an alternative lightweight idendro version called idendr0 (Sieger
2017a). It is implemented in terms of base R graphics and a platform-independent Tcl/Tk GUI
(made accessible by the tcltk package, part of R). Interactive exploration of high-dimensional
data is enabled thanks to integration with the GGobi dynamic interactive graphics (Swayne
et al. 2010), made available using the rggobi package (Temple Lang, Swayne, Wickham, and
Lawrence 2016). The idendr0 package is available on the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=idendr0. Information about the latest
version of the package can be found online at https://github.com/tsieger/idendr0. To
install it from within R, run:

R> install.packages("idendr0")

While idendr0 implements most of the functionality described in this paper, it lags behind
the full version of idendro in terms of interactivity and performance. Therefore, users will
usually prefer idendro over idendr0, if it is available on their platform.
A short overview of idendr0 is given in Appendix A.

https://github.com/tsieger/idendro/wiki
https://github.com/tsieger/idendro/wiki
https://github.com/tsieger/idendro
https://CRAN.R-project.org/package=idendr0
https://github.com/tsieger/idendr0


4 Interactive Dendrograms: The R Packages idendro and idendr0

3. idendro invocation
Let us demonstrate the idendro functionality on the iris data set (Fisher 1936) available
from the datasets R package. The data set consists of 150 observations of Iris flowers, 50
observations for each of Setosa, Versicolor, and Virginica species. For each flower, the sepal
length, sepal width, petal length and petal width were measured (in centimeters) and stored in
the first four columns of the iris data set. The species indicator (coded as a factor) comes
in the fifth column.
First, we try to identify clusters (i.e., subgroups of flowers) in the data by performing HCA
over the measurements, using the hclust function in the stats package:

R> hc <- hclust(dist(iris[, 1:4]))

To visualize hc, the resulting hierarchy of clusters represented by a dendrogram, we can simply
pass the return value of hclust3 to idendro:

R> idendro(hc)

We get an interactive dendrogram drawn. This can be zoomed and panned, and clusters can
be selected in it. However, we cannot see what flowers constitute the individual clusters. We
therefore pass the iris data set as the second argument to idendro, which, by default, enables
a heat map to be drawn next to the dendrogram and the names of the observations to be
displayed next to the heat map:

R> idendro(hc, iris)

Now, we get the dendrogram drawn with a heat map attached to it (Figure 14). This plot
gives a quite reasonable insight into which observations form which clusters. For example, we
can see that the top most cluster (colored in green) includes flowers with short petals.
If we want to visualize data and clusters in other feature space projections, we can make use
of any cranvas interactive plot, e.g., a scatter plot, or a parallel coordinate plot, by passing
the idendro return value5 to the data argument of qscatter and qparallel:

R> mdf.iris <- idendro(hc, iris)
R> print(qscatter(Sepal.Length, Sepal.Width, data = mdf.iris))
R> print(qparallel(~ ., data = mdf.iris))

Now, we can enjoy the bidirectional integration of idendro with cranvas (Figure 2). The
points in the scatter plot and the parallel coordinate plot get automatically colored according
to the currently selected clusters in the dendrogram. Moreover, the points brushed in the
cranvas plots can be directly tracked in a so-called brushed map in the dendrogram window,
which we describe in the following section.

3We could also use return values of other HCA functions, provided they are convertible to class ‘hclust’
by the as.hclust function. Also, we could optimize the dendrogram using the dser function from DendSer
(Hurley and Earle 2013), as shown in the idendroDendSer demo.

4Which will be discussed in full detail in Section 4.
5This return value holds a so-called mutable data frame, the original iris data frame enriched with special

hidden attributes over which the dendrogram and the other interactive plot can communicate. See Section 6
to learn more.



Journal of Statistical Software 5

Figure 1: idendro window displaying iris data in terms of a dendrogram and a heat map.

4. idendro window description
The code given above should result in the plot shown in Figure 1. We can see a window
consisting of two main components: a simple GUI on the left side and a dendrogram enriched
with a heat map and a brushed map on the right side.
The top part of the GUI is populated by three columns:

• the current cluster selector, a radio button group determining which cluster is the
current cluster. The current cluster determines which color and ID will be associated
with a cluster selected in the dendrogram,

• cluster-specific statistics telling how many observations out of the total number of ob-
servations fall into each cluster, and

• cluster-specific statistics telling how many observations out of the observations brushed
currently fall into each cluster.

The number of clusters shown in the GUI can be controlled using the maxClusterCount
argument to idendro. The colors of the clusters can be controlled using the clusterColors
argument. In the bottom part of the GUI there are buttons that give access to the zoom and
cluster selection history, and radio buttons controlling the heat map smoothing mode.
On the right side, there is a dendrogram with a heat map and a brushed map attached to
it. The dendrogram depicts the process of agglomerative HCA, in which, initially, there were
150 elementary clusters (individual Iris flowers). Iteratively, at each stage, the two closest



6 Interactive Dendrograms: The R Packages idendro and idendr0

clusters got merged, continuing until there was just a single cluster comprising all the 150
observations. The dendrogram is thus formed by 149 pairs of branches, each pair representing
one merge operation. The distance of the two clusters merged at a specific stage is called the
height of the newly merged cluster, and can be read from the axis below the dendrogram. The
first merge operation occurred at height close to 0, while the height of the last (the biggest)
cluster is close to 7.
The heat map, which is attached to the right side of the dendrogram, consists of a row of five
colored rectangles drawn next to each observation. The rectangles code graphically the four
measurements made on each Iris flower (i.e., sepal length, sepal width, petal length, petal width,
as shown above the heat map) and the species of each flower. The values of the measurements
and the species of each flower can be read by clicking the heat map. Note that the species
were coded as a factor in the data set and got converted to a numeric type by idendro
internally, such that the species can be included in the heat map. The heat map colors
are defined using the heatmapColors argument, which defaults to a list of 10 colors picked
from the blue-green-yellow-red color spectrum, but any color spectrum can be used, e.g.,
brewer.pal from the RColorBrewer package (Neuwirth 2014), or gray.colors, rainbow,
heat.colors, terrain.colors, topo.colors, or cm.colors from the grDevices package
(part of R). The heat map appearance is controlled using the heatmapEnabled argument,
and is enabled by default, provided data was passed to idendro. The relative size of the heat
map can be controlled using the heatmapRelSize argument, which determines how much
space is reserved for the heat map out of the space reserved for both the dendrogram and the
heat map. The default is 0.2, i.e., the heat map takes 20% and the dendrogram 80% of the
space. For example, to use the gray color scale of 25 shades of gray in a heat map enlarged
to 50% of space, idendro can be invoked by:

R> idendro(hc, iris, heatmapColors = gray.colors(25), heatmapRelSize = 0.5)

The brushed map, displayed immediately next to the heat map, is formed by black/white rect-
angles, indicating whether the corresponding observation is/is not currently brushed in plots
integrated with the dendrogram. The brushed map is enabled, by default, provided data was
passed to idendro. Brushed map visibility can be controlled using the brushedmapEnabled
argument.
The names of individual observations are displayed on the right side of the idendro win-
dow. They are unreadable in Figure 1, but will become clear once we zoom into the den-
drogram. The appearance of the names of the observation can be controlled using the
observationAnnotationEnabled argument, which is TRUE, by default.

5. Interacting with idendro

5.1. Cluster selection
idendro enables us to select a few clusters in the dendrogram, label and color them, and
provide simple summary statistics for them. Initially, there are no clusters selected in the
dendrogram6. To select a cluster, we can either click on a cluster in the dendrogram (on their

6Unless you pass a mutable data frame holding cluster selection metadata to idendro – see Section 6 for
details.



Journal of Statistical Software 7

top-level branch), or cut the dendrogram at a specified height.
To select a cluster in the dendrogram manually, we simply click on the top-level branch of
the cluster. The cluster gets colored according to the color of the current cluster selected in
the GUI, and associated with the ID of the current cluster. Initially, the current cluster is the
first one, which is colored in red, by default. To associate another dendrogram cluster with
the current cluster, we can simply click on that cluster in the dendrogram, which results in
unselecting the previous cluster and selecting the new one. To select some other cluster while
keeping the first one selected, we simply change the current cluster in the current cluster
selector in the GUI and pick another cluster from the dendrogram.
We can also select clusters by cutting the dendrogram at a specified height threshold, i.e.,
select all clusters merged at or below the specified threshold. To cut the dendrogram, we
move the mouse pointer below the dendrogram axis (this results in displaying the cutting
threshold across the dendrogram, see Figure 1) and press the left mouse button. idendro
selects all the clusters merged at or below the specified height, and associates them with the
first few clusters in the GUI. This is what we see in Figure 1, in which we cut the dendrogram
at a height of about 3.7, and obtained three selected clusters (red, green, and blue clusters
consisting of 28, 50, and 72 observations, respectively).
We can see that these three selected clusters do not reflect the nature of the data, since
there were 50 flowers of each species. However, we can ask to what extent the clusters reflect
the natural structure of the data. Luckily, the heat map can help to answer this question.
The last column of the heat map shows the species of individual flowers, coded numerically
(coerced from the levels of the Species factor) and printed in text when we click the heatmap.
We can see that the second cluster (as shown in GUI, colored in green), which consists of 50
flowers, matches the Iris Setosa flowers perfectly. The first cluster (colored in red) consists of
27 Iris Versicolor flowers and 1 Iris Virginica flower. The third cluster, however, seems to be
a mixture of Versicolor and Virginica flowers, though the subclusters of this cluster seem to
reflect the structure of the data quite well.
To unselect the current cluster, i.e., to dissociate the current cluster shown in GUI from any
cluster shown in the dendrogram, we can click the "Unselect" button. The "Unselect all"
button can be used to unselect all clusters. The selection history is available – the previous
selection can be recalled using the "Undo selection" button.

5.2. Zooming and panning

Dendrogram inspection usually involves iteratively focusing on clusters at different heights in
different parts of the dendrogram. For example, we might want to study the internal structure
of one of a few top-level clusters, taking a deeper and deeper look into it iteratively. idendro
enables such inspection by zooming and panning the dendrogram.
To zoom in the dendrogram, we can either define a region to zoom to explicitly, using right
mouse click and drag, or using the mouse wheel. In the latter case, the amount of zoom can
be controlled using the zoomFactor argument.
To restore the original dendrogram view (i.e., to zoom out maximally), we can click the "Full
view" button. The zoom history can be recalled by clicking the "Undo zoom" button.
The dendrogram can be panned using mouse drag.



8 Interactive Dendrograms: The R Packages idendro and idendr0

Figure 2: Interactive cranvas plots integrated with idendro. The scatter plot (left) and the
parallel coordinate plot (right) display measures made on the Iris flowers, reflecting the color
of clusters selected in the dendrogram (Figure 1).

6. Mutaframes: Data structures for dynamic integration
In this section we describe mutable data frames, or mutaframes – the data structure pro-
vided by the plumbr package (Lawrence and Wickham 2014) that enables the integration of
interactive plots of idendro and cranvas with each other, and also with the user’s code.

6.1. Integration with other interactive plots
We keep in mind that it hardly suffices to look at a dendrogram and a heat map alone to
learn what data tells us. We usually need to explore more feature space projections of the
data. Hopefully, thanks to the effort made by the authors of the cranvas package, idendro
can be bidirectionally integrated with modern high-speed interactive cranvas plots (Figure 2).
idendro automatically highlights observations forming the currently selected clusters in these
plots. Moreover, selecting (brushing) observations in these plots propagates instantly into the
brushed map, which then shows what clusters contain the selected observations (Figure 1).
Technically speaking, the integration of idendro with cranvas interactive plots is enabled
thanks to the concept of mutable data frames implemented in the plumbr package. In brief,
mutable data frames are data frames enriched with hidden metadata (special columns in
the data frame) that can be read, written and applications/users can also listen to changes
being made to them. cranvas defines metadata controlling the color (.color, .border),
size (.size) and visibility (.visible) of observations in plots. It also defines the .brushed
metadata, which controls whether a given observation is brushed currently.
Mutable data frames can be explicitly constructed using the qdata function in cranvas:

R> mdf.iris <- qdata(iris)

Alternatively, idendro converts the data it gets into a mutable data frame automatically and
returns it, such that you can get a mutable data frame as a side-effect of idendro invocation:



Journal of Statistical Software 9

R> mdf.iris <- idendro(hc, iris)

idendro alters the .color and .border metadata to color observations according to the color
of the clusters they appear in, and listens to changes being made to the .brushed metadata
to learn what observations are currently being brushed.

6.2. Persisting cluster selection

When inspecting the dendrogram, we may wish to persist the clusters found so far, such that
we will be able to get back to them later.
idendro introduces two more mutable data frame metadata in addition to those defined by
cranvas: .cluster and .inCurrentCluster. For each observation, the .cluster holds the
ID of the cluster that the observation is a member of (or 0, if the observation does not belong
to any cluster). Similarly, the .inCurrentCluster metadata determines whether the given
observation is a member of the current cluster.
The .cluster metadata can be used to persist the selected clusters in the dendrogram by
simply saving the mutable data frame returned by idendro:

R> mdf.iris <- idendro(hc, iris)

To recall the persisted clusters, we can invoke idendro passing the saved mutable data frame
as its second argument:

R> idendro(hc, mdf.iris)

Note, however, that the selection history cannot be persisted in this way.
The .inCurrentCluster metadata can be used by the user’s code to compute information
specific to the current cluster set in the GUI, as shown in the idendroWithUserCallback.R
demo, in which we install a listener on the mdf.iris mutaframe and print the number and
the mean sepal length of the observations in the current cluster whenever the cluster changes:

R> mdf.iris <- idendro(hc, iris)
R> my.listener <- add_listener(mdf.iris, function(i, j) {
+ if (".inCurrentCluster" %in% j) {
+ cat(sprintf(
+ "The current cluster consists of %d observation(s).
+ The mean sepal length is %.3f.\n",
+ sum(mdf.iris$.inCurrentCluster),
+ mean(mdf.iris$Sepal.Length[mdf.iris$.inCurrentCluster])))
+ }
+ })

Note that the listener can be removed when not needed by:

R> remove_listener(mdf.iris, my.listener)



10 Interactive Dendrograms: The R Packages idendro and idendr0

Figure 3: idendro window and two scatter plots of HCA of flow cytometry data. Clusters
were selected automatically by threshold cutting, and correspond with biologically relevant
cell populations. The red rectangle marks the area zoomed into in Figure 4.

7. Case study: Exploration of flow cytometry data

Flow cytometry is a tool for analyzing live cells in a wide range of biomedical settings (Brown
and Wittwer 2000). Flow cytometry measures multiple parameters on thousands to millions
of individual cells in a single experiment. Such experiments produce large data sets, which
are difficult to explore, partly because researchers typically need to explore and interpret all
the measured parameters. While traditionally the data are analyzed manually by drawing
regions of interest on two-parameter scatter plots, novel approaches are emerging. One of
them is HCA (Fišer et al. 2012).



Journal of Statistical Software 11

The use of idendro provides excellent interplay between traditional analysis and HCA of flow
cytometry data. idendro facilitates display of all data points and all measured parameters
in a heat map, which itself provides novel insights into flow cytometry data. idendro also
displays cellular hierarchy as computed by HCA in the form of a dendrogram. In addition,
idendro allows traditional plotting of the data on scatter plots. The strongest point here is the
interactivity of idendro: Cluster selection on a dendrogram propagates to scatter plots, and
scatter plot highlighting (brushing) can also be displayed on the side of the heat map. This
level of interactivity greatly enhances the ability to compare traditional analysis to clustering.
Moreover, the idendro window also readily displays the proportions of the data points (here
cells) selected by both methods.
Another common aspect of the two analytical methods is the need to fine-tune the cluster
selection. This is again facilitated by the idendro interface, which enables deselection of
clusters and several levels of “undo” action.
Similarly, as the number of data points in flow cytometry data sets is in the range of at
least thousands, the ability of idendro to zoom and pan the dendrogram serves fine and more
accurate cluster selection.
An example code of HCA of flow cytometry data is shown below. It makes use of the ITN data
from the flowStats package (Hahne, Gopalakrishnan, Khodabakhshi, Wong, and Lee 2012).
First the data gets transformed, and then agglomerative HCA utilizing the “average” method
is performed. The RColowBrewer package (Neuwirth 2014) is used to generate the cluster
colors.

R> library("RColorBrewer")
R> library("idendro")
R> library("flowStats")
R> data("ITN", package = "flowStats")
R> x <- exprs(ITN$sample03[, 1:7])
R> x[, 3:7] <- log10(x[, 3:7])
R> x <- scale(x)
R> hx <- hclust(dist(x), method = "average")
R> mdf.x <- idendro(hx, x,
+ heatmapColors = colorRampPalette(c("purple4", "blue3", "blue3", "grey",
+ "grey", "orangered", "orangered", "red"))(15),
+ clusterColors = brewer.pal(12, "Paired"))
R> print(qscatter("CD3", "HLADr", mdf.x))
R> print(qscatter("CD8", "CD4", mdf.x))

The code results in plots similar to Figure 3, in which, however, the clustering described in
Fišer et al. (2012) was used instead of hclust. Clusters of (blood) cells are shown both in
the dendrogram and in traditional scatter plots. The color of individual cells in the scatter
plots reflects the color of the clusters revealed by HCA and selected in the dendrogram. This
enables identification of major cell populations right in the dendrogram. The dendrogram can
be iteratively zoomed and panned to explore subpopulations of the major populations of cells.
This could not be accomplished easily using the means of static non-interactive visualization.
The heatmap can also be consulted to help identify subpopulations of cells of interest by
giving a quantitative overview of the values of individual parameters measured on them.



12 Interactive Dendrograms: The R Packages idendro and idendr0

Figure 4: Interaction between idendro and cranvas plots. Displaying only part of the dendro-
gram and heatmap from Figure 3 allows finer inspection of the data. The difference between
the blue and green clusters (e.g., in CD4 parameter) is clearly visible both in the heat map
and in the scatter plots. This can be further verified by brushing cells forming the blue cluster
in the lower right scatter plot (yellow points). Brushed cells are also marked in the brushed
map on the right side of the heatmap. Statistics of both selections (clusters and brushed
points) are given in the main idendro window.

Figure 4 shows an example of exploring a smaller cell population. Cells forming the clus-
ter of interest (colored in blue) can be compared to cells selected by traditional brushing
cells in scatter plots. Figure 4 shows a good correspondence between HCA and traditional
exploration.



Journal of Statistical Software 13

8. Case study: idendro and hyperSpec
This example session demonstrates how to use idendro together with spectroscopic data stored
in ‘hyperSpec’ objects. First, idendro and hyperSpec (Beleites and Sergo 2013) are needed:

R> library("hyperSpec")
R> library("idendro")

The data set we use here is the original version of hyperSpec’s chondro data. Briefly, this is
a data set of laterally resolved Raman spectra of a cartilage section measured under a mi-
croscope. An area of 34 × 24 µm2 is covered by a regular grid of 1 × 1 µm2. At each
grid point, a complete Raman spectrum in the spectral range 600 cm−1 to 1800 cm−1 was
acquired. For further information about the application of micro-Raman spectroscopy to
cartilage, see e.g., Bonifacio et al. (2010). More information about the data set, and also a
more thorough discussion of the pre-processing steps, are available in hyperSpec’s “chon-
dro” vignette. The vignette source, together with the original raw data, is available as
http://hyperspec.R-Forge.R-project.org/blob/chondro.zip. However, this example
session can also be followed with the compressed version shipped with hyperSpec (this yields
slightly different clustering).

R> if (file.exists("chondro.txt")) {
+ chondro <- scan.txt.Renishaw("chondro.txt", data = "xyspc")
+ }

In order to obtain a meaningful clustering, baseline correction and normalization is necessary.
In addition, we trade spectral resolution for a better signal-to-noise ratio and perform a
smoothing interpolation onto an evenly spaced wavenumber axis:

R> chondro <- spc.loess(chondro, newx = seq (602, 1800, by = 4))
R> chondro <- chondro - spc.fit.poly.below(chondro)
R> chondro <- sweep(chondro, 1, rowMeans(chondro), "/")

The spectra are now extremely similar. In order to emphasize the differences between the
spectra, we can subtract the spectrum of the common composition of the whole sample. In
theory, this should be the minimum observed intensity at each wavenumber. As the minimum
tends to “collect” noise, we use the 5th percentile instead.

R> overall.composition <- quantile(chondro, 0.05)
R> chondro <- sweep(chondro, 2, overall.composition, "-")

Now the data is ready for HCA. For intensity normalized spectroscopic data, Euclidean dis-
tance and Ward’s method for fusion of the clusters are often a good choice:

R> dst <- dist(chondro)
R> dndr <- hclust(dst, method = "ward")

8.1. Linked idendro and cranvas plots
An idendro interactive dendrogram can be connected with other plots that use the same
mutaframe, such as qscatter or qparallel plots (available from package cranvas).

http://hyperspec.R-Forge.R-project.org/blob/chondro.zip


14 Interactive Dendrograms: The R Packages idendro and idendr0

A suitable mutaframe can be built from the wide-format representation of the ‘hyperSpec’
object. Note that this does not need to be the exact representation that was used for the HCA,
as long as the rows correspond one to one. Therefore, we could have built the mutaframe from
the original spectra, including the matrix composition, while the dendrogram was calculated
after subtraction. However, for the clarity of the presentation here, we display the difference
spectra that were actually used for the cluster analysis:

R> mdf.chondro <- as.wide.df(chondro)

In order to help qparallel produce readable axis labels, we provide labels every 50 wavenum-
bers:

R> colnames(mdf.chondro)[-(1:3)] <-
+ paste("wl", colnames(mdf.chondro)[-(1:3)], sep = ".")
R> names <- as.character(wl(chondro))
R> names[wl(chondro) %% 50 != 0] <- ""

Now the data frame is ready to be converted into a mutaframe:

R> mdf.chondro <- qdata(mdf.chondro)

and finally, the connected interactive plots can be generated (Figure 5):

R> idendro(dndr, mdf.chondro, heatmapRelSize = 0.75,
+ heatmapColors = alois.palette(25))
R> print(qscatter(x, y, data = mdf.chondro, unibrushcolor = FALSE))
R> print(qparallel(vars = var_names(~., mdf.chondro)[-(1:3)],
+ data = mdf.chondro, names = names, scale = "I", glyph = "line"))

8.2. User-defined callback functions

hyperSpec already defines a number of sophisticated, though not interactive, plotting meth-
ods. To use these plots with idendro, a callback function can be defined that updates these
plots whenever the cluster selection changes:

R> dev.new()
R> dev.map <- dev.cur()
R> par(mar = c(4, 4, 0.5, 0.5))
R> dev.new()
R> dev.spc <- dev.cur()
R> par(mar = c(4, 4, 0.5, 0.5))
R> spc.callback <- function(i, j) {
+ if (j == ".cluster") {
+ cluster.levels <- ! duplicated(mdf.chondro$.cluster)
+ clusters <- mdf.chondro$.cluster[cluster.levels]
+ cols <- c("black", rep(NA, max(clusters)))
+ cols[clusters + 1] <- mdf.chondro$.color[cluster.levels]



Journal of Statistical Software 15

Figure 5: idendro linked to interactive plots from cranvas: The spectra in the lower window
(qparallel) are colored according to the clustering selected in the idendro window. The
spatial distribution of the clusters is shown as a qscatter plot. All three plots are linked, so
interacting with one will update the display of the others.

+
+ dev.set(dev.map)
+ chondro$.cluster <- factor(mdf.chondro$.cluster,
+ levels = 0:max(clusters))
+ print(plotmap(chondro, .cluster ~ x * y, col.regions = cols))
+
+ dev.set(dev.spc)
+ tmp <- aggregate(chondro, chondro$.cluster,
+ quantile, c(0.16, .5, .84))
+ plotspc(tmp, stacked = ".aggregate", fill = ".aggregate",
+ col = cols[sort(unique(mdf.chondro$.cluster)) + 1])
+ }
+ }

Again, we construct the mutaframe from the chondro object. However, for the plotting of the
spectra, our callback function rather uses the ‘hyperSpec’ object chondro. The mutaframe
can therefore omit the actual spectra, and use only the so-called extra-information (x and y
coordinates, see hyperSpec’s “introduction” vignette) of chondro:

R> mdf.chondro <- qdata(chondro$..)
R> idendro(dndr, mdf.chondro, heatmapEnabled = FALSE)
R> l.map <- add_listener(mdf.chondro, spc.callback)



16 Interactive Dendrograms: The R Packages idendro and idendr0

Figure 6: idendro together with static graphical information about the displayed clusters.
Here, only the idendro window provides interaction, and the spectra and map view update
accordingly.

Figure 6 shows this approach.

9. Conclusion
idendro, a new R package enabling interactive dendrogram visualization and exploration, has
been introduced. To our knowledge, this is the first package enabling really interactive explo-
ration of large dendrograms in R. Moreover, the integration with interactive plots provided
by the cranvas package makes idendro a general data exploration tool.
As the packages that idendro depends on were not fully supported on the Windows plat-
form at the time of writing, we have implemented a cross-platform version of idendro, called
idendr0, which provides mostly the same functionality as is provided by idendro. To serve the
purpose of a general data exploration tool, idendr0 integrates with interactive plots provided
by GGobi, a predecessor of the cranvas package.

Contributions
The idendro package was written by TS. The development started as a Google Summer of
Code 2012 (Google Inc. 2012) project, mentored by CH and CB. CB also helped to shape the
project before it had started. KF outlined the goals of the project, tested and provided feed-
back. This paper was drafted by TS, KF (flow cytometry case study) and CB (spectroscopic
case study), and was critically reviewed by all authors.



Journal of Statistical Software 17

Acknowledgements
The initial development of the idendro package was supported by Google under the Google
Summer of Code 2012 (Google Inc. 2012). Later development and writing of this paper was
supported by grant IGA NT 14387 and grant IGA NT 13462 from Ministry of Health, Czech
Republic, and the European social fund within the framework of realizing the project “Support
of inter-sectoral mobility and quality enhancement of research teams at Czech Technical
University in Prague”, CZ.1.07/2.3.00/30.0034. We are grateful to Jiří Wild for testing the
installation on Mac OS.

References

Beleites C, Sergo V (2013). hyperSpec: A Package to Handle Hyperspectral Data Sets in R.
R package version 0.98-20130516, URL http://hyperspec.R-Forge.R-project.org.

Bonifacio A, Beleites C, Vittur F, Marsich E, Semeraro S, Paoletti S, Sergo V (2010).
“Chemical Imaging of Articular Cartilage Sections with Raman Mapping, Employing Uni-
And Multi-Variate Methods for Data Analysis.” The Analyst, 135(12), 3193–3204. doi:
10.1039/c0an00459f.

Brown M, Wittwer C (2000). “Flow Cytometry: Principles and Clinical Applications in
Hematology.” Clinical Chemistry, 46(8 Pt 2), 1221–1229.

Bumblebee Project (2015). Bumblebee: A Project Aiming to Support NVIDIA Optimus
Technology under Linux. URL http://bumblebee-project.org/.

Fisher RA (1936). “The Use of Multiple Measurements in Axonomic Problems.” The Annals
of Eugenics, 7(2), 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

Fišer K, Sieger T, Schumich A, Wood B, Irving J, Mejstříková E, Dworzak MN (2012).
“Detection and Monitoring of Normal and Leukemic Cell Populations with Hierarchical
Clustering of Flow Cytometry Data.” Cytometry A, 81(1), 25–34. doi:10.1002/cyto.a.
21148.

Google Inc (2012). Google Summer of Code 2012. URL http://www.google-melange.com/
gsoc/homepage/google/gsoc2012.

Hahne F, Gopalakrishnan N, Khodabakhshi AH, Wong CJ, Lee K (2012). flowStats: Sta-
tistical Methods for the Analysis of Flow Cytometry Data. R package version 1.16.0, URL
http://www.bioconductor.org/packages/2.12/bioc/html/flowStats.html.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning. 2nd edition.
Springer-Verlag. doi:10.1007/978-0-387-84858-7.

Hurley CB, Earle D (2013). DendSer: Dendrogram Seriation: Ordering for Visualisation.
R package version 1.0.1, URL https://CRAN.R-project.org/package=DendSer.

Lawrence M, Sarkar D (2015a). qtbase: Interface between R and Qt. R package version 1.0.11,
URL https://CRAN.R-project.org/package=qtbase.

http://hyperspec.R-Forge.R-project.org
http://dx.doi.org/10.1039/c0an00459f
http://dx.doi.org/10.1039/c0an00459f
http://bumblebee-project.org/
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1002/cyto.a.21148
http://dx.doi.org/10.1002/cyto.a.21148
http://www.google-melange.com/gsoc/homepage/google/gsoc2012
http://www.google-melange.com/gsoc/homepage/google/gsoc2012
http://www.bioconductor.org/packages/2.12/bioc/html/flowStats.html
http://dx.doi.org/10.1007/978-0-387-84858-7
https://CRAN.R-project.org/package=DendSer
https://CRAN.R-project.org/package=qtbase


18 Interactive Dendrograms: The R Packages idendro and idendr0

Lawrence M, Sarkar D (2015b). qtpaint: Qt-Based Painting Infrastructure. R package ver-
sion 0.9.1, URL https://CRAN.R-project.org/package=qtpaint.

Lawrence M, Wickham H (2014). plumbr: Mutable and Dynamic Data Models. R package
version 0.6.9, URL https://CRAN.R-project.org/package=plumbr.

Leisch F, Grün B (2016). CRAN Task View: Cluster Analysis & Finite Mixture Models.
Version 2016-11-24, URL https://CRAN.R-project.org/view=Cluster.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2016). cluster: Cluster Analysis
Basics and Extensions. R package version 2.0.5, URL https://CRAN.R-project.org/
package=cluster.

Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, URL
https://CRAN.R-project.org/package=RColorBrewer.

Qt Project (2015). Qt Application Framework. URL http://www.qt.io/developers/.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sieger T (2017a). idendr0: Interactive Dendrograms. R package version 1.5.3, URL https:
//CRAN.R-project.org/package=idendr0.

Sieger T (2017b). idendro: Interactive Dendrograms. R package version 1.5.3, URL https:
//github.com/tsieger/idendro.

Swayne D, Cook D, Temple Lang D, Buja A, Lewin-Koh N, Hofmann H, Lawrence M,
Wickham H (2010). GGobi, an Open Source Visualization Program for Exploring High-
Dimensional Data. URL http://ggobi.org/.

Temple Lang D, Swayne D, Wickham H, Lawrence M (2016). rggobi: Interface between R and
GGobi. R package version 2.1.21, URL https://CRAN.R-project.org/package=rggobi.

Wickham H, Chang W (2016). devtools: Tools to Make Developing R Code Easier. R package
version 1.12.0, URL https://CRAN.R-project.org/package=devtools.

Xie Y, Hofmann H, Cook D, Cheng X, Schloerke B, Vendettuoli M, Yin T, Wickham H,
Lawrence M (2013). cranvas: Interactive Statistical Graphics Based on Qt. R package
version 0.8.2, URL http://github.com/ggobi/cranvas.

https://CRAN.R-project.org/package=qtpaint
https://CRAN.R-project.org/package=plumbr
https://CRAN.R-project.org/view=Cluster
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=RColorBrewer
http://www.qt.io/developers/
https://www.R-project.org/
https://CRAN.R-project.org/package=idendr0
https://CRAN.R-project.org/package=idendr0
https://github.com/tsieger/idendro
https://github.com/tsieger/idendro
http://ggobi.org/
https://CRAN.R-project.org/package=rggobi
https://CRAN.R-project.org/package=devtools
http://github.com/ggobi/cranvas


Journal of Statistical Software 19

A. idendr0 overview
This appendix gives an overview of idendr0, a cross-platform backport of the idendro package,
implemented using base R graphics embedded in a Tcl/Tk GUI. Essentially, the usage and
functionality of idendr0 is the same as the usage and functionality of idendro: They both
provide the idendro function, taking mostly the same parameters.
As in Section 3, we demonstrate the idendr0 functionality on the iris data set.
First, we identify clusters of Iris flowers using HCA:

R> hc <- hclust(dist(iris[, 1:4]))

and visualize the resulting hierarchy of clusters by passing it to idendro:

R> library("idendr0")
R> idendro(hc)

We get an interactive dendrogram drawn, which can be zoomed and panned, and clusters can
be selected in it. By passing the iris data set as the second argument to idendro, we enable
a heat map to be drawn next to the dendrogram (Figure 7, right):

R> idendro(hc, iris)

If we want to visualize data and clusters in other feature space projections, we can integrate
idendro with simple R plots, as shown in the idendroWithScatter demo:

R> plot(iris$Sepal.Length, iris$Sepal.Width, pch = 19)
R> colorizeCallback <- function(clr) {
+ clusterColors <- c('black', 'red', 'green', 'blue', 'yellow', 'magenta',
+ 'cyan', 'darkred', 'darkgreen', 'purple', 'darkcyan')
+ plot(iris$Sepal.Length, iris$Sepal.Width,
+ col = clusterColors[clr + 1], pch = 19)
+ }
R> idendro(hc, iris, colorizeCallback = colorizeCallback)

In this example, we install a callback function that is called whenever we select (and thus
color) some cluster in the dendrogram, such that the color of the observations shown in the
scatter plot reflects the color of the cluster that each observation is a part of. Similarly, the
idendroWithScatterAndParcoord demo integrates with both a scatter plot and a parallel
coordinate plot, as shown in Figure 7.
Additionally, we can easily integrate idendro with GGobi by setting the ggobi argument to
TRUE (and, optionally, overriding the default GGobi glyph type and size), as shown in the
idendroWithGgobi demo:

R> idendro(hc, iris, ggobi = TRUE, ggobiGlyphType = 4, ggobiGlyphSize = 3)

This results in starting an instance of GGobi, which produces, by default, a scatter plot matrix
of all the 2D projections of the supplied Iris data7 (Figure 8), and the installation of two

7Of course, we can create more GGobi plots later.



20 Interactive Dendrograms: The R Packages idendro and idendr0

Figure 7: A scatter plot and a parallel coordinate plot as created using base R graphics and
integrated with idendr0. The color of the observations in the plots reflects the color of the
clusters in the dendrogram. For a comparison with similar plots created by Qt-based idendro,
see Figures 1 and 2.

Figure 8: Interactive GGobi scatter plot matrix integrated with idendr0. The color of ob-
servations in the scatter plot matrix instantly reflects the currently selected clusters in the
dendrogram, while the brushed map in the dendrogram window can show which observations
are currently selected in GGobi. Note that the heat map smoothing mode is set to cluster,
such that the heat map displays the cluster-specific means instead of individual measurements.

callbacks that ensure bidirectional integration of idendro with GGobi. colorizeCallback
is called automatically to instantly color observations in GGobi according to the currently
selected clusters in the dendrogram. fetchSelectedCallback serves the opposite purpose:
It can be used to track observations selected (brushed) in GGobi currently, and display this
in the idendro brushed map. fetchSelectedCallback is called explicitly, by pressing the



Journal of Statistical Software 21

"fetCh selected" button8. (Here we can see one limitation of idendr0 – while idendro is
able to update the brushed map automatically, in idendr0, we need to update the brushed
map explicitly.)
In idendr0, we can also persist the cluster selection that has been made: idendro returns
a numeric vector of cluster membership of each observation, in which 0s denote unselected
observations, and values of i > 0 denote observations forming the ith cluster. If we later pass
this vector as the clusters argument to idendro, we recall the persisted cluster selection,
as shown in the idendroPersistent demo:

R> clusters <- idendro(hc, iris)
R> idendro(hc, iris, clusters = clusters)

To learn more, readers are referred to demos in the idendr0 package. Notably, the idendroFlow
and idendroChondro demos mirror the two use cases presented in Sections 7 and 8.

Affiliation:
Tomáš Sieger
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
and
Department of Neurology and Center of Clinical Neuroscience
1st Faculty of Medicine and General University Hospital, Charles University in Prague
Prague, Czech Republic
E-mail: tomas.sieger@seznam.cz

Catherine B. Hurley
National University of Ireland Maynooth
Maynooth, Ireland
E-mail: catherine.hurley@nuim.ie

Karel Fišer
CLIP – Childhood Leukaemia Investigation Prague
Department of Paediatric Haematology and Oncology
2nd Faculty of Medicine, Charles University in Prague
and
University Hospital Motol
Prague, Czech Republic
E-mail: karel.fiser@lfmotol.cuni.cz

8The capital ‘C’ refers to the shortcut key assigned to this button.

mailto:tomas.sieger@seznam.cz
mailto:catherine.hurley@nuim.ie
mailto:karel.fiser@lfmotol.cuni.cz


22 Interactive Dendrograms: The R Packages idendro and idendr0

Claudia Beleites
Chemometric Consulting and Chemometrix GmbH
Södeler Weg 19, 61200 Wölfersheim, Germany
E-mail: Claudia.Beleites@chemometrix.eu
and
Department of Spectroscopy and Imaging, Leibniz-Institute of Photonic Technology
Albert-Einstein-Str. 9, 07745 Jena, Germany

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

February 2017, Volume 76, Issue 10 Submitted: 2013-07-09
doi:10.18637/jss.v076.i10 Accepted: 2015-11-20

mailto:Claudia.Beleites@chemometrix.eu
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v076.i10

	Introduction
	Installation
	idendro invocation
	idendro window description
	Interacting with idendro
	Cluster selection
	Zooming and panning

	Mutaframes: Data structures for dynamic integration
	Integration with other interactive plots
	Persisting cluster selection

	Case study: Exploration of flow cytometry data
	Case study: idendro and hyperSpec
	Linked idendro and cranvas plots
	User-defined callback functions

	Conclusion
	idendr0 overview

