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Abstract

We revisit sure independence screening procedures for variable selection in generalized
linear models and the Cox proportional hazards model. Through the publicly available
R package SIS, we provide a unified environment to carry out variable selection using
iterative sure independence screening (ISIS) and all of its variants. For the regulariza-
tion steps in the ISIS recruiting process, available penalties include the LASSO, SCAD,
and MCP while the implemented variants for the screening steps are sample splitting,
data-driven thresholding, and combinations thereof. Performance of these feature selec-
tion techniques is investigated by means of real and simulated data sets, where we find
considerable improvements in terms of model selection and computational time between
our algorithms and traditional penalized pseudo-likelihood methods applied directly to
the full set of covariates.

Keywords: Cox model, generalized linear models, penalized likelihood estimation, sparsity,
sure independence screening, variable selection.

1. Introduction

With the remarkable development of modern technology, including computing power and stor-
age, more and more high-dimensional and high-throughput data of unprecedented size and
complexity are being generated for contemporary statistical studies. For instance, bioimaging
technology has made it possible to collect a huge amount of predictor information such as
microarray, proteomic, and SNP data while observing survival information and tumor clas-
sification on patients in clinical studies. A common feature of all these examples is that the
number of variables p can be potentially much larger than the number of observations n, i.e.,
the number of gene expression profiles is in the order of tens of thousands while the number of
patient samples is in the order of tens or hundreds. Following Fan and Lv (2008), we call this
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setting ultrahigh-dimensional, where the authors gave a precise mathematical formulation of
the growth rate of p relative to n. In order to provide more representative and reasonable
statistical models, it is typically assumed that only a small fraction of predictors are associ-
ated with the outcome. This is the notion of sparsity which emphasizes the prominent role
feature selection techniques play in ultrahigh-dimensional statistical modeling.
One popular family of variable selection methods for parametric models is based on the pe-
nalized (pseudo-)likelihood approach. Examples include the LASSO (Tibshirani 1996, 1997),
SCAD (Fan and Li 2001), the elastic net penalty (Zou and Hastie 2005), the MCP (Zhang
2010), and related methods. Nevertheless, in ultrahigh-dimensional statistical learning prob-
lems, these methods may not perform well due to the simultaneous challenges of computational
expediency, statistical accuracy, and algorithmic stability (Fan, Samworth, and Wu 2009).
Motivated by these concerns, Fan and Lv (2008) introduced a new framework for variable
screening via independent correlation learning that tackles the aforementioned challenges in
the context of ultrahigh-dimensional linear models. Their proposed sure independence screen-
ing (SIS) is a two-stage procedure; first filtering out the features that have weak marginal
correlation with the response, effectively reducing the dimensionality p to a moderate scale
below the sample size n, and then performing variable selection and parameter estimation
simultaneously through a lower dimensional penalized least squares method such as SCAD
or LASSO. Under certain regularity conditions, Fan and Lv (2008) showed surprisingly that
this fast feature selection method has a “sure screening property”; that is, with probability
tending to 1, the independence screening technique retains all of the important features in
the model. However, the SIS procedure in Fan and Lv (2008) only covers ordinary linear
regression models and their technical arguments do not extend easily to more general models
such as generalized linear models and hazard regression with right-censored times.
In order to enhance finite sample performance, an important methodological extension, iter-
ative sure independence screening (ISIS), was also proposed by Fan and Lv (2008) to handle
cases where the regularity conditions may fail, such as when some important predictors are
marginally uncorrelated with the response, or the reverse situation where an unimportant
predictor has higher marginal correlation than some important features. Roughly speaking,
the original ISIS procedure works by iteratively performing variable selection to recruit a
small number of predictors, computing residuals based on the model fitted using these re-
cruited predictors, and then using the residuals as the working response variable to continue
recruiting new predictors. With the purpose of handling more complex real data, Fan and
Song (2010) extended SIS to generalized linear models; and Fan et al. (2009) improved some
important steps of the original ISIS procedure, allowing variable deletion in the recruiting pro-
cess through penalized pseudo-likelihood, while dealing with more general loss based models.
In particular, they introduced the concept of conditional marginal regressions and, with the
aim of reducing the false discovery rate, proposed two new ISIS variants based on the idea
of splitting samples. Other extensions of ISIS include Fan, Feng, and Wu (2010) to the
Cox proportional hazards model, and Fan, Feng, and Song (2011) to nonparametric additive
models.
In this paper we build on the work of Fan et al. (2009) and Fan et al. (2010) to provide a
publicly available package SIS (Fan, Feng, Saldana, Samworth, and Wu 2018), implemented
in the R statistical software (R Core Team 2017), extending sure independence screening and
all of its variants to generalized linear models and the Cox proportional hazards model. In
particular, our codes are able to perform variable selection through the proposed ISIS variants
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of Fan et al. (2009) and through the data-driven thresholding approach of Fan et al. (2011).
Furthermore, we combine these sample splitting and data-driven thresholding ideas to provide
two novel feature selection techniques. The package is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=SIS.
Taking advantage of the fast cyclical coordinate descent algorithms developed in the pack-
ages glmnet (Friedman, Hastie, Simon, and Tibshirani 2017) and ncvreg (Breheny 2017),
for convex and nonconvex penalty functions, respectively, we are able to efficiently perform
the moderate scale penalized pseudo-likelihood steps from the ISIS procedure, thus yielding
variable selection techniques outperforming direct use of glmnet and ncvreg in terms of both
computational time and estimation error. Our procedures scale favorably in both n and p,
allowing us to expeditiously and accurately solve much larger problems than with previous
packages, particularly in the case of nonconvex penalties. We would like to point out that the
recent package apple (Yu and Feng 2012), using a hybrid of the predictor-corrector method
and coordinate descent procedures, provides an alternative for the penalized pseudo-likelihood
estimation with nonconvex penalties (Yu and Feng 2014a). In the present work, we limit all
numerical results to the use of ncvreg, noting that there are other available options to imple-
ment the nonconvex variable selection procedures performed by SIS. Similarly, although the
package survHD (Bernau, Waldron, and Riester 2014) provides an efficient alternative for
implementing Cox proportional hazards regression, in the current presentation, we only make
use of the survival package (Therneau 2017) to compute conditional marginal regressions and
of the glmnet package (Friedman et al. 2017) to fit high-dimensional Cox models.
The remainder of the paper is organized as follows. In Section 2, we describe the vanilla SIS
and ISIS variable selection procedures in the context of generalized linear models and the Cox
proportional hazards model. Section 3 discusses several ISIS variants, as well as important
implementation details. Simulation results comparing model selection performance and run
time trials are given in Section 4, where we also analyze four gene expression data sets and
work through an example using our package with one of them. The paper is concluded with
a short discussion in Section 5.

2. General SIS and ISIS methodological framework
Consider the usual generalized linear model (GLM) framework, where we have independent
and identically distributed observations {(xi, yi) : i = 1, . . . , n} from the population (x, y),
where the predictor x = (x0, x1, . . . , xp)> is a (p+ 1)-dimensional random vector with x0 = 1
and y is the response. We further assume the conditional distribution of y given x is from an
exponential family taking the canonical form

f(y;x,β) = exp{yθ − b(θ) + c(y)}, (1)

where θ = x>β, β = (β0, β1, . . . , βp)> is a vector of unknown regression parameters and b(·),
c(·) are known functions. As we are only interested in modeling the mean regression, the
dispersion parameter is assumed known. In virtue of (1), inference about the parameter β in
the GLM context is made via maximization of the log-likelihood function

`(β) =
n∑
i=1
{yi(x>i β)− b(x>i β)}. (2)

https://CRAN.R-project.org/package=SIS
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For the survival analysis framework, the observed data {(xi, yi, δi) : xi ∈ Rp, yi ∈ R+, δi ∈
{0, 1}, i = 1, . . . n} is an independent and identically distributed random sample from a certain
population (x, y, δ). Here, as in the context of linear models, x = (x1, x2, . . . , xp)> is a p-
dimensional random vector of predictors and y, the observed time, is a time of failure if δ = 1,
or a right-censored time if δ = 0. Suppose that the sample comprises m distinct uncensored
failure times t1 < t2 < · · · < tm. Let (j) denote the individual failing at time tj and R(tj)
be the risk set just prior to time tj , that is, R(tj) = {i : yi ≥ tj}. The main problem
of interest is to study the relationship between the predictor variables and the failure time,
and a common approach is through the Cox proportional hazards model (Cox 1975). For
a vector β = (β1, β2, . . . , βp)> of unknown regression parameters, the Cox model assumes a
semiparametric form of the hazard function

h(t|xi) = h0(t)ex>i β,

where h0(t) is an unknown arbitrary baseline hazard function giving the hazard when xi = 0.
Following the argument in Cox (1975), inference about β is made via maximization of the
partial likelihood function

L(β) =
m∏
j=1

e
x>(j)β∑

k∈R(tj) e
x>

k
β
,

which is equivalent to maximizing the log-partial likelihood

`(β) =
n∑
i=1

δix
>
i β −

n∑
i=1

δi log
{ ∑
k∈R(yi)

exp(x>k β)
}
. (3)

We refer interested readers to Kalbfleisch and Prentice (2002) and references therein for a
comprehensive literature review on the Cox proportional hazards model.
For both statistical models, we assume all predictors x1, . . . , xp are standardized to have mean
zero and standard deviation one. Additionally, although our variable selection procedures
within the SIS package also handle the classical p < n setting, we allow the number of
covariates p to be much larger than the number of observations n. What makes statistical
inference possible in this “large p, small n” scenario is the sparsity assumption; only a small
subset of variables among predictors x1, . . . , xp contribute to the response, which implies the
parameter vector β is sparse. Therefore, variable selection techniques play a pivotal role in
these ultrahigh-dimensional statistical models.

2.1. SIS and feature ranking by maximum marginal likelihood estimators

Let M? = {1 ≤ j ≤ p : β?j 6= 0} be the true sparse model, where β? = (β?0 , β?1 , . . . , β?p)>
denotes the true value of the parameter vector and β?0 = 0 for the Cox model. In order to
carry out the vanilla sure independence screening variable selection procedure, we initially
fit marginal versions of models (2) and (3) with componentwise covariates. The maximum
marginal likelihood estimator (MMLE) β̂Mj , for j = 1, . . . , p, is defined in the GLM context
as the maximizer of the componentwise regression

β̂Mj = (β̂Mj,0, β̂Mj ) = arg max
β0,βj

n∑
i=1
{yi(β0 + xijβj)− b(β0 + xijβj)}, (4)
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where xi = (xi0, xi1, . . . , xip)> and xi0 = 1. Similarly, for each covariate xj (1 ≤ j ≤ p), one
can define the MMLE for the Cox model as the maximizer of the log-partial likelihood with
a single covariate

β̂Mj = arg max
βj

(
n∑
i=1

δixijβj −
n∑
i=1

δi log
{ ∑
k∈R(yi)

exp(xkjβj)
})

, (5)

with xi = (xi1, . . . , xip)>. Both componentwise estimators can be computed very rapidly and
implemented in a modular way, avoiding the numerical instability associated with ultrahigh-
dimensional estimation problems.
The vanilla SIS procedure then ranks the importance of features according to the magnitude of
their marginal regression coefficients, excluding the intercept in the case of GLMs. Therefore,
we select a set of variables

M̂δn = {1 ≤ j ≤ p : |β̂Mj | ≥ δn}, (6)

where δn is a threshold value chosen so that we pick the d top ranked covariates. Typically,
one may take d = bn/ lognc, so that dimensionality is reduced from ultrahigh to below the
sample size. As further discussed in Sections 3.3 and 3.4, the choice of d may also be either
data-driven or model-based. Under a mild set of technical conditions, Fan and Song (2010)
show the magnitude of these marginal estimators can preserve the nonsparsity information
about the joint model with full covariates. In other words, for a given sequence {δn}, the sure
screening property

P(M? ⊂ M̂δn)→ 1 as n→∞ (7)

holds for SIS, effectively reducing the dimensionality of the model from ultrahigh to below
the sample size, and solving the aforementioned challenges of computational expediency,
statistical accuracy, and algorithmic stability.
With features being crudely selected by the intensity of their marginal signals, the index set
M̂δn may also include a great deal of unimportant predictors. To further improve finite sample
performance of vanilla SIS, variable selection and parameter estimation can be simultaneously
achieved via penalized likelihood estimation, using the joint information of the covariates in
M̂δn . Without loss of generality, by reordering the features if necessary, we may assume
that x1, . . . , xd are the predictors recruited by SIS. We define βd = (β0, β1, . . . , βd)> and let
xi,d = (xi0, xi1, . . . , xid)> with xi0 = 1. Thus, our original problem of estimating the sparse
(p + 1)-vector β in the GLM framework (2) reduces to estimating a sparse (d + 1)-vector
βd = (β0, β1, . . . , βd)> based on maximizing the moderate scale penalized likelihood

β̂d = arg max
βd

n∑
i=1
{yi(x>i,dβd)− b(x>i,dβd)} −

d∑
j=1

pλ(|βj |). (8)

Likewise, after defining βd = (β1, β2, . . . , βd)> and setting xi,d = (xi1, xi2, . . . , xid)> for sur-
vival data within the Cox model, the moderate scale version of the penalized log-partial
likelihood problem consists in maximizing

β̂d = arg max
βd

n∑
i=1

δix
>
i,dβd −

n∑
i=1

δi log
{ ∑
k∈R(yi)

exp(x>k,dβd)
}
−

d∑
j=1

pλ(|βj |). (9)
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Algorithm 1 Vanilla SIS (Van-SIS)
1. Inputs: Screening model size d. Penalty pλ(·).
2. For every j ∈ {1, . . . , p}, compute the MMLE β̂Mj from (4) or (5).
3. Choose a threshold value δn in (6) such that M̂δn consists of the d top ranked covariates.
4. Obtain the parameter estimate β̂d from the penalized likelihood estimation problems (8)

or (9).
5. Outputs: Parameter estimate β̂d and the corresponding estimate of the true sparse model
M̂1 = supp{β̂d}.

Here, pλ(·) is a penalty function and λ > 0 is a regularization parameter which may be selected
using the AIC (Akaike 1973), BIC (Schwarz 1978) or EBIC (Chen and Chen 2008) criteria,
or through ten-fold cross-validation and the modified cross-validation framework (Feng and
Yu 2013; Yu and Feng 2014b), for example. Penalty functions whose resulting estimators
yield sparse solutions to the maximization problems (8) and (9) include the LASSO penalty
pλ(|β|) = λ|β| (Tibshirani 1996), the smoothly clipped absolute deviation (SCAD) penalty
(Fan and Li 2001), which is a folded-concave quadratic spline with pλ(0) = 0 and

p′λ(|β|) = λ

{
1{|β|≤λ} + (γλ− |β|)+

(γ − 1)λ 1{|β|>λ}

}
,

for some γ > 2 and |β| > 0, and the minimax concave penalty (MCP), another folded-concave
quadratic spline with pλ(0) = 0 such that

p′λ(|β|) = (λ− |β|/γ)+,

for some γ > 0 and |β| > 0 (Zhang 2010). For the SCAD and MCP penalties, the tuning
parameter γ is used to adjust the concavity of the penalty. The smaller γ is, the more concave
the penalty becomes, which means finding a global minimizer is more difficult; but on the
other hand, the resulting estimators overcome the bias introduced by the LASSO penalty.
Once penalized likelihood estimation is carried out in (8) and (9), a refined estimate ofM?

can be obtained from M̂1, the index set of the nonzero components of the sparse regression
parameter estimator. We summarize this initial screening procedure based on componentwise
regressions through Algorithm 1.

2.2. Iterative sure independence screening

The technical conditions in Fan and Lv (2008) and Fan and Song (2010) guaranteeing the
sure screening property for SIS fail to hold if there is a predictor marginally unrelated, but
jointly related with the response, or if a predictor is jointly uncorrelated with the response
but has higher marginal correlation with the response than some important predictors inM?.
In the former case, the important predictor cannot be picked up by vanilla SIS, whereas in
the latter case, unimportant predictors inMc

? are ranked too high, leaving out features from
the true sparse modelM?.
To deal with these difficult scenarios in which the SIS methodology breaks down, Fan and
Lv (2008) and Fan et al. (2009) proposed iterative sure independence screening based on
conditional marginal regressions and feature ranking. The approach seeks to overcome the
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limitations of SIS, which is based on marginal models only, by making more use of the joint
covariate information while retaining computational expediency and stability as in the original
SIS.
In its first iteration, the vanilla ISIS variable selection procedure begins with using regular
SIS to pick an index set Â1 of size k1, and then similarly applies a penalized likelihood
estimation approach to select a subset M̂1 of these indices. Note that the screening step
only fits componentwise regressions, while the penalized likelihood step solves optimization
problems of moderate scale k1, typically below the sample size n. This is an attractive feature
for any variable selection technique applied to ultrahigh-dimensional statistical models. After
the first iteration, we denote the resulting estimator with nonzero components and indices in
M̂1 by β̂M̂1

.
In an effort to use more fully the joint covariate information, in the second iteration of vanilla
ISIS we compute the conditional marginal regression of each predictor j that is not in M̂1.
That is, under the generalized linear model framework, we solve

arg max
β0,βM̂1

,βj

n∑
i=1
{yi(β0 + x>

i,M̂1
βM̂1

+ xijβj)− b(β0 + x>
i,M̂1

βM̂1
+ xijβj)}, (10)

whereas under the Cox model, we obtain

arg max
β
M̂1

,βj

(
n∑
i=1

δi(x>
i,M̂1

βM̂1
+ xijβj)−

n∑
i=1

δi log
{ ∑
k∈R(yi)

exp(x>
k,M̂1

βM̂1
+ xkjβj)

})
(11)

for each j ∈ {1, . . . , p} \ M̂1, where xi,M̂1
denotes the sub-vector of xi with indices in M̂1

and similarly for βM̂1
. These are again low-dimensional problems which can be solved quite

efficiently. Similar to the componentwise regressions (4) and (5), let β̂Mj denote the last
coordinate of the maximizer in (10) and (11). The magnitude |β̂Mj | reflects the additional
contribution of the jth predictor given that all covariates with indices in M̂1 have been
included in the model.
Once the conditional marginal regressions have been computed for each predictor not in M̂1,
we perform conditional feature ranking by ordering {|β̂Mj | : j ∈ M̂c

1} and forming an index set
Â2 of size k2, say, consisting of the indices with the top ranked elements. After this screening
step, under the GLM framework, we maximize the moderate scale penalized likelihood

n∑
i=1
{yi(β0 + x>

i,M̂1∪Â2
βM̂1∪Â2

)− b(β0 + x>
i,M̂1∪Â2

βM̂1∪Â2
)} −

∑
j∈M̂1∪Â2

pλ(|βj |) (12)

with respect to βM̂1∪Â2
to get a sparse estimator β̂M̂1∪Â2

. Similarly, in the Cox model, we
obtain a sparse estimator by maximizing the moderate scale penalized log-partial likelihood

n∑
i=1

δi(x>
i,M̂1∪Â2

βM̂1∪Â2
)−

n∑
i=1

δi log
{ ∑
k∈R(yi)

exp(x>
k,M̂1∪Â2

βM̂1∪Â2
)
}

−
∑

j∈M̂1∪Â2

pλ(|βj |). (13)
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Algorithm 2 Vanilla ISIS (Van-ISIS)
1. Inputs: Screening model size d. Penalty pλ(·). Maximum iteration number lmax.
2. For every j ∈ {1, . . . , p}, compute the MMLE β̂Mj from problems (4) or (5). Select the k1

top ranked covariates to form the index set Â1.
3. Apply penalized likelihood estimation on the set Â1 to obtain a subset of indices M̂1.
4. For every j ∈ M̂c

1, solve the conditional marginal regression problem (10) or (11) and sort
{|β̂Mj | : j ∈ M̂c

1}. Form the index set Â2 with the k2 top ranked covariates, and apply
penalized likelihood estimation on M̂1 ∪ Â2 as in (12) or (13) to obtain a new index set
M̂2.

5. Iterate the process in Step 4 until we have an index set M̂l such that |M̂l| = d or
M̂l = M̂j for some j < l or l = lmax.

6. Outputs: M̂l from Step 5 along with the parameter estimate from (12) or (13).

The indices of the nonzero coefficients of β̂M̂1∪Â2
provide an updated estimate M̂2 of the

true sparse modelM?.
In the screening step above, an alternative approach is to substitute the fitted regression
parameter β̂M̂1

from the first step of vanilla ISIS into problems (10) and (11), so that the
optimization problems become again componentwise regressions. This approach is exactly
an extension of the original ISIS proposal of Fan and Lv (2008) to generalized linear models
and the Cox proportional hazards model. Even for the ordinary linear model, the conditional
contributions of predictors are more relevant for variable selection in the second ISIS iteration
than the original proposal of using the residuals r̂i = yi − x>

i,M̂1
β̂M̂1

as the new response
(see Fan et al. 2009). Furthermore, the penalized likelihood steps (12) and (13) allow the
procedure to delete some features {xj : j ∈ M̂1} that were previously selected. This is also
an important deviation from Fan and Lv (2008), as their original ISIS procedure does not
contemplate intermediate deletion steps.
Lastly, the vanilla ISIS procedure, which iteratively recruits and deletes predictors, can be
repeated until some convergence criterion is reached. We adopt the criterion of having an
index set M̂l which either has the prescribed size d, or satisfies M̂l = M̂j for some j <
l. In order to ensure that iterated SIS takes at least two iterations to terminate, in our
implementation we fix k1 = b2d/3c, and thereafter at the lth iteration we set kl = d−|M̂l−1|.
A step-by-step description of the vanilla ISIS procedure is provided in Algorithm 2.
We conclude this section providing a simple overview of the main features of the vanilla SIS
and ISIS procedures for applied practitioners. In the ultrahigh-dimensional statistical model
setting where p� n, and even in the classical p < n setting with p > 30, variable screening is
an essential tool in helping eliminate irrelevant predictors while reducing data gathering and
storage requirements. The vanilla SIS procedure given in Algorithm 1 provides an extremely
fast and efficient variable screening based on marginal regressions of each predictor with the
response. While under certain independence assumptions among predictors this may prove
a successful strategy in terms of estimating the true sparse modelM?, there are well-known
issues associated with variable screening using only information from marginal regressions,
such as missing important predictors fromM? which happen to have low marginal correlation
with the response. The vanilla ISIS procedure addresses these issues by using more thoroughly
the joint covariate information through the conditional marginal regressions (10) and (11),
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which aim at measuring the additional contribution of a predictor xj given the presence of
the variables in M̂1 in the current model, all while maintaining low computational costs.
Finally, we would like to point out that the intermediate deletion steps of the vanilla ISIS
procedure could be carried out with any other variable selection methods, such as the weight
vector ranking with support vector machines (Rakotomamonjy 2003) or the greedy search
strategies of forward selection and backward elimination (Guyon and Elisseeff 2003). In our
implementation within the SIS package we favor the penalized likelihood criteria (12) and
(13), but in principle any variable selection technique could be employed to further filter
unimportant predictors.

3. Variants of ISIS
By nature of their marginal approach, sure independence screening procedures have large false
selection rates, namely, many unimportant predictors inMc

? are selected after the screening
steps. In order to reduce the false selection rate, Fan et al. (2009) suggested the idea of sample
splitting. Without loss of generality, we assume the sample size n is even, and we randomly
split the sample into two halves. Two variants of the ISIS methodology have been proposed
in the literature; both of them relying on the idea of performing variable screening to the
data in each partition separately, combining the results in a subsequent penalized likelihood
step. We also revisit the approach of Fan et al. (2011), in which a random permutation of
the observations is used to obtain a data-driven threshold for independence screening.

3.1. First variant of ISIS

Let Â (1)
1 and Â (2)

1 be the two sets of indices, each of size k1, obtained after applying regular
SIS to the data in each partition. As the first crude estimates of the true sparse modelM?,
both of them should have large false selection rates. Yet, under the technical conditions given
in Fan and Song (2010), the estimates should satisfy

P(M? ⊂ Â (j)
1 )→ 1 as n→∞

for j = 1, 2. That is, important features should appear in both sets with probability tending
to one. If we define Â1 = Â (1)

1 ∩ Â (2)
1 as a new estimate ofM?, this new index set must also

satisfy
P(M? ⊂ Â1)→ 1 as n→∞.

However, by construction, the number of unimportant predictors in Â1 should be much
smaller, thus reducing the false selection rate. The reason is that, in order for an unim-
portant predictor to appear in Â1, it has to be included in both sets Â (1)

1 and Â (2)
1 randomly.

In their theoretical support for this variant based on random splitting, Fan et al. (2009)
provided a non-asymptotic upper bound for the probability of the event that m unimpor-
tant covariates are included in the intersection Â1. The probability bound, obtained under
an exchangeability condition ensuring that each unimportant feature is equally likely to be
recruited by SIS, is decreasing in the dimensionality, showing an apparent “blessing of dimen-
sionality”. This is only part of the full story, since, as pointed out in Fan et al. (2009), the
probability of missing important predictors from the true sparse model M? is expected to
increase with p. However, as we show in our simulation settings of Section 4.1, and further
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confirm in the real data analysis of Section 4.3, the procedure is quite effective at obtaining
a minimal set of features that should be included in a final model.
The remainder of the first variant of ISIS proceeds as follows. After forming the intersection
Â1 = Â (1)

1 ∩ Â (2)
1 , we perform penalized likelihood estimation as in Algorithm 2 to obtain a

refined approximation M̂1 to the true sparse model. We then perform the second iteration
of the vanilla ISIS procedure, computing conditional marginal regressions to each partition
separately to obtain sets of indices Â (1)

2 and Â (2)
2 , each of size k2. After taking the intersection

Â2 = Â (1)
2 ∩ Â (2)

2 of these two sets, we carry out sparse penalized likelihood estimation as in
(12) and (13), obtaining a second approximation M̂2 to the true modelM?. As before, the
iteration continues until we have an index set M̂l of size d, or satisfying M̂l = M̂j for some
j < l.

3.2. Second variant of ISIS
The variable selection performed by the first variant of ISIS could potentially lead to a very
aggressive screening of predictors, reducing the overall false selection rate, but sometimes
yielding undesirably minimal model sizes. The second variant of ISIS is a more conservative
variable selection procedure, where we again apply regular SIS to each partition separately,
but we now choose larger sets of indices Ã (1)

1 and Ã (2)
1 to ensure that their intersection

Ã1 = Ã (1)
1 ∩ Ã (2)

1 has k1 elements. In this way, the second variant guarantees that there are
at least k1 predictors included before the penalized likelihood step, making it considerably
less aggressive than the first variant.
After applying penalized likelihood to the predictors with indices in Ã1, we obtain a first
estimate M̃1 of the true sparse model. The second iteration computes conditional marginal
regressions to each partition separately, recruiting enough features in index sets Ã (1)

2 and
Ã (2)

2 to ensure that Ã2 = Ã (1)
2 ∩ Ã (2)

2 has k2 elements. Penalized likelihood, as outlined in
Section 2.2, is now applied to M̃1 ∪ Ã2, yielding a second estimate M̃2 of the true model
M?. Stopping criteria remain the same as in the first variant.

3.3. Data-driven thresholding
Motivated by a false discovery rate criterion in Fan et al. (2011), the following variant of
ISIS determines a data-driven threshold for marginal screening. Given GLM data of the form
{(xi, yi) : i = 1, . . . , n}, a random permutation π of {1, . . . , n} is used to decouple xi and
yi so that the resulting data {(xπ(i), yi) : i = 1, . . . , n} follow a null model, i.e., a model in
which the features have no prediction power over the response. For the newly permuted data,
we recalculate marginal regression coefficients (β̂Mj )∗ for each predictor j, with j = 1, . . . , p.
The motivation behind this approach is that whenever j is the index of an important predictor
in M?, the MMLE |β̂Mj | given in (4) should be larger than most of |(β̂Mj )∗|, as the random
permutation is meant to eliminate the prediction power of features. For a given q ∈ [0, 1], let
ω(q) be the qth quantile of {|(β̂Mj )∗| : j = 1, . . . , p}. The data-driven threshold allows only a
1 − q proportion of inactive variables to enter the model when x and y are not related (the
null model). Thus, the initial index set Â1 is defined as

Â1 = {1 ≤ j ≤ p : |β̂Mj | ≥ ω(q)},

and the modified ISIS iteration then carries out penalized likelihood estimation in the usual



Journal of Statistical Software 11

Algorithm 3 Permutation-based ISIS (Perm-ISIS)
1. Inputs: Screening model size d. Penalty pλ(·). Quantile q. Maximum iteration number
lmax.

2. For every j ∈ {1, . . . , p}, compute the MMLE β̂Mj . Obtain the randomly permuted data
{(xπ(i), yi) : i = 1, . . . , n}, and let ω(q) be the qth quantile of {|(β̂Mj )∗| : j = 1, . . . , p},
where (β̂Mj )∗ is the second coordinate of the solution to

arg max
β0,βj

n∑
i=1
{yi(β0 + xπ(i)jβj)− b(β0 + xπ(i)jβj)}.

Select the variables in the index set Â1 = {1 ≤ j ≤ p : |β̂Mj | ≥ ω(q)}.
3. Apply penalized likelihood estimation on the set Â1 to obtain a subset of indices M̂1.
4. For every j ∈ M̂c

1, solve the conditional marginal regression problem (10) and obtain
{|β̂Mj | : j ∈ M̂c

1}. By randomly permuting only the variables in M̂c
1, let ω(q) be the qth

quantile of {|(β̂Mj )∗| : j ∈ M̂c
1}, where (β̂Mj )∗ is the last coordinate of the solution to

arg max
β0,βM̂1

,βj

n∑
i=1
{yi(β0 + x>

i,M̂1
βM̂1

+ xπ(i)jβj)− b(β0 + x>
i,M̂1

βM̂1
+ xπ(i)jβj)}.

Select the variables in the index set Â2 = {j ∈ M̂c
1 : |β̂Mj | ≥ ω(q)}, and apply penalized

likelihood estimation on M̂1 ∪ Â2 to obtain a new subset M̂2.
5. Iterate the process in Step 4 until we have an index set M̂l such that |M̂l| ≥ d or
M̂l = M̂j for some j < l or l = lmax.

6. Outputs: M̂l from Step 5 along with the parameter estimate from (12) or (13).

way to obtain a finer approximation M̂1 of the true sparse modelM?. The complete proce-
dure for this variant is detailed in Algorithm 3 above.
A greedy modification of the above algorithm can be proposed to enhance variable selection
performance. Specifically, we restrict the size of the sets Âj in the iterative screening steps
to be at most p0, a small positive integer. Moreover, a completely analogous algorithm can
be proposed for survival data, with permutation π and data-driven threshold ω(q) defined
accordingly. Details of such a procedure are omitted in the current presentation.

3.4. Implementation details

There are several important details in the implementation of the vanilla versions of SIS and
ISIS, as well as of all the above mentioned variants.

• In order to speed up computations, and exclusively for the first screening step, all va-
riable selection procedures use correlation learning (i.e., marginal Pearson correlations)
between each predictor and the response, instead of the componentwise GLM or par-
tial likelihood fits (4) and (5). We found no major differences in variable selection
performance between this variant and the one using the MMLEs.

• Although the asymptotic theory of Fan and Song (2010) guarantees the sure screening
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property (7) for a sequence δn ∼ n−θ∗ , with θ∗ > 0 a fixed constant, in practice Fan
et al. (2009) recommend using d = bn/ lognc as a sensible choice since θ∗ is typically
unknown. Furthermore, Fan et al. (2009) also advocate using model-based choices
of d, favoring smaller values in models where the response provides less information.
In our numerical implementation we use d = bn/(4 logn)c for logistic regression and
d = bn/(2 logn)c for Poisson regression, which are less informative than the real-valued
response in a linear model, for which we select d = bn/ lognc. For the right-censored
response in the survival analysis framework, we fix d = bn/(4 logn)c.

• Regardless of the statistical model at hand, we set d = bn/ lognc for the first variant of
ISIS. Note that since the selected variables for this first variant are in the intersection of
two sets of size kl ≤ d, we typically end up with far fewer than d variables selected by this
method. In any case, our procedures within the SIS package allow for a user-specified
value of d.

• Variable selection under the traditional p < n setting can also be carried out using
our screening procedures, for which we fix d = p as default for all variants. In this
regard, practicing data analysts can view sure independence screening procedures along
classical criteria for variable selection such as the AIC (Akaike 1973), BIC (Schwarz
1978), Cp (Mallows 1973) or the generalized information criterion GIC (Nishii 1984)
applied directly to the full set of covariates.

• The intermediate penalized likelihood problems (12) and (13) are solved using the glm-
net and ncvreg packages. Our code has an option allowing the regularization parameter
λ > 0 to be selected through the AIC, BIC, EBIC or K-fold cross-validation criteria.
The concavity parameter γ in the SCAD and MCP penalties can also be user-specified.

• In our permutation-based variant with data-driven thresholding, we use q = 1 (i.e., we
take ω(q) to be the maximum absolute value of the permuted estimates) and take p0 to
be 1 in the greedy modification. Note that if none of the variables is recruited, that is,
exceeding the threshold for the null model, the criterion in Step 5 stops the procedure.

• We can further combine the permutation-based approach of Section 3.3 with the sample
splitting idea from the first two variants to define a new ISIS procedure. Concretely,
we first select two subsets of indices Â (1)

1 and Â (2)
1 , each consisting of variables whose

MMLEs, or correlation with the response, exceed the data-driven thresholds ω(1)
(q) and

ω
(2)
(q) of their respective samples. If the size of their intersection is less than k1, we

define Â1 = Â (1)
1 ∩ Â (2)

1 ; otherwise, we reduce the size of Â (1)
1 and Â (2)

1 to ensure their
intersection has at most k1 elements. This is done to control the size of Â1 when too
many variables exceed the thresholds. The rest of the iteration is carried out accordingly.

• Every variant of ISIS is coded to guarantee there will be at least two predictors at the
end of the first screening step.

As the proposed ISIS variants grow more involved, the associated number of tuning parameters
is bound to increase. While this may initially make some data practitioners feel uneasy, our
intent here is to be as flexible as possible, providing all available tools that the powerful
family of sure independence screening procedures has to offer. Additionally, it is important
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Parameter Description SIS package options
pλ(·) Penalty function for intermediate

penalized likelihood estimation.
penalty = "SCAD" (default) /
= "MCP" /= "lasso"

λ Method for tuning regularization
parameter of penalty function pλ(·).

tune = "bic" (default) /
= "ebic" /= "aic" /= "cv"

γ Concavity parameter for SCAD
and MCP penalties.

concavity.parameter = 3.7 /= 3
are defaults for SCAD/MCP. Any
γ > 2 for SCAD or γ > 1 for MCP
can be user-specified.

d Upper bound on the number of
predictors to be selected.

nsis default is model-based as exp-
lained in Section 3.4. It can also
be user-specified.

ISIS variant Flags which ISIS version to
perform.

varISIS = "vanilla" (default) /
= "aggr" /= "cons"

Permuation
variant

Flags whether to use permutation
variant with data-driven thresholds.

perm = FALSE (default) /= TRUE

q Quantile used in calculating
data-driven thresholds.

q = 1 (default) / can be any user-
specified value in [0, 1].

p0 Maximum size of active sets
in greedy modification.

greedy.size = 1 (default) / can be
any user-specified integer less than p.

Table 1: Summary of tuning parameters for variable selection using ISIS procedures within
the SIS package, as well as associated defaults. All ISIS variants are implemented through
the SIS function, which we describe in Section 4.4 using a gene expression data set.

to clarify that there exist tuning parameters inherent to the screening procedures, which
are fundamentally different from tuning parameters (e.g., driven by a K-fold cross-validation
approach) needed in the intermediate penalized likelihood procedures. In any case, we detail
all available options implemented in our SIS package in Table 1 above, where we highlight
recommended default settings for practicing researchers.

4. Model selection and timings
In this section we illustrate all independence screening procedures by studying their per-
formance on simulated data and on four popular gene expression data sets. Most of the
simulation settings are adapted from the work of Fan et al. (2009) and Fan et al. (2010).

4.1. Model selection and statistical accuracy

We first conduct simulation studies comparing the run time of the vanilla version of SIS (Van-
SIS), its iterated vanilla version (Van-ISIS), the first variant (Var1-ISIS), the second variant
(Var2-ISIS), the permutation-based ISIS (Perm-ISIS), its greedy modification (Perm-g-ISIS),
the permutation-based variant with sample splitting (Perm-var-ISIS) and its greedy modi-
fication (Perm-var-g-ISIS), under both generalized linear models and the Cox proportional
hazards model. We also demonstrate the power of ISIS and its variants, in terms of model
selection and estimation, by comparing them with traditional LASSO and SCAD penalized
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estimation. Our SIS code is tested against the competing R packages glmnet (Friedman
et al. 2017) and ncvreg (Breheny 2017) for LASSO and SCAD penalization, respectively.
All calculations were carried out on an Intel Xeon L5430 @ 2.66 GHz processor. We refer
interested readers to Friedman, Hastie, and Tibshirani (2010), Breheny and Huang (2011),
and Simon, Friedman, Hastie, and Tibshirani (2011) for a detailed discussion of penalized
likelihood estimation algorithms under generalized linear models and the Cox proportional
hazards model.
Four different statistical models are considered here: Linear regression, Logistic regression,
Poisson regression, and Cox proportional hazards regression. We select the configuration
(n, p) = (400, 5000) for all models, and generate covariates x1, . . . , xp as follows:

Case 1: x1, . . . , xp are independent and identically distributed N(0, 1) random variables.

Case 2: x1, . . . , xp are jointly Gaussian, marginally distributed as N(0, 1), and with correla-
tion structure Corr(xi, xj) = 1/2 if i 6= j.

Case 3: x1, . . . , xp are jointly Gaussian, marginally distributed as N(0, 1), and with correla-
tion structure Corr(xi, x4) = 1/

√
2 for all i 6= 4 and Corr(xi, xj) = 1/2 if i and j are

distinct elements of {1, . . . , p} \ {4}.

Case 4: x1, . . . , xp are jointly Gaussian, marginally distributed as N(0, 1), and with correla-
tion structure Corr(xi, x5) = 0 for all i 6= 5, Corr(xi, x4) = 1/

√
2 for all i /∈ {4, 5},

and Corr(xi, xj) = 1/2 if i and j are distinct elements of {1, . . . , p} \ {4, 5}.

With independent features, Case 1 is the most straightforward for variable selection. In
Cases 2–4, however, we have serial correlation among predictors such that Corr(xi, xj) does
not decay as |i − j| increases. We will see below that for Cases 3 and 4, the true sparse
modelM? is chosen such that the response is marginally independent but jointly dependent
of x4. This type of dependence is ruled out in the asymptotic theory of SIS in Fan and Song
(2010), so we should expect variable selection in these settings to be more challenging for the
non-iterated version of SIS.
In the Cox proportional hazards scenario, the right-censoring time is generated from the
exponential distribution with mean 10. This corresponds to fixing the baseline hazard function
h0(t) = 0.1 for all t ≥ 0. The true regression coefficients from the sparse modelM? in each
of the four settings are as follows:

Case 1: β?0 = 0, β?1 = −1.5140, β?2 = 1.2799, β?3 = −1.5307, β?4 = 1.5164, β?5 = −1.3019,
β?6 = 1.5833, and β?j = 0 for j > 6.

Case 2: The coefficients are the same as in Case 1.

Case 3: β?0 = 0, β?1 = 0.6, β?2 = 0.6, β?3 = 0.6, β?4 = −0.9
√

2, and β?j = 0 for j > 4.

Case 4: β?1 = 4, β?2 = 4, β?3 = 4, β?4 = −6
√

2, β?5 = 4/3, and β?j = 0 for j > 5. The
corresponding median censoring rate is 33.5%.

For Cases 1 and 2, the coefficients were randomly generated as (4 logn/
√
n + |Z|/4)U with

Z ∼ N(0, 1) and U = 1 with probability 0.5 and −1 with probability 0.5, independent of
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Method ‖β̂ − β?‖1 ‖β̂ − β?‖2
2 TP FP Time

Van-SIS 0.24 (0.10) 0.01 (0.01) 6 (0.00) 0 (0.00) 0.26 ( 0.02)
Van-ISIS 0.24 (0.09) 0.01 (0.01) 6 (0.00) 0 (0.00) 8.34 ( 0.78)
Var1-ISIS 0.28 (0.17) 0.02 (0.03) 6 (0.00) 0 (0.75) 11.76 ( 8.65)
Var2-ISIS 0.24 (0.09) 0.01 (0.01) 6 (0.00) 0 (0.00) 11.90 ( 1.12)
Perm-ISIS 0.39 (0.27) 0.04 (0.06) 6 (0.00) 1 (1.49) 44.57 (13.38)
Perm-g-ISIS 0.35 (0.23) 0.03 (0.04) 6 (0.00) 0 (0.75) 107.50 (22.99)
Perm-var-ISIS 0.24 (0.09) 0.01 (0.01) 6 (0.00) 0 (0.00) 41.64 ( 1.01)
Perm-var-g-ISIS 0.24 (0.09) 0.01 (0.01) 6 (0.00) 0 (0.00) 82.81 (15.80)
SCAD 0.24 (0.09) 0.01 (0.01) 6 (0.00) 0 (0.00) 6.89 ( 5.56)

Table 2: Linear regression, Case 1, where results are given in the form of medians and robust
standard deviations (in parentheses).

Method ‖β̂ − β?‖1 ‖β̂ − β?‖2
2 TP FP Time

Van-SIS 2.76 ( 2.41) 2.22 ( 2.70) 5 (0.93) 0 (0.75) 0.36 ( 0.05)
Van-ISIS 8.35 ( 8.10) 5.26 ( 8.53) 6 (0.00) 10 (7.46) 48.73 (11.72)
Var1-ISIS 1.73 ( 1.25) 0.72 ( 1.21) 6 (0.00) 0.5 (0.75) 76.47 (20.56)
Var2-ISIS 3.43 ( 7.52) 2.42 ( 7.10) 6 (0.00) 3 (6.90) 96.25 (59.99)
Perm-ISIS 8.80 ( 8.45) 6.11 ( 8.78) 6 (0.00) 10 (7.46) 128.94 (42.74)
Perm-g-ISIS 17.70 ( 6.11) 21.17 ( 15.00) 6 (0.00) 10 (0.19) 739.84 (89.96)
Perm-var-ISIS 1.83 ( 1.47) 0.84 ( 1.64) 6 (0.75) 0 (0.00) 153.53 (43.84)
Perm-var-g-ISIS 1.54 ( 1.66) 0.52 ( 1.62) 6 (0.75) 0 (0.00) 251.21 (63.66)
SCAD 400.18 (101.60) 8174.86 (4335.72) 6 (0.00) 20 (2.24) 304.98 (66.65)

Table 3: Logistic regression, Case 2, where results are given in the form of medians and robust
standard deviations (in parentheses).

the value of Z. For Cases 3 and 4, the selected model ensures that even though β?4 6= 0, the
associated predictor x4 and the response y are marginally independent. This is designed in
order to make it challenging for the vanilla sure independence screening procedure to select
this important variable. Furthermore, in Case 4, we add another important predictor x5 with
a small coefficient to make it even more challenging to identify the true sparse model.
The results are given in Tables 2–5, in which the median and robust estimate of the standard
deviation (over 100 repetitions) of several performance measures are reported: `1-estimation
error, squared `2-estimation error, true positives (TP), false positives (FP), and computational
time in seconds (Time). In Cases 1 and 2, under the Linear and Logistic regression setups, for
any type of SIS or ISIS, we employ the SCAD penalty (γ = 3.7) at the end of the screening
steps; whereas LASSO is applied for Cases 3 and 4, under the Poisson and Cox proportional
hazards regression frameworks. For simplicity, we exclude the performance of MCP-based
screening procedures in the current analysis. Whenever necessary, for all variable selection
procedures considered here, the BIC criterion is used as a fast way to select the regularization
parameter λ > 0, which is always chosen from a path of 100 candidate λ values.
As the covariates are all independent in Case 1, it is not surprising to see that Van-SIS
performs reasonably well. However, this non-iterative procedure fails in terms of identifying
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Method ‖β̂ − β?‖1 ‖β̂ − β?‖2
2 TP FP Time

Van-SIS 3.05 (0.37) 2.06 (0.32) 3 (0.00) 9.5 (18.66) 0.14 ( 0.04)
Van-ISIS 5.02 (0.82) 2.15 (2.58) 4 (0.75) 29 ( 0.00) 86.23 ( 64.17)
Var1-ISIS 0.52 (0.31) 0.08 (0.09) 4 (0.00) 1 ( 0.75) 88.05 ( 28.02)
Var2-ISIS 4.83 (0.68) 2.09 (0.21) 3 (0.00) 29 ( 0.93) 207.67 (100.74)
Perm-ISIS 6.44 (1.45) 7.48 (5.57) 3 (0.00) 30 ( 0.75) 130.93 (221.45)
Perm-g-ISIS 6.70 (0.89) 1.72 (0.77) 4 (0.00) 29 ( 0.00) 2202.81 (136.08)
Perm-var-ISIS 0.28 (0.16) 0.03 (0.04) 4 (0.00) 0 ( 0.75) 174.90 ( 42.50)
Perm-var-g-ISIS 0.40 (0.27) 0.06 (0.07) 4 (0.00) 1 ( 0.75) 231.81 ( 89.62)
LASSO 2.97 (0.07) 2.14 (0.18) 3 (0.00) 20 ( 9.70) 1.47 ( 0.36)

Table 4: Poisson regression, Case 3, where results are given in the form of medians and robust
standard deviations (in parentheses).

Method ‖β̂ − β?‖1 ‖β̂ − β?‖2
2 TP FP Time

Van-SIS 21.27 ( 0.49) 95.64 ( 3.78) 3 (0.75) 12 ( 0.75) 0.15 ( 0.04)
Van-ISIS 3.26 ( 1.46) 1.06 ( 1.59) 5 (0.00) 11 ( 0.00) 92.29 ( 45.61)
Var1-ISIS 1.46 ( 0.75) 0.41 ( 0.49) 5 (0.00) 2 ( 1.49) 207.16 ( 45.69)
Var2-ISIS 2.92 ( 1.35) 1.10 ( 1.21) 5 (0.00) 11 ( 0.00) 189.24 ( 84.92)
Perm-ISIS 21.31 ( 0.26) 93.15 ( 6.51) 3 (0.00) 13 ( 0.00) 136.47 ( 69.53)
Perm-g-ISIS 9.47 ( 1.74) 9.52 ( 6.78) 5 (0.00) 11 ( 0.00) 1102.28 ( 96.11)
Perm-var-ISIS 0.96 ( 0.76) 0.24 ( 0.43) 5 (0.00) 0 ( 0.75) 386.87 ( 68.42)
Perm-var-g-ISIS 1.22 ( 0.72) 0.33 ( 0.43) 5 (0.00) 1 ( 1.49) 509.85 (147.38)
LASSO 163.09 (14.17) 1035.23 (173.27) 4 (0.00) 313 (10.63) 35.67 ( 3.87)

Table 5: Cox proportional hazards regression, Case 4, where results are given in the form of
medians and robust standard deviations (in parentheses).

the true model when correlation is present, particularly in the challenging Cases 3 and 4.
When predictors are dependent, the vanilla ISIS improves significantly over SIS in terms of
true positives. While the number of false positive variables may be larger in some settings,
Van-ISIS provides comparable estimation errors in Cases 1–3 but significant reduction in the
complicated Case 4.
In terms of further reducing the false selection rate and estimation errors, while still selecting
the true modelM?, Var1-ISIS performs much better than Var2-ISIS. Being a more conserva-
tive variable selection approach, Var2-ISIS tends to have a higher number of false positives.
This is particularly true in the Poisson regression scenario, in which the second variant even
misses one important predictor.
From the permutation-based variants, the ones that combine the sample splitting approach
(Perm-var-ISIS and Perm-var-g-ISIS) outperform all other ISIS procedures in terms of true
positives, low false selection rates, and small estimation errors, with Var1-ISIS following
closely. In particular, for Perm-var-ISIS, the number of false positives is approximately zero
for all examples. The only drawback seems to be their relatively large computation cost, being
at least twice as large as that of Var1-ISIS. This is to be expected considering the amount of
extra work these procedures have to perform: two rounds of marginal fits to obtain sample
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specific data-driven thresholds ω(1)
(q) and ω

(2)
(q) , plus two additional rounds of marginal fits

to compute the corresponding index sets Â (1)
1 and Â (2)

1 . Computational costs potentially
increase further when carrying out the conditional marginal regression steps described in
Section 2.2. However, the gains in statistical accuracy and model selection offset the increased
timings, particularly in the equally correlated Case 2 with nonconvex penalties.
Tables 2–3 show that SCAD also enjoys the sure screening property for the relatively easy
Cases 1 and 2. However, model sizes and estimation errors are significantly larger than for
any of the ISIS procedures in the correlated scenario. On the other hand, for the difficult
Cases 3 and 4, surprisingly, LASSO rarely includes the important predictor x4 even though
it is not a marginal screening based method. While exhibiting competitive performance with
some of the ISIS variants in the Poisson regression scenario, LASSO performs poorly in the
Cox model setup, having prohibitively large model sizes and estimation errors.
The ncvreg package with SCAD outperforms all ISIS variants in terms of computational cost
for the uncorrelated Case 1. Still, the vanilla SIS procedure identifies the true model faster
than ncvreg. For the correlated Case 2, however, only the greedy modification Perm-g-ISIS
is slower than SCAD. In the Poisson and Cox model setups, while the computational cost of
LASSO with the glmnet package is smaller than any of the ISIS procedures, the vanilla SIS
shows better performance in terms of timings and estimation errors.
As they become more elaborate, ISIS procedures become more computationally expensive.
Yet, vanilla ISIS and most of its variants presented here, particularly Var1-ISIS and Perm-var-
ISIS, are clearly competitive variable selection methods in ultrahigh-dimensional statistical
models, adequately using the joint covariate information, while exhibiting a very low false
selection rate and competing computational cost.

4.2. Scaling in n and p with feature screening
In addition to comparing our SIS codes with glmnet and ncvreg, we would like to know how
the timings of the vanilla SIS and ISIS procedures scale in n and p. We simulated data sets
from Cases 1–3 above and, for a variety of n and p values, we took the median running time
over 10 repetitions. Again, for each (n, p) pair, whenever necessary, the BIC criterion was
used to select the best λ value among a path of 100 possible candidates. Figure 1 shows
timings for fixed n as p grows (Cases 1–3), and for fixed p as n grows (Case 2).
From the plots we see that independence screening procedures perform uniformly faster than
ncvreg with the SCAD penalty. For Poisson regression, vanilla SIS also outperforms glmnet
with LASSO, particularly in the n = p scenario, where glmnet exhibits unusually slow per-
formance. It is worth pointing out that iterative variable screening procedures typically do
not show a strictly monotone timing as n or p increase. This is due to the varying number
of iterations it takes to recruit d predictors, the random splitting of the sample in the first
two ISIS variants, and the random permutation in the data-driven thresholding, among other
factors.

4.3. Real data analysis
We now evaluate the performance of all variable screening procedures on four well-studied
gene expression data sets: Leukemia (Golub et al. 1999), Prostate cancer (Singh et al. 2002),
Lung cancer (Gordon et al. 2002) and Neuroblastoma (Oberthuer et al. 2006). The first
three data sets come with predetermined, separate training and test sets of data vectors. The
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Figure 1: Median run time in seconds taken over 10 trials (log-log scale).

Leukemia data set contains p = 7129 genes for 27 acute lymphoblastic leukemia and 11 acute
myeloid leukemia vectors in the training set. The test set includes 20 acute lymphoblastic
leukemia and 14 acute myeloid leukemia vectors. The Prostate cancer data set consists of gene
expression profiles from p = 12600 genes for 52 prostate “tumor” samples and 50 “normal”
prostate samples in the training data set. The test set is from a different experiment and
contains 25 tumor and 9 normal samples. The Lung cancer data set contains 32 tissue samples
in the training set (16 from malignant pleural mesothelioma and 16 from adenocarcinoma) and
149 in the test set (15 from malignant pleural mesothelioma and 134 from adenocarcinoma).
Each sample consists of p = 12533 genes. The Neuroblastoma data set consists of gene
expression profiles for p = 10707 genes from 246 patients of the German neuroblastoma trials
NB90-NB2004, diagnosed between 1989 and 2004. We analyzed the gene expression data by
means of the 3-year event-free survival, indicating whether a patient survived 3 years after the
diagnosis of neuroblastoma. Combining the original training and test sets, the data consists
of 56 positive and 190 negative cases. For purposes of the present analysis, in each of these
gene expression data sets, we initially combine the training and test samples and then perform
a 50%–50% random splitting of the observed data into new training and test data for which
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Leukemia Prostate

Method Training Test Model Training Test Model
error rate error rate size error rate error rate size

Van-SIS 0.00 (0.00) 0.08 (0.04) 11 ( 2.99) 0.07 (0.06) 0.23 (0.07) 11 ( 2.99)
Van-ISIS 0.00 (0.00) 0.06 (0.02) 13 ( 2.99) 0.03 (0.03) 0.21 (0.07) 10.5 ( 2.24)
Var1-ISIS 0.03 (0.04) 0.08 (0.03) 5 ( 2.24) 0.09 (0.07) 0.19 (0.11) 4 ( 2.24)
Var2-ISIS 0.00 (0.00) 0.08 (0.04) 12 ( 2.24) 0.04 (0.04) 0.19 (0.07) 10 ( 2.24)
Perm-ISIS 0.00 (0.00) 0.06 (0.02) 13 ( 2.24) 0.03 (0.04) 0.21 (0.05) 11 ( 2.24)
Perm-g-ISIS 0.06 (0.02) 0.10 (0.05) 2 ( 0.00) 0.13 (0.09) 0.25 (0.12) 3 ( 1.49)
Perm-Var-ISIS 0.03 (0.04) 0.08 (0.04) 4 ( 2.24) 0.07 (0.07) 0.19 (0.10) 4 ( 1.68)
Perm-Var-g-ISIS 0.06 (0.03) 0.11 (0.04) 2 ( 0.00) 0.12 (0.07) 0.25 (0.11) 3 ( 0.75)
LASSO-CV (10) 0.03 (0.04) 0.11 (0.06) 10 ( 5.97) 0.18 (0.10) 0.29 (0.08) 10 ( 5.41)
NSC 0.03 (0.02) 0.06 (0.04) 108 (128.92) 0.35 (0.04) 0.34 (0.08) 67.5 (80.60)
IR 0.03 (0.02) 0.11 (0.06) 7129 ( 0.00) 0.44 (0.03) 0.46 (0.03) 12600 ( 0.00)

Table 6: Classification error rates and number of selected genes by various methods for the
balanced Leukemia and Prostate cancer data sets. For the Leukemia data, the training and
test samples are of size 36. For the Prostate cancer data, the training and test samples
are of size 68. Results are given in the form of medians and robust standard deviations (in
parentheses).

the number of cases remains balanced across these new samples. In this manner, for the
Leukemia data, the balanced training and test samples are of size 36, for the Prostate data
we have balanced training and test samples of size 68, whereas the Neuroblastoma data set
has balanced training and test samples of size 123. The balanced training and test samples
for the Lung cancer data are of sizes 90 and 91, respectively. Interested readers can find more
details about these data sets in Golub et al. (1999), Singh et al. (2002), Gordon et al. (2002)
and Oberthuer et al. (2006).
Following the approach of Dudoit, Fridlyand, and Speed (2002), before variable screening and
classification, we first standardize each sample to zero mean and unit variance. We compare
the performance of all described variable screening procedures with the nearest shrunken cen-
troids (NSC) method of Tibshirani, Hastie, Narasimhan, and Chu (2002), the independence
rule (IR) in the high-dimensional setting (Bickel and Levina 2004) and the LASSO (Tibshirani
1996), which uses ten-fold cross-validation to select its tuning parameter, applied to the full
set of covariates. Under a working independence assumption in the feature space, NSC selects
an important subset of variables for classification by thresholding a corresponding two-sample
t statistic, whereas IR makes use of the full set of predictors.
Tables 6–7 show the median and robust standard deviation of the classification error rates
and model sizes for all procedures, taken over 100 random splittings into 50%–50% balanced
training and test data. At each intermediate step of the (I)SIS procedures, we employ the
LASSO with ten-fold cross-validation to further filter unimportant predictors for classification
purposes. To determine a data-driven threshold for independence screening, we fix q = 0.95 for
all permutation-based variable selection procedures. Lastly, for each data set considered, we
apply all screening procedures to reduce dimensionality from the corresponding p to d = 100.
From the results in Tables 6–7, we observe that all ISIS variants perform similarly in terms
of test error rates, whereas the main differences lie in the estimated model sizes. Compared
with the LASSO applied to the full set of covariates, a majority of ISIS procedures select
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Lung NB

Method Training Test Model Training Test Model
error rate error rate size error rate error rate size

Van-SIS 0.00 (0.00) 0.03 (0.02) 11 ( 2.24) 0.13 (0.04) 0.21 (0.02) 12 ( 3.73)
Van-ISIS 0.00 (0.00) 0.02 (0.01) 10 ( 2.24) 0.00 (0.01) 0.22 (0.03) 30 ( 6.90)
Var1-ISIS 0.00 (0.00) 0.02 (0.01) 8 ( 2.24) 0.18 (0.04) 0.22 (0.02) 2 ( 1.49)
Var2-ISIS 0.00 (0.00) 0.02 (0.01) 10 ( 2.24) 0.09 (0.09) 0.20 (0.03) 13 ( 9.14)
Perm-ISIS 0.00 (0.00) 0.02 (0.01) 11 ( 2.43) 0.00 (0.01) 0.22 (0.02) 30.5 ( 7.46)
Perm-g-ISIS 0.01 (0.02) 0.03 (0.02) 2 ( 0.00) 0.15 (0.07) 0.22 (0.02) 2.5 ( 2.99)
Perm-Var-ISIS 0.00 (0.00) 0.02 (0.01) 8 ( 2.24) 0.18 (0.03) 0.22 (0.01) 2 ( 0.75)
Perm-Var-g-ISIS 0.01 (0.02) 0.04 (0.02) 2 ( 0.00) 0.18 (0.04) 0.22 (0.01) 2 ( 0.00)
LASSO-CV (10) 0.00 (0.00) 0.03 (0.02) 12 ( 2.24) 0.23 (0.02) 0.23 (0.01) 7 ( 5.22)
NSC 0.00 (0.01) 0.01 (0.02) 67 (89.18) 0.18 (0.02) 0.20 (0.03) 1651 (6436.38)
IR 0.00 (0.01) 0.01 (0.02) 12533 ( 0.00) 0.15 (0.02) 0.20 (0.03) 10707 ( 0.00)

Table 7: Classification error rates and number of selected genes by various methods for the
balanced Lung and Neuroblastoma (NB) cancer data sets. For the Lung data, the training
and test samples are of sizes 90 and 91, respectively. For the Neuroblastoma cancer data, the
training and test samples are of size 123. Results are given in the form of medians and robust
standard deviations (in parentheses).

smaller models while retaining competitive classification error rates. This is in agreement with
our simulation results, which highlight the benefits of variable screening over a direct high-
dimensional regularized logistic regression approach. In particular, we observe the variants
Var1-ISIS and Perm-var-g-ISIS provide the most parsimonious models across all four data
sets, yielding optimal test error rates while using only 2 features in the case of the Lung
cancer data set. Nonetheless, due to its robust performance in both the simulated data
and these four gene expression data sets, and its reduced computational cost compared with
all available ISIS variants, we select the vanilla ISIS of Algorithm 2 as the default variable
selection procedure within our SIS package.
While the NSC method achieves competitive test error rates, it typically makes use of larger
sets of genes which vary considerably across the different 50%–50% training and test data
splittings. The independence rule exhibits poor test error performance, except for the Neu-
roblastoma data set, where it even outperforms some of the ISIS procedures. However, this
approach uses all features without performing variable selection, thus yielding models of little
practical use for researchers.

4.4. Code example

All described independence screening procedures are straightforward to run using the SIS
package. We demonstrate the SIS function on the Leukemia data set from the previous
section. We first load the predictors and response vector from the training and test data sets.

R> library("SIS")
R> set.seed(9)
R> data("leukemia.train", package = "SIS")
R> data("leukemia.test", package = "SIS")
R> y1 <- leukemia.train[, dim(leukemia.train)[2]]
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R> x1 <- as.matrix(leukemia.train[, -dim(leukemia.train)[2]])
R> y2 <- leukemia.test[, dim(leukemia.test)[2]]
R> x2 <- as.matrix(leukemia.test[, -dim(leukemia.test)[2]])

Afterwards, we carry out the balanced sample splitting as outlined above.

R> x <- rbind(x1, x2)
R> y <- c(y1, y2)
R> n <- dim(x)[1]
R> aux <- 1:n
R> ind.train1 <- sample(aux[y == 0], 23, replace = FALSE)
R> ind.train2 <- sample(aux[y == 1], 13, replace = FALSE)
R> ind.train <- c(ind.train1, ind.train2)
R> x.train <- scale(x[ind.train, ])
R> y.train <- y[ind.train]
R> ind.test1 <- setdiff(aux[y == 0], ind.train1)
R> ind.test2 <- setdiff(aux[y == 1], ind.train2)
R> ind.test <- c(ind.test1, ind.test2)
R> x.test <- scale(x[ind.test, ])
R> y.test <- y[ind.test]

We now perform variable selection using the Var1-ISIS and Perm-var-ISIS procedures paired
with the LASSO penalty and the ten-fold cross-validation method for choosing the regular-
ization parameter.

R> model1 = SIS(x.train, y.train, family = "binomial", penalty = "lasso",
+ tune = "cv", nfolds = 10, nsis = 100, varISIS = "aggr", seed = 9,
+ standardize = FALSE)
R> model2 = SIS(x.train, y.train, family = "binomial", penalty = "lasso",
+ tune = "cv", nfolds = 10, nsis = 100, varISIS = "aggr", perm = TRUE,
+ q = 0.95, seed = 9, standardize = FALSE)
R> model1$ix

[1] 1834 2288 4328 4847 6281

R> model2$ix

[1] 1834 2288 4328 4847 6281

Here we modified the default value d = bn/(4 logn)c to make both iterative procedures select
models with at most 100 predictors. The value of q ∈ [0, 1], from which we obtain the
data-driven threshold ω(q) for Perm-var-ISIS, was also customized from its default q = 1.

5. Discussion
Sure independence screening is a powerful family of methods for performing variable selec-
tion in statistical models when the dimension is much larger than the sample size, as well
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as in the classical setting where p < n. The focus of the paper is on iterative sure inde-
pendence screening, which iteratively applies a large scale screening by means of conditional
marginal regressions, filtering out unimportant predictors, and a moderate scale variable
selection through penalized pseudo-likelihood methods, which further selects the unfiltered
predictors. With the goal of providing further flexibility to the iterative screening paradigm,
special attention is also paid to powerful variants which reduce the number of false positives
by means of sample splitting and data-driven thresholding approaches. Compared with the
versions of LASSO and SCAD we used, the iterative procedures presented in this paper are
much more accurate in selecting important variables and achieving small estimation errors.
In addition, computational time is also reduced, particularly in the case of nonconvex penal-
ties, thus resulting in a robust family of procedures for model selection and estimation in
ultrahigh-dimensional statistical models. Extensions of the current package to more general
loss-based models and nonparametric independence screening procedures, as well as the im-
plementation of conditional marginal regressions through support vector machine methods
are lines of future work.
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