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Abstract

extremefit is a package to estimate the extreme quantiles and probabilities of rare
events. The idea of our approach is to adjust the tail of the distribution function over
a threshold with a Pareto distribution. We propose a pointwise data driven procedure
to choose the threshold. To illustrate the method, we use simulated data sets and three
real-world data sets included in the package.

Keywords: nonparametric estimation, tail conditional probabilities, extreme conditional quan-
tile, adaptive estimation, application, case study.

1. Introduction

Extreme values investigation plays an important role in several practical domains of applica-
tions, such as insurance, biology and geology. For example, in Buishand, De Haan, and Zhou
(2008), the authors study extremes to determine how severe rainfall periods occur in North
Holland. Sharma, Khare, and Chakrabarti (1999) use an extreme values procedure to pre-
dict violations of air quality standards. Various applications were presented in a lot of areas
such as hydrology (Davison and Smith 1990; Katz, Parlange, and Naveau 2002), insurance
(McNeil 1997; Rootzén and Tajvidi 1997) or finance (Danielsson and De Vries 1997; McNeil
1998; Embrechts, Resnick, and Samorodnitsky 1999; Gençay and Selçuk 2004). Other appli-
cations range from rainfall data (Gardes and Girard 2010) to earthquake analysis (Sornette,
Knopoff, Kagan, and Vanneste 1996). The extreme value theory consists of using appropriate
statistical models to estimate extreme quantiles and probabilities of rare events.
The idea of the approach implemented in the R (R Core Team 2018) package extremefit
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(Durrieu, Grama, Jaunatre, Pham, and Tricot 2018), which is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=extremefit,
is to fit a Pareto distribution to the data over a threshold τ using the peak-over-threshold
method. The choice of τ is a challenging problem, a large value can lead to an important
variability while a small value may increase the bias. We refer to Hall and Welsh (1985),
Drees and Kaufmann (1998), Guillou and Hall (2001), Huisman, Koedijk, Kool, and Palm
(2001), Beirlant, Goegebeur, Teugels, and Segers (2004), Grama and Spokoiny (2008, 2007)
and El Methni, Gardes, Girard, and Guillou (2012) where several procedures for choosing
the threshold τ have been proposed. Here, we adopt the method from Grama and Spokoiny
(2008) and Durrieu, Grama, Pham, and Tricot (2015). The package extremefit includes the
modeling of time dependent data. The analysis of time series involves a bandwidth parameter
h whose data driven choice is non-trivial. We refer to Staniswalis (1989) and Loader (2006)
for the choice of the bandwidth in a nonparametric regression. For the purposes of extreme
value modeling, we use a cross-validation approach from Durrieu et al. (2015).
The extremefit package is based on the methodology described in Durrieu et al. (2015). The
package performs a nonparametric estimation of extreme quantiles and probabilities of rare
events. It proposes a pointwise choice of the threshold τ and, for time series, a global choice
of the bandwidth h and it provides graphical representations of the results.
The paper is organized as follows. Section 2 gives an overview of several existing R packages
dealing with extreme value analysis. In Section 3, we describe the model and the estimation
of the parameters, including the threshold τ and the bandwidth h choices. Section 4 contains
a simulation study whose aim is to illustrate the performance of our approach. In Section 5,
we give several applications on real data sets and we conclude in Section 6.

2. Extreme value packages
There exist several R packages dealing with the extreme value analysis. We give a short
description of some of them. For a detailed description of these packages, we refer to Gilleland,
Ribatet, and Stephenson (2013). There also exists a CRAN Task View on extreme value
analysis which gives a description of registered packages available on CRAN (Dutang and
Jaunatre 2017). Among those available packages, the well known peak-over-threshold method,
we mentioned before, has many implementations, e.g., in the POT package (Ribatet and
Dutang 2016).
Some of the packages have a specific use, such as the package SpatialExtremes (Ribatet,
Singleton, and R Core Team 2018), which models spatial extremes and provides maximum
likelihood estimation, Bayesian hierarchical and copula modeling, or the package fExtremes
(Wuertz and many others 2017) for financial purposes using functions from the packages evd
(Stephenson and Ferro 2018), evir (Pfaff, McNeil, and Stephenson 2018) and others.
The copula package (Hofert and Mächler 2011; Kojadinovic and Yan 2010) provides tools for
exploring and modeling dependent data using copulas. The evd package provides both block
maxima and peak-over-threshold computations based on maximum likelihood estimation in
the univariate and bivariate cases. The evdbayes package (Stephenson and Ribatet 2014)
provides an extension of the evd package using Bayesian statistical methods for univariate
extreme value models. The package extRemes (Gilleland 2018) implements also univariate
estimation of block maxima and peak-over-threshold by maximum likelihood estimation allow-
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ing for non-stationarity. The package evir is based on fitting a generalized Pareto distribution
with the Hill estimator over a given threshold. The package lmom (Hosking 2017) is deal-
ing with L-moments to estimate the parameters of extreme value distributions and quantile
estimations for reliability or survival analysis. The package texmex (Southworth and Hef-
fernan 2018) provides statistical extreme value modeling of threshold excesses, maxima and
multivariate extremes, including maximum likelihood and Bayesian estimation of parameters.
In contrast to previous described packages, the extremefit package provides tools for modeling
heavy tail distributions without assuming a general parametric structure. The idea is to fit
a parametric Pareto model to the tail of the unknown distribution over some threshold.
The remaining part of the distribution is estimated nonparametrically and a data driven
algorithm for choosing the threshold is proposed in Section 3.2. We also provide a version of
this method for analyzing extreme values of a time series based on the nonparametric kernel
function estimation approach. A data driven choice of the bandwidth parameter is given in
Section 3.3. These estimators are studied in more details in Durrieu et al. (2015).

3. Extreme value prediction using a semi-parametric model

3.1. Model and estimator

We consider Ft(x) = P(X ≤ x|T = t) the conditional distribution of a random variable X
given a time covariate T = t, where x ∈ [x0,∞) and t ∈ [0, Tmax]. We observe independent
random variables Xt1 , . . . , Xtn associated to a sequence of times 0 ≤ t1 < . . . < tn ≤ Tmax,
such that for each ti, the random variable Xti has the distribution function Fti . The purpose
of the extremefit package is to provide a pointwise estimation of the tail probability St (x) =
1 − Ft (x) and the extreme p quantile F−1

t (p) functions for any t ∈ [0, Tmax], given x > x0
and p ∈ (0, 1). We assume that Ft is in the domain of attraction of the Fréchet distribution.
The idea is to adjust, for some τ ≥ x0, the excess distribution function

Ft,τ (x) = 1− 1− Ft (x)
1− Ft (τ) , x ∈ [τ,∞) (1)

by a Pareto distribution:

Gτ,θ (x) = 1−
(
x

τ

)− 1
θ

, x ∈ [τ,∞), (2)

where θ > 0 and τ ≥ x0 an unknown threshold, depending on t. The justification of this
approach is given by the Fisher-Tippett-Gnedenko theorem (Beirlant et al. 2004, Theorem
2.1) which states that Ft is in the domain of attraction of the Fréchet distribution if and only
if 1 − Ft,τ (τx) → x−1/θ as τ → ∞. This consideration is based on the peak-over-threshold
(POT) approach (Beirlant et al. 2004). We consider the semi-parametric model defined by:

Ft,τ,θ (x) =
{

Ft (x) if x ∈ [x0, τ ],
1− (1− Ft (τ)) (1−Gτ,θ (x)) if x > τ,

(3)

where τ ≥ x0 is the threshold parameter. We propose in the sequel how to estimate Ft and
θ which are unknown in (3).
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The estimator of Ft(x) is taken as the weighted empirical distribution given by

F̂t,h (x) = 1∑n
j=1Wt,h(tj)

n∑
i=1

Wt,h(ti)1{Xti≤x}, (4)

where, for i = 1, . . . , n, Wt,h(ti) = K
(
ti−t
h

)
are the weights and K(·) is a kernel function

assumed to be continuous, non-negative, symmetric with support on the real line such that
K(x) ≤ 1, and h > 0 is a bandwidth.
By maximizing the weighted quasi-log-likelihood function (see Durrieu et al. 2015; Staniswalis
1989; Loader 2006)

Lt,h(τ, θ) =
n∑
i=1

Wt,h(ti) log dFt,τ,θ
dx

(Xti) (5)

with respect to θ, we obtain the estimator

θ̂t,h,τ = 1
n̂t,h,τ

n∑
i=1

Wt,h(ti)1{Xti>τ} log
(
Xti

τ

)
, (6)

where n̂t,h,τ =
∑n
i=1Wt,h(ti)1{Xti>τ} is the weighted number of observations over the thresh-

old τ .
Plugging-in (4) and (6) in the semi-parametric model (3), we obtain:

F̂t,h,τ (x) =

 F̂t,h (x) if x ∈ [x0, τ ],
1−

(
1− F̂t,h (τ)

)(
1−G

τ,θ̂t,h,τ
(x)
)

if x > τ.
(7)

For any p ∈ (0, 1), the estimator of the p quantile of Xt is defined by

q̂p(t, h) =

 F̂−1
t,h (p) if p < p̂τ ,

τ
(

1−p̂τ
1−p

)θ̂t,h,τ otherwise,
(8)

where p̂τ = F̂t,h (τ).

3.2. Selection of the threshold

The determination of the threshold τ in model (3) is based on a testing procedure which is a
goodness-of-fit test for the parametric-based part of the model. At each step of the procedure,
the tail adjustment to a Pareto distribution is tested based on k upper statistics. If it is not
rejected, the number k of upper statistics is increased and the tail adjustment is tested again
until it is rejected. If the test rejects the parametric tail fit from the very beginning, the Pareto
tail adjustment is not significant. On the other hand, if all the tests accept the parametric
Pareto fit then the underlying distribution Ft,τ,θ follows a Pareto distribution Gτ,θ. The
critical value denoted by D depends on the kernel choice and is determined by Monte-Carlo
simulation, using the CriticalValue function of the package.
In Table 1, we display the critical values using CriticalValue obtained for several kernel
functions.
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Kernel D K(x)
Biweight 6.9 15

16(1− x2)21|x|≤1

Epanechnikov 5.8 3
4(1− x2)1|x|≤1

Rectangular 9.6 1|x|≤1

Triangular 6.6 (1− |x|)1|x|≤1

Truncated Gaussian, σ = 1/3 8.2 3√
2π exp(− (3x)2

2 )1|x|≤1

Truncated Gaussian, σ = 1 3.4 1√
2π exp

(
−x2

2

)
1|x|≤1

Table 1: Critical values associated with kernel functions. The Gaussian kernel with standard
deviation 1/3 is approximated by the truncated Gaussian kernel 1√

2πσ exp
(
− x2

2σ2

)
1|x|≤1 with

σ = 1/3.

The default values of the parameters in the algorithm yielded satisfying estimation results
in a simulation study without being time-consuming even for large data sets. The choice of
these tuning parameters is explained in Durrieu et al. (2015).
The following commands compute the critical value D for the truncated Gaussian kernel with
σ = 1 (default value) and display the empirical distribution function of the goodness-of-fit test
statistic which determines the threshold τ . The parameters n and NMC define respectively
the sample size and the number of Monte-Carlo simulated samples.

R> library("extremefit")
R> set.seed(3110)
R> n <- 1000
R> NMC <- 5000
R> CriticalValue(NMC, n, TruncGauss.kernel, prob = 0.99, plot = TRUE)

[1] 3.403709

For a given t, the function hill.adapt allows a data driven choice of the threshold τ and the
estimation of θt.

3.3. Selection of the bandwidth h

We determine the bandwidth h by cross-validation from a sequence of the form hl = aql,

l = 0, . . . ,Mh with q = exp
(

log b−log a
Mh

)
, where a is the minimum bandwidth of the sequence,

b is the maximum bandwidth of the sequence and Mh is the length of the sequence. The
choice is performed globally on the grid Tgrid = {t1, . . . , tK} of points ti ∈ [0, Tmax], where
the number K of the points on the grid is defined by the user. The choice K = n is possible
but can be time consuming for large samples. We recommend to use a fraction of n.
We choose hcv by minimizing in hm, m = 1, . . . ,Mh the cross-validation function

CV (hm, pcv) = 1
Mhcard(Tgrid)

∑
hl

∑
ti∈Tgrid

∣∣∣∣∣∣log q̂
(−i)
pcv (ti, hm)
F̂−1
ti,hl

(pcv)

∣∣∣∣∣∣ , (9)

where F̂−1
ti,hl

(pcv) is the empirical quantile from the observations in the window [ti−hl, ti+hl],
q̂

(−i)
pcv (ti, hm) is the quantile estimator inside the window [ti− hm, ti + hm] defined by (8) with
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Figure 1: Empirical distribution function of the test statistic for the truncated Gaussian
kernel with NMC = 1000 Monte-Carlo samples of size n = 500. The vertical dashed line
represents the critical value (D = 3.4) corresponding to the 0.99-empirical quantile of the test
statistic.

the observation Xti removed and τ being the adaptive threshold given by the remaining
observations inside the window [ti − hm, ti + hm]. The function bandwidth.CV selects the
bandwidth h by cross-validation.

4. Package presentation on simulated data
In this section, we demonstrate the extremefit package by applying it to two simulated data
sets.
The following code displays the computation of the survival probabilities and quantiles using
the adaptive choice of the threshold provided by the hill.adapt function.

R> set.seed(5)
R> X <- abs(rcauchy(200))
R> n <- 100
R> HA <- hill.adapt(X)
R> predict(HA, newdata = c(3, 5, 7), type = "survival")$p

[1] 0.2037851 0.1137516 0.0774763

R> predict(HA, newdata = c(0.9, 0.99, 0.999, 0.9999), type = "quantile")$y

[1] 5.597522 42.084647 316.410998 2378.917884

A simple use of the method described in Section 3 is given by the following example. With
ti = i/n, we consider data Xt1 , . . . , Xtn generated by the Pareto change-point model defined
by

Ft(x) =
(
1− x−1/2θt

)
1x≤τ +

(
1− x−1/θtτ1/2θt

)
1x>τ , (10)
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where θt is a time varying parameter depending on t ∈ [0, 1] defined by θt = 0.5+0.25 sin(2πt)
and τ = 3 as described in Durrieu et al. (2015). We consider the sample size n = 50000. The
following commands generate one sample from model (10).

R> set.seed(5)
R> n <- 50000; tau <- 3
R> theta <- function(t){0.5 + 0.25 * sin(2 * pi * t)}
R> Ti <- 1:n / n; Theta <- theta(Ti)
R> X <- rparetoCP(n, a0 = 1 / (Theta * 2), a1 = 1 / Theta, x1 = tau)

The extremefit package provides the estimates of θt, qp(t, h) and Ft (x) for large values of
x particularly. We select the bandwidth hcv by minimizing the cross-validation function im-
plemented in bandwidth.CV. The weights are computed using the truncated Gaussian kernel
(σ = 1), which is implemented in TruncGauss.kernel. This kernel implies D = 3.4. To
select the bandwidth hcv, we define a grid of possible values of h as indicated in Section 3.3
with a = 0.005, b = 0.05 and Mh = 20. Moreover, we fix the parameter pcv = 0.99. The
parameter Tgrid defines a grid of t ∈ Tgrid to perform the cross-validation.

R> a <- 0.005; b <- 0.05; Mh <- 20
R> hl <- bandwidth.grid(a, b, Mh, type = "geometric")
R> Tgrid <- seq(0, 1, 0.02)
R> Hcv <- bandwidth.CV(X, Ti, Tgrid, hl, pcv = 0.99,
+ kernel = TruncGauss.kernel, CritVal = 3.4, plot = FALSE)
R> Hcv$h.cv

[1] 0.02727797

For each t ∈ Tgrid, we determine the data driven threshold τ and the estimates θ̂t,hcv ,τ using
the function hill.ts.

R> Tgrid <- seq(0, 1, 0.01)
R> hillTs <- hill.ts(X, Ti, Tgrid, h = Hcv$h.cv,
+ kernel = TruncGauss.kernel, CritVal = 3.4)

For each t ∈ Tgrid, we display θ̂t,hcv ,τ and the true value θt = 0.5 + 0.25 sin(2πt) in Figure 2.

R> plot(Tgrid, hillTs$Theta)
R> lines(Ti, Theta, col = "red")

The estimates of the quantiles and the survival probabilities are determined using the S3
method predict for ‘hill.ts’ objects. For instance the estimate of the p quantile F−1

t (p)
of order p = 0.99 and p = 0.999 are computed with the following R commands:

R> p <- c(0.99, 0.999)
R> PredQuant <- predict(hillTs, newdata = p, type = "quantile")

Figure 3 displays the true and the estimated quantiles of order p = 0.99 and p = 0.999 of the
Pareto change-point distribution defined by (10). The true quantiles can be accessed with
the qparetoCP function.
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Figure 2: Plot of the θt estimate θ̂t,hcv ,τ (black dots) and the true θt (red line) for each
t ∈ Tgrid.
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Figure 3: Plot of the true log quantiles F−1
t (p) with p = 0.99 (black line) and p = 0.999 (red

line) and the corresponding estimated quantiles with p = 0.99 (black dots) and p = 0.999
(black cross) as function of t ∈ Tgrid.

Figure 4: Plot of the true survival probabilities St(x) at x = 20 (black line) and x = 30
(red line) and the corresponding estimated survival probabilities at x = 20 (black dots) and
x = 30 (black cross) as function of t ∈ Tgrid.
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