Authors: | Sophie Achard, Irène Gannaz | ||||
Title: | Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave | ||||
Abstract: | Multivariate time series with long-dependence are observed in many applications such as finance, geophysics or neuroscience. Many packages provide estimation tools for univariate settings but few are addressing the problem of long-dependence estimation for multivariate settings. The package multiwave is providing efficient estimation procedures for multivariate time series. Two semi-parametric estimation methods of the long-memory exponents and long-run covariance matrix of time series are implemented. The first one is the Fourier-based estimation proposed by Shimotsu (2007) and the second one is a wavelet-based estimation described in Achard and Gannaz (2016). The objective of this paper is to provide an overview of the R package multiwave with its practical application perspectives. | ||||
Page views:: 2027. Submitted: 2016-11-25. Published: 2019-05-13. |
|||||
Paper: |
Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave
Download PDF
(Downloads: 755)
|
||||
Supplements: |
| ||||
DOI: |
10.18637/jss.v089.i06
|
![]() This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |