| Authors: | Canhong Wen, Aijun Zhang, Shijie Quan, Xueqin Wang | ||||
| Title: | BeSS: An R Package for Best Subset Selection in Linear, Logistic and Cox Proportional Hazards Models | ||||
| Abstract: | We introduce a new R package, BeSS, for solving the best subset selection problem in linear, logistic and Cox's proportional hazard (CoxPH) models. It utilizes a highly efficient active set algorithm based on primal and dual variables, and supports sequential and golden search strategies for best subset selection. We provide a C++ implementation of the algorithm using an Rcpp interface. We demonstrate through numerical experiments based on enormous simulation and real datasets that the new BeSS package has competitive performance compared to other R packages for best subset selection purposes. | ||||
|
Page views:: 2395. Submitted: 2017-06-30. Published: 2020-06-30. |
|||||
| Paper: |
BeSS: An R Package for Best Subset Selection in Linear, Logistic and Cox Proportional Hazards Models
Download PDF
(Downloads: 717)
|
||||
| Supplements: |
| ||||
| DOI: |
10.18637/jss.v094.i04
|
This work is licensed under the licenses Paper: Creative Commons Attribution 3.0 Unported License Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license. |