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Abstract

We describe the R package hergm that implements hierarchical exponential-family ran-
dom graph models with local dependence. Hierarchical exponential-family random graph
models with local dependence tend to be superior to conventional exponential-family ran-
dom graph models with global dependence in terms of goodness-of-fit. The advantage of
hierarchical exponential-family random graph models is rooted in the local dependence
induced by them. We discuss the notion of local dependence and the construction of mod-
els with local dependence along with model estimation, goodness-of-fit, and simulation.
Simulation results and three applications are presented.

Keywords: social networks, random graphs, Markov random graph models, exponential-family
random graph models, stochastic block models, model-based clustering.

1. Introduction

Data that can be represented by random graphs arise in areas as diverse as the life sciences
(e.g., protein interaction networks), the health sciences (e.g., contact networks facilitating the
transmission of diseases), the social sciences (e.g., insurgent and terrorist networks), computer
science (e.g., social networks and the World Wide Web), and engineering (e.g., power and
transportation networks); see Wasserman and Faust (1994) and Kolaczyk (2009).

The R (R Core Team 2017) package hergm (Schweinberger, Handcock, and Luna 2018) im-
plements a wide range of random graph models, including stochastic block models (Nowicki
and Snijders 2001), exponential-family random graph models (ERGMs; Frank and Strauss
1986; Wasserman and Pattison 1996; Snijders, Pattison, Robins, and Handcock 2006; Hunter
and Handcock 2006), and hierarchical exponential-family random graph models (HERGMs;
Schweinberger and Handcock 2015), with an emphasis on HERGMs with local dependence.
HERGMs with local dependence are motivated by the observation that networks are local
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in nature and — while edges in networks depend on other edges — most edges depend on a
small number of other edges. The R package hergm is the first R package that implements
HERGMs with local dependence. The package is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=hergnm.

We show in Section 2 how the R package hergm can be installed and loaded in R. We discuss
the notion of local dependence and demonstrate how models with local dependence can be
constructed in Section 3. Model estimation, goodness-of-fit, and simulation are described
in Sections 4, 5, and 6, respectively. We present simulation results in Section 7 and three
applications in Section 8.

Comparison with related R packages. The models implemented in R package hergm are
related to, but distinct from, the models implemented in R packages ergm (Hunter, Handcock,
Butts, Goodreau, and Morris 2008b), Bergm (Caimo and Friel 2014), gergm (Denny, Wilson,
Cranmer, Desmarais, and Bhamidi 2017), and tergm (Krivitsky and Handcock 2016). While
the R package ergm and all other mentioned R packages focus on ERGMs and generalizations
of ERGMs, the R package hergm focuses on HERGMs with local dependence. HERGMs
are ERGMs with additional structure, called neighborhood structure, which is exploited to
construct models with local dependence. The (unobserved) neighborhood structure and local
dependence give rise to unique computational and statistical challenges, which are addressed
by R package hergm.

2. Installing R package hergm

The R package hergm (Schweinberger et al. 2018) is distributed under the GPL-3 license. It
depends on the R packages ergm (Hunter et al. 2008b), latentnet (Krivitsky and Handcock
2008), mcgibbsit (Warnes and Burrows 2013), network (Butts 2008a), and sna (Butts 2008b).
The R packages ergm, latentnet, network, and sna are described in the special issue of the
Journal of Statistical Software devoted to the R suite of packages statnet (Handcock, Hunter,
Butts, Goodreau, and Morris 2008, Volume 24, Issue 5).

The R package hergm and its dependencies are available at https://CRAN.R-project.org/
and can be installed as follows:

R> install.packages ("hergm")
The R package hergm can be loaded in R as follows:
R> library("hergm")

The results reported here are based on hergm version 3.2-1, ergm version 3.8.0, latentnet
version 2.8.0, mcgibbsit version 1.1.0, network version 1.13.0, parallel version 3.3.2, and sna
version 2.4.

3. Model specification

The R package hergm implements a wide range of models characterized by local dependence.
We discuss the notion of local dependence in Section 3.1 and the construction of models with
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Figure 1: Three examples of networks described in Section 8: (a) collaboration network, (b)
terrorist network, and (c) friendship network.

local dependence in Section 3.2. Throughout, we consider data that can be represented by
random graphs with a set of nodes A = {1,...,n} and a set of edges & C A x A representing,
for example, friendships between members of a social network. The edges X;; € {0,1}
between nodes ¢ and j are considered to be random variables and may be undirected — that
is, X; ; = X;; with probability 1 — or directed. Self-edges are excluded, that is, X;; = 0 with
probability 1. Three examples of networks are shown in Figure 1. The three networks are
included in R package hergm as data sets and can be loaded in R and plotted as follows:

R> set.seed(0)

R> data("kapferer", package = "hergm")

R> gplot(kapferer, gmode = "graph", mode = "kamadakawai',

+ displaylabels = FALSE)

R> data("bali", package = "hergm")

R> gplot(bali, gmode = "graph", mode = "kamadakawai", displaylabels = FALSE)
R> data("bunt", package = "hergm")

R> gplot(bunt, mode = "kamadakawai", displaylabels = FALSE)

It is worth noting that network plots generated by the function gplot of R package sna
(Butts 2008b) are not reproducible unless the seed of the pseudo-random number generator
is specified, because the initial positions of nodes are chosen at random (unless users specify
the initial positions of nodes). The three networks are described in more detail in Section 8.

3.1. Local dependence

A well-known problem of conventional ERGMs is that some of the most interesting ERGMs
induce global dependence. The best-known example are the Markov random graph models of
Frank and Strauss (1986). A Markov random graph model assumes that, if two edge variables
X; j and Xj; do not share nodes, then X; ; and X, ; are independent conditional on all other
edge variables:

Xi; AL Xg; | others forall {i,j} n {k,i} = {}. (1)

Frank and Strauss (1986) showed that the resulting distribution of a random graph X = (Xj ;)
can be written in exponential-family form as follows:

Po(X =) = exp((0, s(z)) —v(0)), zeX, (2)
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Figure 2: Sufficient statistics of Markov random graph models of undirected networks (Frank
and Strauss 1986): Counts of the number of edges, k-stars (k =2,...,n — 1), and triangles.

where X denotes the set of possible graphs, (8, s(z)) = Y%, 6; s;(x) denotes the inner product
of a vector of natural parameters @ € R? and a vector of sufficient statistics s : X — R? and
¥ : R — R ensures that Pg(X = ) sums to 1. The sufficient statistics of Markov random
graph models of undirected networks are shown in Figure 2. The conditional independence
assumption (1) allows each edge variable X; ; to depend on up to 2 (n—2) other edge variables.
If Markov random graph models were applied to large networks, such as the friendship network
consisting of all users of Facebook, then each possible friendship would depend on billions
of other possible friendships. Such models with global dependence are known to be near-
degenerate in the sense that such models concentrate most probability mass on graphs that
have either almost no edges or almost all possible edges. Two empirical examples are presented
in Sections 8.2 and 8.3. Theoretical results can be found in Handcock (2003), Schweinberger
(2011), and Chatterjee and Diaconis (2013). Models with global dependence are not useful,
because many real-world networks do not resemble graphs that have almost no edges or almost
all possible edges. Models with local dependence would be more appealing than models with
global dependence, but it is not evident how to construct them: in contrast to spatial and
temporal data that come with a natural neighborhood structure in the form of space or time,
network data do not come with a natural neighborhood structure, and therefore it is not
straightforward to construct models with local dependence.

A first step toward the construction of models with local dependence was taken by Schwein-
berger and Handcock (2015). The underlying idea can be described as follows:

Science suggests that dependence is local, that is, that every edge variable depends
on a small number of other edge variables. Local dependence has both probabilistic
advantages (e.g., weak dependence) and statistical advantages (e.g., consistency
of estimators). If it is unknown which edge variable depends on which other edge
variables, then the neighborhoods of edge variables should be inferred.

A simple form of local dependence was introduced by Schweinberger and Handcock (2015),
which can be defined as follows.

Definition (Local and global dependence). The dependence induced by a random graph model
1s called local if there exists a partition of the set of nodes A into K > 2 non-empty subsets of
nodes A1, ..., Ak, called neighborhoods, such that the dependence induced by the random graph
model is restricted to within-neighborhood subgraphs, that is, the probability mass function of
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a random graph X factorizes as follows:

K

K
Po(X =x) = [] Po(Xu,n, =2a,4,) [] I Po(Xij=wij Xji=uw,), (3)
P} I=k+1 €Ay < jEA,

where Xy, 4, denotes the within-neighborhood subgraph induced by neighborhood Ay, that
is, the subset of edge variables corresponding to nodes in neighborhood Aj. Otherwise the
dependence induced by the random graph model is called global.

ERGMs with local dependence are more appealing than ERGMs with global dependence on
scientific, probabilistic, and statistical grounds:

1. Scientific appeal: 1t is well-known that networks are local in nature (e.g., Pattison and
Robins 2002) and hence there are good reasons to believe that dependence in networks
is local, and more so in large networks.

2. Probabilistic appeal: Models with local dependence induce weak dependence as long
as all neighborhoods are small and models with weak dependence tend to be non-
degenerate. These informal statements can be backed up by formal results: Schwein-
berger and Stewart (2017) proved that a wide range of ERGMs with local dependence
are non-degenerate as long as the sizes of neighborhoods are either bounded above or
grow slowly with the number of neighborhoods. In contrast, many ERGMs with global
dependence are known to be near-degenerate (e.g., Handcock 2003; Schweinberger 2011;
Chatterjee and Diaconis 2013). While some ERGMs with global dependence, such as
ERGMs with geometrically weighted model terms (Snijders et al. 2006; Hunter and
Handcock 2006), have turned out to be useful in applications, there are no mathematical
results that show whether, and under which conditions, such ERGMs are non-degenerate
as the size of the network increases.

3. Statistical appeal: It is well-known that statistical inference for many ERGMs with
global dependence is problematic: The results of Shalizi and Rinaldo (2013) suggest
that maximum likelihood estimators of many ERGMs with global dependence may
not be consistent estimators. In contrast, statistical inference for ERGMs with local
dependence is promising: Schweinberger and Stewart (2017) showed that maximum
likelihood estimators of ERGMs with local dependence are consistent estimators. These
consistency results are the first consistency results that cover a large class of ERGMs
with dependence and suggest that ERGMs with local dependence constitute a promising
class of ERGMs.

The idea underlying HERGMs is that, if the neighborhood structure is unobserved, then it
is natural to estimate it. We describe the specification of HERGMs with local dependence
in Sections 3.2-3.6 and conclude with a short comparison of ERGMs and HERGMs in Sec-
tion 3.7.

3.2. Constructing models with local dependence

A simple approach to constructing models with local dependence was introduced by Schwein-
berger and Handcock (2015).
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Let Z = (Z1,...,Zy) be the neighborhood memberships of nodes 1,...,n, where Z; = k
indicates that node ¢ is a member of neighborhood Ag, ¥ = 1,...,K. In practice, the
neighborhood memberships of nodes may or may not be observed, as discussed in Section 3.5.
A model with local dependence assumes that X and Z are governed by distributions of the
form

K
Pg(X = L'C,Z = Z) = P(Z = Z) H PG(XAk7»Ak = LA, A | Z = Z)
k=1

K
X H H Po(Xij =wij, Xji=2ji| Z=2).
l=k+1 i€Ar <jJEA;

In other words, conditional on Z = z, the model induces local dependence as long as there
are K > 2 neighborhoods.

To parameterize models with local dependence, it is convenient to assume that the conditional
distributions of within- and between-neighborhood subgraphs given Z = z are members
of exponential families of distributions (Barndorff-Nielsen 1978; Brown 1986). Then the
conditional distribution of X given Z = z can be written in exponential-family form as
follows:

Po(X =x|Z=2) = exp((n(0,2),s(w z2))—1(0,2)), (4)

where the natural parameter vector 7(0, z) is a linear function of the within- and between-
neighborhood natural parameter vectors and the sufficient statistics vector s(z, z) is a linear
function of the within- and between-neighborhood sufficient statistics vectors.

The R package hergm admits the specification of a wide range of models with local depen-
dence. Models can be constructed by combining model terms of the R packages ergm and
hergm. The help function of R package hergm lists all possible model terms: see 7ergm.terms
and 7hergm.terms. The ergm terms include covariate terms (e.g., Morris, Handcock, and
Hunter 2008), which can be used in hergm. The hergm terms include model terms inducing
local dependence. Examples of hergm terms are shown in Tables 1 and 2. To construct
models, one combines model terms. We give examples of models of undirected and directed
networks in Sections 3.3 and 3.4, respectively.

3.3. Examples of models: Undirected networks

We give examples of how to construct models of undirected networks. Throughout, we assume
that network represents an undirected network.

Stochastic block models (Nowicki and Snijders 2001). Stochastic block models as-
sume that edge variables are independent conditional on the neighborhood memberships of
nodes:

Xij | Zi=z, Zj =z w Bernoulli(p, -, ), (5)
implying
n
Po(X =x|Z=2) x exp (Z 1:,5(0, 2) xz]) , (6)
1<j

where the edge parameter 7; ;(0, z) is given by
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hergm Subgraph hergm term Description
edges_i io—eoj (05 +0:)7; Local edge term (additive)
edges_ij io—=oj Oz Tij Local edge term (non-additive)

k
triangle_ijk i E 92i72j7zk Tij Tjk Thi Local triangle term
i J

Table 1: Examples of hergm terms inducing local dependence: Undirected networks.

e 1:,j(0,2) =0, +0.,, which can be specified by
R> ergm(network ~ edges_i)

e 1:,j(0,2) =0, .., which can be specified by
R> hergm(network ~ edges_1ij)

It is worth noting that the parameters ¢, and 0., of model term edges_i and the parameters
022 i of model term edges_ij parameterize the log odds of the conditional probability of an
edge between nodes 7 and j given Z; = z; and Z; = z;, that is,

log (7)

Pe(Xi,j =1 | Zi = Zi, Zj = Zj) . ezi + 621’ (edges—i)
Pg(XiJ =0 | Zz’ = Z, Zj = Zj)

02z (edges_ij).

The first parameterization (edges_i) is more restrictive than the second parameterization
(edges_1ij), because it assumes that the log odds 7; ;(0, z) is additive in the propensities 6.,
and 0, of nodes i and j to form edges. The propensities 0, and 6., of nodes i and j to form
edges depend on ¢ and j through i’s and j’s neighborhood memberships z; and z;, respectively.
The second parameterization does not assume that 7; ;(0, z) is additive in the propensities
of nodes 7 and j to form edges and is therefore more general than the first parameterization.
The parameters 0, of model term edges_i and the parameters 6; of model term edges_ij
are parameters that are estimated based on the observed network.

HERGMs with local dependence (Schweinberger and Handcock 2015). While
stochastic block models can be used to cluster nodes, such models do not capture transitivity
and other dependencies of interest. Transitivity refers to the tendency of triples of nodes i, j, k
to be transitive in the sense that, when ¢ and j are connected by an edge and j and k are
connected by an edge, then i and k tend to be connected by an edge as well. A simple term that
captures transitivity is based on the number of triangles in the network. A global triangle
term counts the total number of triangles in the network and induces global dependence,
whereas a local triangle term counts the total number of triangles within neighborhoods and
induces local dependence. ERGMs with global triangle terms are known to be near-degenerate
(e.g., Handcock 2003; Schweinberger 2011; Chatterjee and Diaconis 2013). An alternative to
ERGMs with global triangle terms are HERGMs with local triangle terms, which can be
specified as follows:

n

PQ(X =T ‘ 7Z = Z) X  exp (Z 77171'7]‘(0,2) Li,j + Z ng’i,j,k(&z) TijTjk :ci’k) y (8)

i<j i<j<k
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where the edge parameter 7 ;;(60, z) is given by 61 ., + 91,% or 01721.@]. and the triangle pa-
rameter 12 ;x(0, 2) is given by 0 ., .. ., if the three nodes 4, j, k are members of the same
neighborhood and is 0 otherwise. It is worth noting that stochastic block models are special
cases of HERGMs with local dependence where 7y ;1(0) = 0 for all 4,5,k. In R package
hergm, the model can be specified by

R> hergm(network ~ edges_ij + triangle_ijk)

where edges_1ij can be replaced by edges_i.

The parameters of HERGMs can be interpreted along the same lines as the parameters of
ERGMs (see, e.g., Krivitsky 2012, Section 5.1), that is, by inspecting the log odds of the full
conditional probability of an edge between nodes i and j given all other edge variables X _; ; =
xz_;; and Z = z. As an example, consider HERGMs with edges_ij and triangle_ijk
terms, in which case the full conditional probability of an edge between nodes i and j given
X_;;==_;j and Z = z can be written as

Po(Xi;j=1|X_j=2_;,Z==z)

lo
& PQ(XZ'J =0 ‘ X,,L'J = ac,m, Z = Z)

01,22 + Z 02,2252, Tik Tik  if z; = z; (within neighborhoods)
_ kEA.,, ki

01,22 if z; # z; (between neighborhoods).

In other words, the parameters ¢, and 6 affect the log odds of the full conditional
probabilities of edges within neighborhood Ay while the parameters 6; ;; affect the log odds
of the full conditional probabilities of edges between neighborhoods Ay and A; (k #1).

3.4. Examples of models: Directed networks

We give examples of how to construct models of directed networks. Throughout, we assume
that network represents a directed network.

Directed version of stochastic block models (Nowicki and Snijders 2001). If
Xij | Zi=z, Zj =2 £ Bernoulli(p, -, ), 9)
then
n
Po(X=x|Z=2) o exp|) 00 2)z;], (10)
1<j
where the edge parameter 7; (0, z) is given by
e 1;;(0,2) =0, which can be specified by
R> hergm(network ~ arcs_i)
e 1:,j(0,2) = 0,,, which can be specified by
R> hergm(network ~ arcs_j)
e 1ij(0,2) =0, .;, which can be specified by

R> hergm(network ~ edges_1ij)
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hergm Subgraph hergm term Description
arcs i 0. 2 Local outdegree term

- . i (sender effect)

i

arcs A 0. . Local indegree term

-J ) A (receiver effect)

J
. . Local edge term (non-

edges_ij ;1 O0—0 ) 021'7Zj T j additive)

. Local mutual edge
mutual_i (@0 ] (0= + 93]') Tig T term (additive)

. .0 Local mutual edge
mutual_i] 100 zivzy L1 i term (non-additive)
transitiveties_ijk ’ 0 Tii Max Tk T Local transitive edge

- , , 0% T e p g F TR term
? J
fk? Local transitive triple
ttriple_ijk 9zi,zj,zk LijLjk Lik term P
i J
fk Local cyclic triple
ctriple_ijk 02i72j7zk Tij Tjk Thy orm Y P
i J

triangle_ijk

0zi25.2 Tij Tjk Tt
02,2521 Tij Tik Thyi

Local transitive and
cyclic triple term

Table 2: Examples of hergm terms inducing local dependence: Directed networks.

Directed version of stochastic block models with reciprocity (Vu, Hunter, and
Schweinberger 2013). In many applications of directed networks, directed edges tend to
be reciprocated in the sense that, if there is a directed edge from node i to node j, then
there tends to be a directed edge from node j to node i as well. To capture reciprocity, the
stochastic block model can be extended as follows:

n n
Po(X =x|Z=2) o< exp|> mij(0,2)zij+ > mij(0,2)zijzjil, (11)
i i<j

where the edge parameter (60, 2) is given by 0y ., or 0y ., or 61 ., ., and the reciprocity
parameter 72 (6, z) is given by

o 12,(0,2) =02, + 0o, which can be specified by
R> hergm(network ~ edges_ij + mutual_i)

e 12,;(0,2) =03, ., which can be specified by
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R> hergm(network ~ edges_ij + mutual_ij)

where edges_1ij can be replaced by arcs_i or arcs_j.

HERGMs with local dependence (Schweinberger and Handcock 2015). To capture
both reciprocity and transitivity, the following model can be used:

n n
Po(X =x | Z = z) xexp (Z M, (0,2) i+ > 12:5(0,2) @i j )
1,5 1<j

n
) 35k (0,2) @i g g Izk) ;
3,5,k

where the edge parameter 11 ; (0, ) is given by 61 ., or 0y ., or 6 ., .,, the reciprocity param-
eter 12,;(0, z) is given by 0., + 02, or Oa ., .., and the transitivity parameter 13 ;x(0, 2)
is given by 03 ., ». », if the three nodes i, j, k are members of the same neighborhood and is
0 otherwise. In R package hergm, the model can be specified by

R> hergm(network ~ edges_ij + mutual_ij + ttriple_ijk)

where edges_ij can be replaced by arcs_i or arcs_j and mutual_ij can be replaced by
mutual_i.

Other model terms. We focus here on transitivity as the main example of network depen-
dence, because it is one of the most interesting dependencies and one of the most challeng-
ing dependencies owing to the fact that it induces model degeneracy (e.g., Handcock 2003;
Schweinberger 2011; Chatterjee and Diaconis 2013). In other words, we focus on transitivity
because we want to demonstrate that HERGMs can alleviate the problem of model degeneracy
in one of the most challenging cases, which suggests that HERGMs should be able to alleviate
model degeneracy in all other cases as well. However, there are many other model terms that
can induce local dependence and could be implemented in R package hergm, including local
versions of geometrically weighted model terms (Snijders et al. 2006; Hunter and Handcock
2006).

3.5. Neighborhood memberships: Observed or unobserved
In practice, the neighborhood memberships of nodes may or may not be observed. The R
package hergm can handle both observed and unobserved neighborhood memberships.

If all neighborhood memberships are observed, at least two approaches are possible. The first
approach regards the observed neighborhood structure, denoted by z,,, as fixed and bases
inference with respect to parameter vector @ on the likelihood function

L) = Pe(X=a|Z=z.). (12)

The second approach considers the observed neighborhood structure z,,, as the outcome of
a random variable Z with a distribution Px(Z = z) parameterized by a parameter vector 7
and bases inference with respect to parameter vector 8 on the likelihood function

LO,7m) = Po(X =x|Z = 2..) Pr(Z = z1e)- (13)
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If 8 and 7 are variation-independent in the sense that the parameter space (2¢ 7 is a product
space of the form Qg 7 = Qg X Qlgr, where (g is the parameter space of 6 and Qg is the
parameter space of 7, then the likelihood function factorizes:

LO,7) = Po(X = |Z=2,)Pr(Z=2,) = L(O)L(x), (14)

where L(0) = Po(X =« | Z = z,,,) and L(w) = Pr(Z = z.,). Therefore, if @ and 7 are
variation-independent, statistical inference with respect to 8@ can be based on L(€). Thus,
the two approaches are equivalent as long as 8 and 7 are variation-independent. In general,
the random-neighborhood approach is preferable to the fixed-neighborhood approach when
it is believed that the neighborhoods are generated by a stochastic process of interest.

In R package hergm, the random-neighborhood approach is implemented. The random-

neighborhood approach assumes that the neighborhood memberships are governed by distri-
butions of the form

n

Pr(Z=2) = [[PrZi=2) = [][m (15)
=1 =1

where w = (71, ...,7x) and 7y is the prior probability of being a member of neighborhood
k=1,...,K.
3.6. Priors

The R package hergm estimates models with local dependence by following a Bayesian ap-
proach. A Bayesian approach is based on posteriors, which requires the specification of priors.
There are two classes of priors implemented in R package hergm, parametric and nonpara-
metric priors.

If the number of neighborhoods K is known, parametric priors are a natural choice. A
convenient parametric prior is given by

(71, TK) ~ Dirichlet(c,...,a), a>0
01| up, 2 ~ MVN(ug,Xp), k<l=1,...,K,

where Oy, and 0p 1 ; denote the vectors of within- and between-neighborhood parameters,
pyw and pp are mean vectors, and Xy and X p are diagonal variance-covariance matrices. To
reduce the number of parameters, it is convenient to assume that the between-neighborhood
parameter vectors Opj; are constant across pairs of neighborhoods, that is, Op;; = 05,
k<l=1,...,K. In R package hergm, parametric priors can be specified by specifying the
option parametric of function hergm:

R> hergm(formula, parametric = TRUE, max_number = 5)

where formula is a formula of the form network ~ model and max_number is the number of
neighborhoods K. Examples of formulae are given in Sections 3.3 and 3.4. The default of
option parametric is FALSE while the default of option max_number is the number of nodes n.

11



12 hergm: Hierarchical Exponential-Family Random Graph Models

If the number of neighborhoods K is unknown, it is convenient to use nonparametric priors,
motivated in part by the desire to sidestep the issue of selecting K and in part by the desire
to encourage a small number of (non-empty) neighborhoods and parameters while allowing
for a large number of (non-empty) neighborhoods and parameters. A nonparametric prior
can be constructed as follows. Let mg, k = 1,2,... be the prior probabilities of belonging to
neighborhoods k = 1,2, ..., respectively. The probabilities 7y, £ = 1,2,... are obtained by
first generating draws from a Beta(1, «) distribution,

Vi |« X Beta(l,a), k=1,2,..., a>0, (17)

and then generating m,, k = 1,2,... by stick-breaking. Informally speaking, stick-breaking
starts with a stick of length 1, breaks off a piece of length V; from the stick of length 1 and
sets m = V1, then breaks off a piece of length V2 (1 — V}) from the remaining stick of length
1 — V7 and sets my = Vo (1 — V1), and so forth. Thus, the probabilities 7w, k = 1,2,... are
given by

m =W
k—1 (18)
m o= Vi [[A-V)), k=2,3,...
j=1
The stick-breaking construction of the probabilities 7, &k = 1,2,... implies that some proba-

bilities 73 are large but most of them are small, so that the nonparametric prior encourages a
small number of (non-empty) neighborhoods and parameters while allowing for a large num-
ber of (non-empty) neighborhoods and parameters. More details on nonparametric priors
can be found in the classic paper by Ferguson (1973) and modern reviews by Ramamoorthi
and Srikanth (2007) and Teh (2010). The parameters of neighborhoods are assumed to have
multivariate Gaussian priors:

Owr | i, Zw ~ MVN(uy,Zw), k=1,2,...

(19)
05 | HB7EB ~ MVN(“B? 23)7

where we assume that the between-neighborhood parameter vectors are constant across pairs
of neighborhoods in order to reduce the number of parameters. In R package hergm, non-
parametric priors can be specified by specifying the option parametric of function hergnm as
follows:

R> hergm(formula, parametric = FALSE)

We note that the default of option parametric is FALSE, so that the option parametric
can be left unspecified for nonparametric priors. The so-called concentration parameter «,
the mean vectors pp and py,, and the inverse variance-covariance matrices Egl and E;Vl
are hyper-parameters that need to be specified. In practice, it may not be obvious how the
hyper-parameters should be chosen. In such situations, it is natural to specify hyper-priors
for the hyper-parameters that cover a wide range of possible values of the hyper-parameters
rather than specifying the hyper-parameters themselves. By default, the R package hergm
specifies hyper-priors for the hyper-parameters and prints them to the R console, so that users
do not need to specify hyper-parameters.
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3.7. Comparing ERGMs and HERGMs

In practice, a natural question to ask is whether one should use ERGMs or HERGMs. We
discuss some advantages of using HERGMs rather than ERGMs. It is worth noting that
there is one disadvantage of using HERGMs rather than ERGMs: when the neighborhood
memberships of most or all nodes are unobserved, then the Bayesian approach to HERGMs
tends to be slower than the Bayesian approach to ERGMs (Caimo and Friel 2011) implemented
in R package Bergm (Caimo and Friel 2014) and much slower than the maximum likelihood
approach to ERGMs (Hunter and Handcock 2006) implemented in R package ergm (Hunter
et al. 2008b). A more detailed discussion of the computing time of HERGMs and approaches
to estimating HERGMs from large networks can be found in Section 9.

Local dependence: Scientific, probabilistic, and statistical advantages. There are
important conceptual and theoretical reasons that suggest to use HERGMs with local depen-
dence rather than ERGMs with global dependence. We refer readers to Section 3.1, where we
cite scientific reasons (e.g., Pattison and Robins 2002), probabilistic advantages (e.g., weak
dependence), and statistical advantages (e.g., consistency of estimators).

ERGMs are special cases of HERGMs and HERGMs tend to be superior to
ERGMs in terms of goodness-of-fit. Any ERGM — with any set of model terms — can
be viewed as a special case of an HERGM: For example, an ERGM with edges and triangle
terms can be viewed as a special case of an HERGM with edges_ij and triangle_ijk terms
which assumes that all nodes belong to the same neighborhood with probability 1. Given
any data set and any set of model terms, an HERGM can be expected to fit the data at
least as well as the ERGM that is nested in the HERGM, because the HERGM includes all
ERGM distributions — that is, all conditional exponential-family distributions of the form
Pe(X = x | Z = z) under which all nodes belong to the same neighborhood — and all more-
than-one-neighborhood HERGM distributions — that is, all conditional exponential-family
distributions of the form Pg(X = @ | Z = z) under which the nodes belong to more than
one neighborhood. Under some of the more-than-one-neighborhood HERGM distributions,
the observed data may have a higher probability than under the one-neighborhood ERGM
distributions. In fact, it is not only possible, but probable that some of the more-than-
one-neighborhood HERGM distributions assign a higher probability to the observed data
than the one-neighborhood ERGM distributions, because networks are local in nature (e.g.,
Pattison and Robins 2002) and HERGMs with local dependence respect the local nature of
networks. Therefore, one could argue that HERGMs are preferable to ERGMs unless the
assumption that all nodes belong to the same neighborhood is satisfied. The assumption
that all nodes belong to the same neighborhood may well be satisfied in small networks (e.g.,
when a terrorist network consists of a single terrorist cell), but it may not be satisfied in
large networks (e.g., when a terrorist network consists of more than one terrorist cell). The
applications in Sections 8 demonstrate that “large” needs not be very “large” at all: HERGMs
can outperform ERGMs in terms of goodness-of-fit when the number of nodes is as small as
17, as the terrorist network in Section 8.2 demonstrates.

In practice, an important concern is that — while HERGMSs tend to be superior to ERGMs in
terms of goodness-of-fit - HERGMs are more complex than ERGMs and might overfit in the
sense that HERGMs place nodes with high posterior probability in more than one neighbor-

13
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hood when data are generated by an ERGM — that is, by an HERGM with one neighborhood.
We note that HERGMs with nonparametric priors as described in Section 3.6 discourage large
numbers of neighborhoods and parameters and thus penalize model complexity, but HERGMs
can nonetheless overfit. To shed light on the issues of under- and overfitting, we conduct two
small simulation studies in Section 7 by using the generic simulation and estimation methods
described in Sections 4—6. The results of the two simulation studies suggest that HERGMs
can be used instead of ERGMs without being too concerned with under- and overfitting.

HERGMs admit more and simpler model terms than ERGMs. An additional ad-
vantage is that HERGMs admit more and simpler model terms than ERGMs: e.g., while
ERGMs with (global) triangle terms induce strong dependence and tend to lead to model
degeneracy, HERGMs with (local) triangle terms induce weak dependence as long as all
neighborhoods are small and hence tend to be non-degenerate and useful in practice when
ERGMs with (global) triangle terms are near-degenerate and useless (see, e.g., Sections 8.2
and 8.3). Therefore, HERGMs offer researchers the choice of more model terms than ERGMs
and the choice of model terms that are simpler than the geometrically weighted model terms
which are widely used in the ERGM literature (e.g., Lusher, Koskinen, and Robins 2013) but
which are hard to interpret, as discussed in the seminal article of Snijders et al. (2006, p. 149).

HERGMs can detect interesting structure. Last, but not least, HERGMs can detect
interesting structure in networks. An example is given by the terrorist network in Section 8.2,
where HERGMs discover three groups of terrorists corresponding to the three safehouses at
which the terrorists hid. A second example is given by the friendship network in Section 8.3,
where HERGMSs reveal the transitive structure underlying the friendship network.

4. Model estimation

The models with local dependence implemented in R package hergm are estimated by Bayesian
methods, that is, inference concerning parameters and unobserved neighborhood memberships
is based on the posterior. The posterior takes the form

p(aay’Bau’Wa2§172ﬁ/177r79379W7z ’ x) OCP(OGNB,HWa21_31,2171/1,7",08’0%/)
XPr(Z=2)Pg(X =x|Z=2), (20)

where p(a, g, iy, Egl, 2‘7[,1, 7,60p,0y) is a prior as discussed in Section 3.6. The posterior
can be approximated by sampling from the posterior using auxiliary-variable Markov chain
Monte Carlo (MCMC) algorithms. A detailed description of auxiliary-variable MCMC al-
gorithms would be too space-consuming and can be found in Schweinberger and Handcock
(2015). We focus here on how the auxiliary-variable MCMC algorithm implemented in R
package hergm can be used in practice. We first discuss how samples from the posterior
can be generated by using the function hergm (Section 4.1) and how the convergence to the
posterior can be assessed by using the mecmc.diagnostics method (Section 4.2). We then
turn to the methods summary, print, and plot, which summarize samples from the posterior
(Section 4.3). Last, but not least, we discuss two advanced topics, the label-switching problem
(Section 4.4) and parallel computing (Section 4.5). We note that generic goodness-of-fit and
simulation methods are discussed in Sections 5 and 6, respectively.
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4.1. Sampling from the posterior

A sample of parameters and unobserved neighborhood memberships from the posterior can
be generated by the function hergm. The function hergm can be used as follows:

R> object <- hergm(formula, sample_size = le+5)

where formula is a formula of the form network ~ model and sample_size is the size of
the sample from the posterior. Examples of formulae are given in Sections 3.3 and 3.4. The
default of option sample_size is 100,000. The function hergm returns an object of class
‘hergm’. All other user-level functions of R package hergm accept objects of class ‘hergm’ as
arguments. The components of an object of class ‘hergm’ are described in the help function
of function hergm: see Thergm. By default, the function hergm checks whether the auxiliary-
variable MCMC algorithm implemented in function hergm has converged to the posterior. If
there are signs of non-convergence, hergm warns users of possible non-convergence. We discuss
convergence checks in Section 4.2. A summary of an object of class ‘hergm’ is provided by
the methods summary, print, and plot. We discuss these methods in Section 4.3. Before
doing so, we mention additional options that are useful for dealing with known and unknown
neighborhood memberships.

Sampling from the posterior: Known neighborhood memberships

If some or all neighborhood memberships are known, one should take advantage of them. The
most important example of networks with known neighborhood memberships are multilevel
networks (Lazega and Snijders 2016). A classic example of a multilevel network is a network
consisting of friendships among students within and between schools, where the schools are
regarded as neighborhoods and the neighborhood memberships are known as long as it is
known which student attended which school. The function hergm allows users to use known
neighborhood memberships as follows:

R> object <- hergm(formula, indicator = indicator)

where indicator is a vector of length n and the elements of indicator are either integers
between 1 and n (known neighborhood memberships) or NAs (unknown neighborhood mem-
berships). The default of option indicator is NULL, that is, all neighborhood memberships
are assumed to be unknown. Two examples are shown in Section 8.2, where the following two
neighborhood membership vectors are specified:

R> indicator <- c(rep.int(1, 9), rep.int(2, 5), rep.int(1, 3))

and

R> indicator <- c(rep.int(NA, 9), rep.int(2, 5), rep.int(NA, 3))

The first example specifies all neighborhood memberships, whereas the second example spec-
ifies some but not all neighborhood memberships. The function hergm respects known neigh-

borhood memberships and keeps them fixed while inferring the unknown neighborhood mem-
berships.

15
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Sampling from the posterior: Unknown neighborhood memberships

If some or all neighborhood memberships are unknown, the unknown neighborhood mem-
berships are inferred along with the parameters of the model. To do so, one can use either
parametric or nonparametric priors as discussed in Section 3.6.

If the number of neighborhoods K is known, parametric priors can be used by specifying the
option parametric of function hergm as follows:

R> object <- hergm(formula, parametric = TRUE, max_number = 5)

where max_number is the number of neighborhoods K. The default of option parametric is
FALSE while the default of option max_number is the number of nodes n.

If the number of neighborhoods K is unknown, it is convenient to use nonparametric priors as
discussed in Section 3.6. If nonparametric priors are used, it has computational advantages to
truncate them. We follow an approach advocated by Ishwaran and James (2001) and adapted
by Schweinberger and Handcock (2015) and truncate nonparametric priors by specifying an
upper bound K.« on the number of neighborhoods K. In R package hergm, one can truncate
nonparametric priors by specifying the option max_number of function hergm:

R> object <- hergm(formula, parametric = FALSE, max_number = 5)

If parametric = FALSE, the option max_number is an upper bound Ky,x on the number of
neighborhoods K. The default of option max_number is the number of nodes n, but smaller
upper bounds result in reductions in computing time and are therefore preferable.

4.2. Convergence to the posterior

The convergence of the auxiliary-variable Markov chain Monte Carlo algorithm to the pos-
terior can be assessed by using the method mcmc.diagnostics. The function hergm calls
mcme .diagnostics by default and hence users do not need to call memc.diagnostics unless
users change the object of class ‘hergm’ returned by function hergm (e.g., by reducing the
sample from the posterior). The generic method mcmec.diagnostics accepts an object of
class ‘hergm’ as argument and can be used as follows:

R> mcmc.diagnostics(object)

The function returns the convergence checks of Raftery and Lewis (1996) implemented in
function mcgibbsit of R package mcgibbsit along with trace plots of the parameters. The
help function of R package hergm contains details on the convergence diagnostics returned
by function mcgibbsit: see Pmcgibbsit. If there are signs of non-convergence, the function
hergm warns users of possible non-convergence. In addition, the function hergm stores the
convergence checks of Raftery and Lewis (1996) in the component memc.diagnostics of the
object of class ‘hergm’ returned by function hergm. These convergence checks can be retrieved
from the object of class ‘hergm’ as follows:

R> object$mcmc.diagnostics

A detailed example can be found in Section 8.1, in particular see Figure 4 in Section 8.1.
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4.3. Summary of the posterior

A sample of parameters and unknown neighborhood memberships from the posterior can be
summarized by using the summary method. The summary method accepts an object of class
‘hergm’ as argument and can be used as follows:

R> summary(object)

To provide a summary of a sample from the posterior, the method summary relies on the
two methods print and plot. The print method prints a summary of a sample of parame-
ters from the posterior whereas the plot method plots a summary of a sample of unknown
neighborhood memberships from the posterior. We describe them in turn.

Summary of the posterior: Parameters

The print method prints a summary of a sample of parameters from the posterior and can
be used as follows:

R> object

The summary consists of the 2.5%, 50%, and 97.5% posterior quantiles of the parameters.
The posterior medians (50% posterior quantiles) can be used as estimates of the parameters,
while the 95% posterior credibility intervals (based on the 2.5% and 97.5% posterior quantiles)
can be used to assess the posterior uncertainty about the parameters. An example can be
found in Section 8.1.

Summary of the posterior: Unknown neighborhood memberships

The plot method plots a summary of a sample of unknown neighborhood memberships from
the posterior and can be used as follows:

R> plot(object)

The plot represents the posterior membership probabilities of nodes by pie charts centered at
the positions of the nodes. Examples are given by Figures 5, 8, and 11 in Sections 8.1, 8.2,
and 8.3, respectively.

4.4. Advanced topics: Label-switching problem

The Bayesian auxiliary-variable MCMC algorithm implemented in function hergm gives rise to
the so-called label-switching problem, which is well-known in the Bayesian literature on finite
mixture models and related models (see, e.g., Stephens 2000). The label-switching problem
is rooted in the invariance of the likelihood function to permutations of the labels of neigh-
borhoods, that is, distinct labelings of the neighborhoods can give rise to the same value of
the likelihood function. The posterior, which is proportional to the likelihood times the prior,
is therefore permutation-invariant whenever the prior is permutation-invariant. The para-
metric priors implemented in R package hergm are permutation-invariant and hence give rise
to permutation-invariant posteriors, whereas the nonparametric priors are not permutation-
invariant and hence do not give rise to permutation-invariant posteriors. However, in many
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applications the likelihood appears to dominate the prior and the posterior appears to be
almost permutation-invariant even when nonparametric priors are used. As a result, when
Bayesian MCMC algorithms are used to sample from the posterior, the labeling of the neigh-
borhoods can switch from iteration to iteration, both under parametric and nonparametric
priors. To summarize a MCMC sample of neighborhood-dependent parameters and unknown
neighborhood memberships from the posterior, it is therefore advisable to undo the label-
switching in the MCMC sample.

An attractive approach to undo the label-switching in the sample is by following the Bayesian
decision-theoretic approach of Stephens (2000), which involves choosing a loss function and
minimizing the posterior expected loss. Two loss functions are implemented in function hergm
and can be chosen by using the option relabel of hergm: the loss function of Schweinberger
and Handcock (2015) (relabel = 1) and the loss function of Peng and Carvalho (2016)
(relabel = 2). The first loss function seems to be superior in terms of the reported posterior
neighborhood probabilities, but is more expensive in terms of computing time. A rule of
thumb is to use the first loss function when max_number < 10 and to use the second loss
function otherwise.

The label-switching in the sample can be undone by calling function hergm with either
relabel = 1 or relabel = 2. An example is given by

R> object <- hergm(formula, max_number = 5, relabel = 1)

The option relabel = 1 is the default as long as max_number < 10, otherwise relabel =
2 is the default. We note that the relabeling algorithm converges to a local minimum of
the posterior expected loss, therefore it is advisable to run the relabeling algorithm multiple
times using starting values chosen at random. To do so, one can take advantage of the option
number_runs of function hergm:

R> object <- hergm(formula, max_number = 5, relabel = 1, number_runs = 3)

The option number_runs = 3 ensures that the relabeling algorithm is run three times with
starting values chosen at random. The default of option number_runs is 1. Examples are
given in Sections 7, 8.1, and 8.2.

An alternative approach, which sidesteps the label-switching problem rather than solving it,
is to focus on the posterior of functions of neighborhood memberships Z1, ..., Z, that are
invariant to the labeling of neighborhoods, as suggested by Nowicki and Snijders (2001). It
is worth noting that focusing on functions of Zi,...,Z, that are invariant to the labeling
of neighborhoods is restrictive, because not all functions of Zi,..., Z,, are invariant to the
labeling of neighborhoods and because the approach fails to undo the label-switching in
the sample of neighborhood-dependent parameters, therefore summaries of the sample of
neighborhood-dependent parameters may be problematic. However, the alternative approach
is simple and its computing time is quadratic in the number of nodes n. If the number of
neighborhoods K is large (e.g., K = n), then the computing time of the alternative approach
is lower than the computing time of the relabeling algorithm relabel = 1, whose computing
time is factorial in K = n (Schweinberger and Handcock 2015). A simple example of a
function of Zi,...,Z, that is invariant to the labeling of neighborhoods is given by the
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indicator function
1 if Z; = Z;
lz,—z, = (21)
0 otherwise,

that is, 1z7,— z; is an indicator of whether nodes ¢ and j are members of the same neighbor-
hood; note that 1z,—7, does not depend on the labeling of the neighborhoods. The posterior
probabilities of 17,7, can be estimated by the corresponding sample proportions. A simple
approach to visualizing the estimates of the posterior probabilities of 17,7, would be to
construct a weighted graph, where the weights of the edges are the estimates of the posterior
probabilities of 1z,—z,. However, the resulting graphs would be dense, that is, the graphs
would have large numbers of edges, and it is hard to discover interesting structure in dense
graphs. An alternative that tends to produce sparse graphs is based on thresholding the
estimates of the posterior probabilities of 1z,—z, as follows. Given estimates of the posterior
probabilities of 1z,=7;, one chooses a threshold close to 1 and constructs a graph by putting
an edge between nodes ¢ and j if and only if the estimate of the posterior probability of
1z,=z,; exceeds the threshold. If the threshold is close to 1, the resulting graph tends to be
sparse and shows which pairs of nodes are in the same neighborhood with high probability.
In practice, multiple thresholds can be used and the resulting graphs can be compared. Such
graphs can be produced by using the option relabel = 3 of function hergm:

R> object <- hergm(formula, max_number = 5, relabel = 3)
and by using the plot method with the option threshold:
R> plot(object, threshold = c(.7, .8, .9))

The default of option thresholdisc(.7, .8, .9). The plot method with option threshold
= c(.7, .8, .9) generates three graphs corresponding to the three thresholds .7, .8, and .9.
It is possible to specify as many thresholds as desired, but each of the thresholds must be a
real number between 0 and 1. An example is given by Figure 11 in Section 8.3.

4.5. Advanced topics: Parallel computing

If a multi-core computer or computing cluster is available, one can take advantage of parallel
computing to reduce computing time. To do so, the option parallel of function hergm can
be used. An example is given by

R> object <- hergm(formula, max_number = 5, parallel = 10)

The option parallel is an integer indicating the number of cores of the multi-core computer
or computing cluster on which hergm is run. The default of option parallel is 1, which
implies that hergm is run on one core. If the user specifies parallel = 10, the function
hergm conducts 10 runs in parallel and combines the results. It is well-known that it is best
to conduct one long MCMC run rather than multiple short MCMC runs (e.g., Geyer 1992),
but parallel computing can sometimes enable the statistical analysis of large networks that
would be infeasible without parallel computing.
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5. Model goodness-of-fit

Hunter, Goodreau, and Handcock (2008a) argued that assessing the goodness-of-fit of models
is important, because many models with global dependence place most probability mass on
graphs that have either almost no edges or almost all possible edges and the goodness-of-fit
of such models may be unacceptable. In the Bayesian framework, it is natural to assess the
goodness-of-fit of models by generating posterior predictions of networks (Schweinberger and
Handcock 2015).

Posterior predictions of networks can be generated by using the gof method as follows:
R> gof (object)

The gof method accepts an object of class ‘hergm’ as argument and generates posterior pre-
dictions of networks by using the simulate method described in Section 6. The posterior
predictions of networks are compared to the observed network in terms of degrees, geodesic
distances, and other interesting functions of networks. The results are presented in the form
of plots that resemble the goodness-of-fit plots suggested by Hunter et al. (2008a) and imple-
mented in R package ergm (Hunter et al. 2008b). Examples are given by Figures 6 and 7 in
Section 8.2 and Figures 9 and 10 in Section 8.3.

6. Simulation of networks

The simulation of networks from specified models can be useful with a view to (a) conducting
simulation studies and (b) assessing the goodness-of-fit of a model estimated by function
hergm. We focus on (a) and note that (b) is discussed in Section 5.

A network can be simulated by using the simulate method as follows:
R> simulate(object)

where object is either an object of class ‘hergm’ or a formula of the form network ~ model.
Examples of formulae are given in Sections 3.3 and 3.4. If the argument object of function
simulate is an object of class ‘hergm’, the function simulates networks from the model stored
in object, otherwise it simulates networks from the model specified by the formula of the
form network ~ model. The simulate method returns the simulated networks in the form
of edge lists, that is, for each simulated network, it returns a list of the pairs of nodes with
an edge in the simulated network. An example is given in Section 7.

7. Simulation studies: Under- and overfitting

We argued in Section 3.7 that ERGMs are special cases of HERGMs with one neighborhood
and that HERGMs tend to be superior to ERGMs in terms of goodness-of-fit. However,
while HERGMs might have an advantage over ERGMs in terms of goodness-of-fit, HERGMs
are more complex than ERGMs and might overfit in the sense that HERGMs place nodes
with high posterior probability in more than one neighborhood when data are generated by
an ERGM - that is, by an HERGM with one neighborhood. A related question is whether
HERGMSs underfit, that is, whether HERGMSs place nodes with high posterior probability in
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one neighborhood when data are generated by HERGMs with two or more neighborhoods.
To shed light on the issue of under- and overfitting, we conduct two small simulation studies.
Both simulation studies generate N = 200 directed networks with n = 20 nodes by using
MCMC methods (e.g., Hunter and Handcock 2006). MCMC methods generate networks by
starting with an initial network and constructing a Markov chain to sample from a specified
model. We generate the initial network by assuming that edges are independent and by
generating edges with probability .1 as follows:

R> set.seed(0)

R> d <- matrix(rbinom(n = 400, size = 1, prob = .1), 20, 20)
R> d <- as.network(d, directed = TRUE, loops = FALSE)

R> N <- 200

Both simulation studies use HERGMs with edges_ij and transitiveties_ijk terms. We
note that transitiveties_ijk terms are special cases of geometrically weighted edgewise
shared partner terms with decay parameter 0 (see, e.g., Hunter 2007).

The first simulation study generates N = 200 networks with n = 20 nodes by using an
HERGM with one neighborhood and edges_ij and transitiveties_ijk terms, which is
equivalent to an ERGM with edges and transitiveties terms. We do so as follows:

R> indicator <- rep.int(1, 20)

R> eta <- c¢(-1, -2, 1, 0)

R> edgelists <- simulate.hergm(d ~ edges_ij + transitiveties_ijk,

+ max_number = 1, indicator = indicator, eta = eta, sample_size = N)

The parameter vector eta <- c(-1, -2, 1, 0) implies that the within- and between- neigh-
borhood edge parameters are given by —1 and —2, respectively, while the within- and between-
neighborhood transitive edge parameters are given by 1 and 0, respectively. We choose
the between-neighborhood edge parameter to be lower than the within-neighborhood edge
parameter, because between-neighborhood subgraphs tend to be more sparse than within-
neighborhood subgraphs. In addition, we assume that the between-neighborhood transitive
edge parameter is 0, because otherwise the model would induce global dependence rather
than local dependence. We note that the between-neighborhood parameters cannot affect
the simulation results when all nodes belong to the same neighborhood, but the function
hergm expects that both within- and between-neighborhood parameters are specified when
the option eta of function hergm is used.

The second simulation study generates N = 200 networks with n = 20 nodes by using an
HERGM with two neighborhoods consisting of 10 nodes each and edges_ij and
transitiveties_ijk terms as follows:

R> indicator <- c(rep.int(1, 10), rep.int(2, 10))

R> eta <- c¢(-1, -1, -2, 1, 1, 0)

R> edgelists <- simulate.hergm(d ~ edges_ij + transitiveties_ijk,

+ max_number = 2, indicator = indicator, eta = eta, sample_size = N)

The parameter vector eta <- c(-1, -1, -2, 1, 1, 0) implies that the within-neighbor-
hood edge parameters of neighborhoods 1 and 2 are given by —1 and the between-neighborhood
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Figure 3: Simulation results: Number of neighborhoods recovered by HERGMs when the true
number of neighborhoods is one (left) versus two (right). The two plots suggest that HERGMs
can be used instead of ERGMs without being too concerned with under- and overfitting.

edge parameter is given by —2, while the within-neighborhood transitive edge parameters of
neighborhoods 1 and 2 are given by 1 and the between-neighborhood transitive edge param-
eter is given by 0.

For each simulated network, we determine the number of neighborhoods by first solving the
label-switching problem discussed in Section 4.4 and estimating the posterior membership
probabilities of nodes and then assigning each node to its maximum-posterior-probability
neighborhood and counting the number of neighborhoods. To do so, we use the following R
function:

R> estimate <- function(i, edgelists) {

d <- edgelists$edgelist[[i]]

d <- as.network(d, directed = TRUE, matrix.type = "edgelist")

object <- hergm(d ~ edges_ij + transitiveties_ijk, max_number = 2,
number_runs = 3, verbose = -1)

indicator <- vector(length = d$gal$n)

for (i in 1:d$gal$n) indicator[i] <- which.max(object$p_i_k[i, ])

number <- length(unique(indicator))

return (number)

}

+ + + + + + + + +

The R function estimate extracts the ith simulated network from the list of edge lists
(edgelists$edgelist[[1]]) and estimates an HERGM with at most two neighborhoods
(max_number = 2) and edges_ij and transitiveties_ijk terms, using the default sam-
ple size (sample_size = 1le+5) and running the default relabeling algorithm (relabel = 1)
three times with starting values chosen at random (number_runs = 3). The option verbose
= -1 ensures that the function hergnm is silent, that is, hergm prints nothing to the R console.
To reduce computing time, we run the estimation procedure on a computing cluster with 72
cores by using the function mclapply of R package parallel:

R> library("parallel")
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R> RNGkind("L'Ecuyer-CMRG")

R> number <- mclapply(1:N, estimate, edgelists, mc.cores = 72)

R> number <- as.numeric(unlist (number))

R> barplot(table(factor (number, levels = 1:2)), ylim = c(0, N), space = 2)

We note that the function mclapply of R package parallel does not work on Windows-based
operating systems as explained in the help function of mclapply: see ?mclapply. To run
the R script above on machines with Windows-based operating systems, one needs to replace
mc.cores = 72 by mc.cores = 1.

The plots generated by the R script above are shown in Figure 3. The plots show that when
the true number of neighborhoods is one, HERGMs recover the true number of neighborhoods
in 92% of the cases, and when the true number of neighborhoods is two, HERGMs recover
the true number of neighborhoods in 100% of the cases. Therefore, HERGMs can be used
instead of ERGMs without being too concerned with under- and overfitting.

8. Applications

We present three applications to demonstrate the main function hergm and the methods
mcmc.diagnostics, print, plot, summary, and gof of R package hergm and note that other
applications of R package hergm can be found in Schweinberger, Petrescu-Prahova, and Vu
(2014), Schweinberger and Handcock (2015), and Smith, Calder, and Browning (2016).

8.1. Collaboration network

We start with some of the simplest HERGMs, stochastic block models (Nowicki and Snijders
2001). While stochastic block models are not the primary focus of R package hergm, we
use them to demonstrate the methods mecmc.diagnostics, print, plot, and summary. We
exploit the classic data set collected by Kapferer (1972) and used by Nowicki and Snijders
(2001). The data correspond to collaborations among 39 workers in a tailor shop in Africa:
an undirected edge between workers ¢ and j indicates that ¢ and j collaborated. A plot of the
collaboration network is shown in Figure 1(a).

To cluster workers based on the propensity to collaborate with others, we use stochastic block
models with edges_i terms. Here, we use parameter priors as described in Section 3.6 by
using the options parametric = TRUE and max_number = 2 of function hergm, because we
are interested in partitioning the set of workers into two subsets according to the propensity
to collaborate with others. The model with edges_i term is estimated as follows:

R> data("kapferer", package = "hergm")

R> set.seed(0)

R> object <- hergm(kapferer ~ edges_i, parametric = TRUE, max_number = 2,
+ sample_size = le+4)

Calling the function
R> mcmc.diagnostics(object)

results in the following warning:

23
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Warning message:
In mcmc.diagnostics.hergm(object)
There are signs of non-convergence: to view details, enter
'print (object$mcmec.diagnostics)
where object is the object returned by function hergm().

In other words, there are signs that the auxiliary-variable MCMC algorithm implemented in
function hergm has either not converged to the posterior or has converged to the posterior
but is exploring the posterior very slowly and therefore the sample size might have to be
increased. To gain more insight into the convergence issues, we use the print method as
suggested by function hergm:

R> object$mcmc.diagnostics

The print method reveals that the primary issue is the parameter vector 8 = (61, 603), where
01 and 0y are the propensities of workers in neighborhoods 1 and 2 to collaborate. The print

method reports, among other things, the following convergence diagnostics concerning 6, and
0o:

Total Length = 8000

[1,] Burn-in Estimation Total Lower bound Auto-Corr. Between-Chain

[2,] M) ¢D) (M+N) (Nmin) factor (I) Corr. factor (R)
[3,]

[4,] 36 6459 6495 600 10.8 NA

[5,]1 40 6942 6982 600 11.6 NA

6,] ———  -———— e ———— ————

[7,]1 40 6942 6982

We note that the function hergm reduces the sample of size 10,000 — which we requested
by using the option sample_size = le+4 of function hergm — by discarding the first 2,000
sample points as burn-in — which is the default of the option posterior.burnin of function
hergm — and returns a sample size of 8,000. The first line of the output above confirms that
the sample size is 8,000 (see Total Length = 8000). The following lines show convergence
diagnostics based on the function mcgibbsit of R package mcgibbsit (Warnes and Burrows
2013). The summary of the convergence diagnostics on line [7,] suggests that the burn-in
of size 2,000 may have to be increased by 40 (see column Burn-in (M)), but the sample
of size 8,000 is larger than the required sample size of 6,942 (see column Estimation (N)).
However, while the sample size might be large enough, the so-called autocorrelation factor
(see column Auto-Corr. factor (I)) is more than 10 for both 6; (line [4,]) and 62 (line
[56,1), which triggered the warning; note that the autocorrelation factor is an estimate of
the increase of the sample size due to the dependence of the MCMC sample and that, for
instance, the autocorrelation factor corresponding to 6; is given by N / Nmin = 6,459 / 600
= 10.8 (line [4,]1). It is therefore prudent to increase the sample size. We increase the
sample size 10-fold:

R> set.seed(0)
R> object <- hergm(kapferer ~ edges_i, parametric = TRUE, max_number = 2,
+ sample_size = le+5, posterior.thinning = 8)
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Figure 4: Collaboration network: Trace plots of the sample of parameter vector 8 =
(01,02) (hergm term parameters), concentration parameter « (concentration parameter
alpha), within-neighborhood mean vector py, (means of hergm terms parameters), and
within-neighborhood inverse variance-covariance matrix 2‘7[,1 (precisions of hergm terms
parameters); note that the between-neighborhood mean vector pp and inverse variance-
covariance matrix Egl are not needed in models with term edges_i, because the between-
neighborhood parameters are functions of the parameters 6; and 6.

We note that, to reduce the amount of memory consumed by the function hergm, the function
hergm reduces the sample of size 100,000 (sample_size = le+5) to a sample of size 10,000
by returning every 10th sample point, then discards the first 2,000 sample points as burn-in
(posterior.burnin = 2000 by default) and returns every 8th sample point of the remaining
8,000 sample points (posterior.thinning = 8), giving a sample of size 1,000. We use the
option posterior.thinning = 8, because it facilitates the plotting of results by reducing
the number of sample points to be plotted.

The function hergm reports:
Convergence check using R function mcgibbsit()...0K
The convergence diagnostics can nevertheless be inspected using:

R> object$mcmc.diagnostics
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Figure 5: Collaboration network: Observed network with posterior membership probabilities
of workers represented by pie charts centered at the positions of workers.

Total Length = 1000

[1,] Burn-in Estimation Total Lower bound Auto-Corr. Between-Chain

[2,] ) (M+N) (Nmin) factor (I) Corr. factor (R)
[3,]

[4,] 3 673 676 600 1.13 NA

(5,1 2 620 622 600 1.04 NA

6,] ——  ———  mm——— ———— = ————

[7,]1 3 673 676

Trace plots of the sample of parameters are shown in Figure 4 and confirm that there are no
signs of non-convergence.

To summarize the sample of parameters from the posterior, we use the print method:

R> object

Summary of model fit

Formula: kapferer ~ edges_i

Size of MCMC sample from posterior: 1000

Posterior quantiles 2.5% 50% 97.5%
Concentration parameter alpha: 0.067 0.872 3.625
Mean of parameters of hergm term 1: -1.621 -0.447 0.652

Precision of parameters of hergm term 1: 0.498 0.976 1.706
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hergm term 1: parameter of block 1: -1.694 -1.229 -0.823
hergm term 1: parameter of block 2: -0.496 -0.192 0.148

The first three lines of the table correspond to the hyper-parameters «, pyy, and E;Vl, which
are of secondary interest; note that the between-neighborhood mean vector gy and inverse
variance-covariance matrix Egl are not needed in models with edges_i term, because the
between-neighborhood parameters are functions of the parameters 1 and 6». The last two
lines of the table correspond to the parameters 61 and 65, which are of primary interest. To
interpret the results concerning 6; and 6y, note that — under stochastic block models with
edges_i term — the log odds of the conditional probability of an edge between nodes ¢ and j
given Z; = z; and Z; = z; is given by 0., + 0., (see Section 3.3). The summary of the sample
of parameters 61 and 0> from the posterior consists of the 2.5%, 50%, and 97.5% posterior
quantiles of §; and 2. The posterior medians (50% posterior quantiles) —1.229 and —0.192
can be used as estimates of 1 and 05, respectively. The posterior uncertainty about 6; and
02 can be assessed by inspecting the 95% posterior credibility intervals (—1.694, —0.823) and
(—0.496, 0.148) of 6, and 09, respectively, which are based on the 2.5% and 97.5% posterior
quantiles of the two parameters. The 95% posterior credibility intervals of #; and # do not
overlap, suggesting that there are indeed two distinct groups of workers: one group of workers,
corresponding to neighborhood 2, seems to be more inclined to collaborate than the other
group of workers, corresponding to neighborhood 1.

To inspect these two groups of workers, we use the plot method:
R> plot(object)

The plot method generates the plot shown in Figure 5. The plot represents the posterior
membership probabilities of workers by pie charts centered at the positions of workers. It is
evident that the second group of workers (neighborhood 2, colored red) is at the center of
the network whereas the other group of workers (neighborhood 1, colored black) is on the
periphery. It is worth noting that there is uncertainty about the neighborhood memberships
of some workers who are located neither in the center nor on the periphery of the network.

Last, but not least, we note that the summary method could have been used in place of the
methods print and plot:

R> summary(object)

The summary method would have generated both summaries of the sample of parameters and
neighborhood memberships.

8.2. Terrorist network

Koschade (2006) collected data on contacts between the 17 terrorists who conducted the Bali,
Indonesia bombing in 2002. The terrorist network is shown in Figure 1(b). An undirected
edge between terrorists ¢ and j indicates a contact between ¢ and j. The terrorist network con-
sisted of two cells, the main group (terrorists 1-9 and 15-17) and the support group (terrorists
10-14). We take advantage of the known cell structure of the terrorist network to demon-
strate how known neighborhood memberships can be used in R package hergm. Additional
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M1: ERGM with global dependence (max_number = 1) 265.3
M2: ERGM with known main and support group (max_number = 2)  60.7
M3: HERGM with known support group (max_number = 2)  54.6
M4: HERGM without known groups (max_number = 5) 21.6

Table 3: Terrorist network: Comparison of models M1, M2, M3, and M4. The statistic
reported here is the root mean-squared deviation of the posterior predicted number of triangles
from the observed number of triangles. The lower the value of the statistic is, the better is the
goodness-of-fit of the model. HERGMs with enough neighborhoods (M4) are best in terms of
goodness-of-fit, outperforming ERGMs with global dependence (M1) and ERGMs with local
dependence (M2) as well as HERGMs with too few neighborhoods (M3).

results, including comparisons with stochastic block models, can be found in Schweinberger
and Handcock (2015).

To demonstrate how known neighborhood memberships can be used in R package hergm,
we consider models with edges_ij and triangle_ijk terms that make various assumptions
about the neighborhood memberships of terrorists. Model M1 assumes that all terrorists are
members of the same neighborhood, which is equivalent to an ERGM with global dependence.
Model M2 assumes that the terrorist network consists of two neighborhoods, corresponding
to the main group and the support group of the terrorist network, which is equivalent to an
ERGM with local dependence. Model M3 is an HERGM that assumes that the support group
is known but the neighborhood memberships of all other terrorists are unknown. Model M4 is
an HERGM that assumes that the neighborhood memberships of all terrorists are unknown.

We estimate models M1, M2, M3, and M4 as follows:

R> data("bali", package = "hergm")

R> set.seed(0)

R> indicator <- rep.int(1, 17)

R> object.ml <- hergm(bali ~ edges_ij + triangle_ijk, max_number = 1,
+ indicator = indicator, sample_size = 2e+5)

R> set.seed(0)

R> indicator <- c(rep.int(1, 9), rep.int(2, 5), rep.int(1, 3))

R> object.m2 <- hergm(bali ~ edges_ij + triangle_ijk, max_number = 2,
+ indicator = indicator, sample_size = 2e+5)

R> set.seed(0)

R> indicator <- c(rep.int(NA, 9), rep.int(2, 5), rep.int(NA, 3))

R> object.m3 <- hergm(bali ~ edges_ij + triangle_ijk, max_number = 2,
+ indicator = indicator, sample_size = 2e+5)

R> set.seed(0)

R> object.m4 <- hergm(bali ~ edges_ij + triangle_ijk, max_number = 5,
+ sample_size = 2e+5, number_runs = 3)

Model M4 with at most max_number = 5 neighborhoods is equivalent to the model used by
Schweinberger and Handcock (2015).

We compare these models in terms of goodness-of-fit. The goodness-of-fit of the models can
be assessed by using gof:
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Figure 6: Terrorist network: Goodness-of-fit of model M4 with local dependence; observed
values of statistics are indicated by the color red. The distributions are unimodal and centered
at the observed values of the statistics.

R> g1 <- gof(object.ml)
R> g2 <- gof(object.m2)
R> g3 <- gof(object.m3)
R> g4 <- gof(object.m4)

For each of the models, we compute the root mean-squared deviation of the posterior predicted
number of triangles from the observed number of triangles as a measure of goodness-of-fit:

R> triangles <- summary(bali ~ triangle)

R> d1 <- sqrt(sum((gl$triangles - triangles)”2) / length(gl$triangles))
R> d2 <- sqgrt(sum((g2$triangles - triangles)”2) / length(g2$triangles))
R> d3 <- sqrt(sum((g3$triangles - triangles)”2) / length(g3$triangles))
R> d4 <- sqgrt(sum((g4$triangles - triangles)”2) / length(g4$triangles))

The results are shown in Table 3. The table demonstrates that models M2, M3, and M4
with local dependence are superior to model M1 with global dependence and that HERGMs
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Figure 7: Terrorist network: Goodness-of-fit of model M1 with global dependence; observed
values of statistics are indicated by the color red. The distributions are multimodal and place
much probability mass on networks that are extreme in terms of the statistics.

with local dependence (M3, M4) outperform both ERGMs with global dependence (M1) and
ERGMs with local dependence (M2) in terms of goodness-of-fit. Among all models, model
M4 is best in terms of goodness-of-fit: model M4 reduces the root mean-squared deviation of
the posterior predicted number of triangles from the observed number of triangles by more
than 60% compared with models M2 and M3, underscoring the advantage that HERGMSs
with local dependence (M4) hold over ERGMs with local dependence (M2) and HERGMs
with local dependence but too few neighborhoods (M3).

To compare the goodness-of-fit of the model M4 with local dependence and the model M1
with global dependence in more detail, we use gof:

R> gof(object.m4)
R> gof(object.m1)

The gof method produces the goodness-of-fit plots shown in Figures 6 and 7. The plots
assess the goodness-of-fit of the models in terms of the size of the largest component (i.e.,
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Figure 8: Terrorist network: Observed network with posterior membership probabilities of
terrorists represented by pie charts centered at the positions of terrorists.

the size of the largest subset of nodes such that all pairs of nodes are connected by finite
paths); the geodesic distances of pairs of nodes (i.e., the lengths of the shortest paths between
pairs of nodes); the degrees of nodes; the number of edges; the number of 2-stars; and the
number of triangles; note that these statistics are described in more detail by Wasserman
and Faust (1994). Comparing Figures 6 and 7 reveals that the model with local dependence
is superior to the model with global dependence in terms of goodness-of-fit. In particular,
under the model with local dependence most of the probability mass is concentrated around
the observed values of the statistics, whereas under the model with global dependence the
distributions are multimodal, placing much probability mass on networks that are extreme in
terms of the statistics.

To summarize the sample of neighborhood memberships from the posterior, we use plot:
R> plot(object.m4)

The plot method produces Figure 8. The figure is consistent with ground truth: the ter-
rorists hid in three safehouses and the three dominant neighborhoods (represented by colors)
correspond to the three safehouses (Koschade 2006; Schweinberger and Handcock 2015).

8.3. Friendship network

Van de Bunt (1999) and Van de Bunt, Van Duijn, and Snijders (1999) collected data on
friendships between 32 freshmen at a European university at 7 time points. We use the last
time point. A directed edge from student i to student j indicates that ¢ considers j to be a
“friend” or “best friend”. A plot of the friendship network is shown in Figure 1(c). We use
the friendship network to demonstrate the option relabel = 3 of function hergm, which is
described in Section 4.4.

To capture both reciprocity and transitivity, we consider a model with edges_ij, mutual_ij,
and ttriple_ijk terms. We estimate the model as follows:
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Figure 9: Friendship network: Goodness-of-fit of model with local dependence; observed
values of statistics are indicated by the color red. The distributions are unimodal and centered
at the observed values of the statistics.

R> data("bunt", package = "hergm")

R> set.seed(0)

R> object.local <- hergm(bunt ~ edges_ij + mutual_ij + ttriple_ijk,
+ max_number = 32, relabel = 3, sample_size = 2e+5)

We note that max_number = 32 is the default of option max_number and implies that the
number of neighborhoods K may be as large as the number of nodes n = 32. It can be
used when the user is either unable or unwilling to choose an upper bound on the number of
neighborhoods K that is smaller than the maximum number of neighborhoods, which is the
number of nodes n = 32.

We first compare the model with local dependence to the corresponding model with global
dependence. To do so, we estimate the model with global dependence as follows:

R> set.seed(0)
R> indicator <- rep.int(1, 32)
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Figure 10: Friendship network: Goodness-of-fit of model with global dependence; observed
values of statistics are indicated by the color red. The distributions are multimodal and place
much probability mass on networks that are extreme in terms of the statistics.

R> object.global <- hergm(bunt ~ edges_ij + mutual_ij + ttriple_ijk,
+ max_number = 1, indicator = indicator, sample_size = 2e+5)

We then use the gof method to compare the two models in terms of goodness-of-fit:

R> gof(object.local)
R> gof(object.global)

The resulting goodness-of-fit plots are shown in Figures 9 and 10; note that R package hergm
compares the goodness-of-fit of models in terms of statistics that resemble the statistics used
in Figures 6 and 7 but that are tailored to directed networks rather than undirected networks
(see, e.g., Wasserman and Faust 1994). It is evident that the model with local dependence
outperforms the model with global dependence in terms of goodness-of-fit: note the multi-
modal nature of the posterior predictive distributions induced by global dependence and the
fact that those distributions place much probability mass on networks that are extreme in
terms of the statistics.
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Figure 11: Friendship network: observed network and same-neighborhood graphs obtained
by thresholding estimates of the posterior probabilities of 1z,—7, with thresholds .7, .8, and
.9. All plots use the same coordinates.

To summarize the sample of neighborhood memberships from the posterior, we use plot:
R> plot(object.local)

We note that we have used the option relabel = 3 of function hergm, because max_number
= 32 is large and hence the default relabeling algorithm relabel = 1 is too time-consuming
to be useful (see Section 4.4). The option relabel = 3 plots estimates of the posterior
probabilities of 1z,—z, by constructing a graph where students 7 and j are connected by an
edge if and only if the estimate of the posterior probability of 1z,—z; exceeds a threshold
selected by the user. We use the default thresholds .7, .8, and .9, which produce three graphs.
The three graphs are displayed in Figure 11 along with the observed network. The figure
reveals the transitive structure underlying the friendship network and suggests that there is
a number of small and close-knit groups of friends who are in the same neighborhood with
high posterior probability.

9. Discussion

The R package hergm implements a wide range of HERGMs with local dependence, which
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are preferable to ERGMs with global dependence on scientific, probabilistic, and statistical
grounds and which tend to outperform ERGMs with global dependence in terms of goodness-
of-fit.

The models implemented in R package hergm can be extended in various ways: for example,
local versions of all model terms of R package ergm terms could be added to R package hergm,
including local versions of all geometrically weighted model terms (Snijders et al. 2006; Hunter
and Handcock 2006; Hunter 2007). In addition, while we focused on model terms for binary
random graphs, model terms for non-binary random graphs can be added by building on the
work of Krivitsky (2012) and Desmarais and Cranmer (2012).

Last, but not least, it is worth noting that HERGMSs can be estimated from networks with up
to 100-200 nodes when edge variables are dependent conditional on neighborhood member-
ships and up to 1,000 nodes when edge variables are independent conditional on neighborhood
memberships. An open problem is how HERGMs can be estimated from large networks with
thousands or millions of nodes, which is where HERGMs are expected to have the greatest
advantage in terms of goodness-of-fit, as discussed in Sections 3.1 and 3.7. We note that the
computing time of HERGMs depends on the number of neighborhoods and the size of the
largest neighborhood when the neighborhoods are known (which is the case in, e.g., multilevel
networks; see Lazega and Snijders 2016). If the neighborhood memberships of some or all
nodes are unknown, then the computing time depends in addition on the number of nodes
with unknown neighborhood memberships, because the unknown neighborhood memberships
of nodes need to be inferred. In practice, it is natural to estimate parameters and unknown
neighborhood memberships by cycling through updates of parameters given neighborhood
memberships and updates of neighborhood memberships given parameters. Given neighbor-
hood memberships, parameters can be updated along the lines of ERGMs (e.g., Hunter and
Handcock 2006; Caimo and Friel 2011), with the important advantage that the loglikelihood
function decomposes into neighborhood-dependent loglikelihood functions that can be com-
puted by parallel computing on computing clusters. Therefore, updates of parameters given
neighborhood memberships are much less time-consuming for HERGMs with local depen-
dence than for ERGMs with global dependence provided that all neighborhoods are small.
The bottleneck of HERGMs in terms of computing time are updates of neighborhood member-
ships given parameters, which are challenging because updates of neighborhood memberships
may depend on intractable neighborhood-dependent loglikelihood functions and the update
of the neighborhood membership of one node depends on the neighborhood memberships of
other nodes. However, not all is lost: there are promising directions for methods that can
estimate HERGMs from large networks with thousands or tens of thousands of nodes. The
basic idea is that HERGMs contain stochastic block models as special cases. Stochastic block
models admit the estimation of neighborhood memberships from large networks with hun-
dreds of thousands of nodes (e.g., Rohe, Chatterjee, and Yu 2011; Vu et al. 2013). Therefore,
one can update neighborhood memberships given parameters by adapting methods from the
stochastic block model literature. We intend to make such methods available in R package
hergm in the future.
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