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Abstract

FamEvent is a comprehensive R package for simulating and modeling age-at-disease
onset in families carrying a rare gene mutation. The package can simulate complex family
data for variable time-to-event outcomes under three common family study designs (pop-
ulation, high-risk clinic and multi-stage) with various levels of missing genetic information
among family members. Residual familial correlation can be induced through the inclu-
sion of a frailty term or a second gene. Disease-gene carrier probabilities are evaluated
assuming Mendelian transmission or empirically from the data. When genetic informa-
tion on the disease gene is missing, an expectation-maximization algorithm is employed
to calculate the carrier probabilities. Penetrance model functions with ascertainment cor-
rection adapted to the sampling design provide age-specific cumulative disease risks by
sex, mutation status, and other covariates for simulated data as well as real data analysis.
Robust standard errors and 95% confidence intervals are available for these estimates.
Plots of pedigrees and penetrance functions based on the fitted model provide graphical
displays to evaluate and summarize the models.

Keywords: ascertainment correction, correlated time-to-event data, EM algorithm, family
study designs, mutation carrier probability, penetrance function estimation.

1. Introduction
Family-based studies are efficient study designs, commonly used for linkage (gene mapping)
and association (gene discovery) studies of both Mendelian and complex traits. Family-based
designs, unlike population-based designs of unrelated individuals, are robust to population
admixture and stratification that can distort disease-gene associations. Family-based design
is also a very valuable approach to identify and characterize new pathogenic variants involved
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in complex human diseases through next generation sequencing technologies. Assessing such
designs by simulation studies is an important aspect when planning a family study. We
provide here a user-friendly R (R Core Team 2021) package for the simulation and estimation
of time-to-event data under various family designs.
Nearly all of the currently available statistical software for time-to-event or age-at-onset data
is only suitable for data collected under a random sampling scheme for independent indi-
viduals. The “Survival Analysis” task view (Allignol and Latouche 2021) available on the
Comprehensive R Archive Network (CRAN) lists 255 CRAN packages related to survival
data, including packages for estimating survival and hazard functions, fitting regression mod-
els, fitting of more complex models such as multistate models, and simulation. One exception
is the coxme package (Therneau 2020) that can incorporate frailty terms to model family
time-to-event data as well as to estimate the effects of other fixed covariates within a semi-
parametric proportional hazards (PH) framework. However, it has functional limitations
compared with FamEvent (Choi, Kopciuk, He, and Briollais 2021): it does not simulate fam-
ily data for age-at-onset outcomes, it adopts only a Gaussian distribution for the random
effects, it does not provide age-dependent penetrance functions or various baseline hazard
functions that retain the PH assumption. It also does not address important sources of bias
including correction for non-random sampling and inferring missing genotypes and carrier
probabilities. Drawbacks shared by both packages include limitations to right-censored data
and the PH assumption. A specific shortcoming of FamEvent compared with the coxme pack-
age is its focus on fixed effects in the penetrance function estimation, so that mixed effects
models are not yet provided. Although both packages can model family age-at-onset data,
FamEvent provides substantially more functionality than the coxme package and corrects for
two important sources of bias – sampling of families and missing data.
No other R packages that model family data, such as gap (Zhao 2007, 2020) or pbatR (Hoff-
mann 2018), found in the Statistical Genetics task view (Montana 2021) provide function-
alities for age-at-onset outcomes. On the other hand, some simulation programs have been
proposed to simulate family or pedigree data, e.g., SimPed (Leal, Yan, and Müller-Myhsok
2005), SIMLA (Schmidt, Hauser, Martin, and Schmidt 2005), PBAT (Lange and Laird 2002),
SIMLINK (Boehnke 1986) – a comprehensive list is available at https://github.com/gaow/
genetic-analysis-software/ – but none of them can handle time-to-event outcomes. Our
R package FamEvent is therefore an original contribution that fills a gap in simulating com-
plex time-to-event data in the context of family designs and genetic studies. The simulated
data can mimic real data obtained in these types of family studies. In addition, the esti-
mation methods in FamEvent address important features for age-at-onset data from several
common family-based designs. Thus, FamEvent provides considerably more advantages with
few drawbacks all within one R package.
In the R package FamEvent, we provide methods to generate and model age-at-onset out-
comes for families that harbor a genetic mutation. We implement three common family-based
designs – population, high risk clinic and multi-stage designs – along with ascertainment cor-
rection for the estimation of age-dependent penetrance functions, specifically adapted to the
sampling scheme, using a prospective likelihood. We also handle missing genotype data
by providing mutation carrier probabilities for family members with missing genotypes and
estimating age-dependent penetrance functions via an expectation-maximization (EM) algo-
rithm. Plot methods are available for simulated family data and for fitted penetrance models,
respectively. To construct pedigree plots, we implemented a pedigree function and its plot
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method built on kinship2 (Sinnwell and Therneau 2020) into the plot.simfam function to
graphically display the pedigree structures of specified families with indication of the proband
and affection and mutation carrier statuses of all family members. When mutation carrier
status is missing, carrier probabilities can be displayed instead. Following penetrance model
estimation, the plot.penmodel function presents both parametric and non-parametric es-
timates and their confidence intervals for the penetrance functions specific to gender and
mutation status groups; parametric age-dependent penetrance curves are estimated from the
specified parametric penetrance model by using penmodel or penmodelEM functions and non-
parametric Kaplan-Meier estimates of the penetrance curves are obtained by implementing
the survfit function built on the survival package (Therneau 2021).
Our comprehensive R package that simulates and models family data will enable development
of methods to identify additional risk factors, adjust for interventions and produce unbiased
disease risk estimates. In Section 2 we describe the family-based study designs implemented
in FamEvent followed by details on the penetrance function and its estimation in Section 3.
Methodological details on ascertainment-corrected likelihoods, an EM algorithm, robust vari-
ance estimation and disease gene carrier probabilities are given in Section 4. Details on the
key functions from the FamEvent package are provided in Section 5 and four motivating ex-
amples, including a real data analysis, are given in Section 6. Concluding remarks are given
in Section 7.

2. Family-based study designs
Family-based designs are popular for studying heritable genetic diseases because high risk
disease genes are rare in the general population. Often multiple family members are carriers
of and affected by a disease gene, and can be identified from disease registries or high risk
disease clinics. The study designs for sampling family data considered in FamEvent include
population-based, clinic-based and two-stage sampling designs, as described in Table 1.
In population-based studies, an affected family member (proband) leads to selection of the
family into the study; the probands can be randomly sampled from the disease population
regardless of their mutation status (POP design) or from the diseased and mutation carrier
population (POP+ design). In clinic-based studies, the families are selected from high risk
disease clinics; selection of families is not only based on a single proband but involves other

Design Description and ascertainment criteria
POP Population-based design with affected probands whose mutation status can

be either carrier or non-carrier.
POP+ Population-based design with affected and mutation carrier probands.
CLI Clinic-based design that includes affected probands with at least one parent

and one sibling affected.
CLI+ Clinic-based design that includes affected and mutation carrier probands

with at least one parent and one sibling affected.
Two-stage Two-stage sampling design that includes random sampling of families in the

first stage and oversampling of high risk families in the second stage.

Table 1: Family-based study designs implemented in FamEvent package.
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affected family members (CLI design). The CLI design samples families with an affected
proband and at least two affected family members whereas the CLI+ design samples families
with an affected mutation carrier proband and at least two affected members. The two-stage
sampling is a popular sampling design method for oversampling high risks families, where the
high risk families are defined as the families with at least two affected members. In this design,
families are sampled in two stages: the first sampling stage is based on the population-based
study design and the second stage involves oversampling of high risk families.
For designing efficient studies, a two-stage family design can be used. In the first stage, case
patients (i.e., probands) are selected and asked about their family disease history and then
are stratified into different categories, e.g., high-, intermediate- and low-risks. In the second
stage, case patients and their relatives are subsampled with different sampling probabilities
that could depend on their risk category. For a fixed sample size, we can estimate the sampling
probability for each stratum that minimizes the variance of the estimate of the parameter
of interest. We illustrate a sample size determination for an optimal two-stage design in
Section 6.3.
Families identified based on any of these study designs are not representative of the general
population, since they tend to have higher disease risks from both genetic and non-genetic
factors. Selection of families via each study design can lead to biased disease risk estimates,
so adjustment for ascertainment is necessary. The ascertainment correction in the penetrance
estimation is provided in Section 4.1.

3. Penetrance models
The risks of diseases arising from identified single or multiple genes often vary in the age
at onset and are associated with individuals’ gender and mutation status, where the age-
dependent disease risk is referred to as the penetrance. Penetrance in our R package is
estimated using the cumulative distribution function given the age and gender of the individual
for the disease or phenotypes associated with the gene of interest. A number of factors can
impact penetrance such as mutation type, epigenetic factors, gender, modifier genes, etc.
(Shawky 2014).
Parametric hazard regression models are implemented in penetrance studies as they can relate
covariates, including genetic factors and gender, to the age-at-onset outcome. We first describe
proportional hazard models, the most popular model for time-to-event data, which assumes no
additional familial variations given the inherited disease gene. Additional variations to induce
familial correlation due to unobserved genetic or environmental risk factors are modeled using
two approaches: shared frailty model and two-gene model.

Proportional hazard models

Flexible functional forms are adopted for the baseline hazard function that retains the PH
assumption and that also makes ascertainment correction easier.
The PH regression model with a baseline hazard h0(t) that relates an individual’s mutation
status G and other measured covariates X to the age-at-disease onset can be expressed as
follows:

h(t;G,X) = h0(t)eβ>XX+βGG ,
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Distribution Hazard h(t) Cumulative hazard H(t)
Weibull ρλ(λt)ρ−1 (λt)ρ λ > 0 , ρ > 0
Log-logistic ρλ(λt)ρ−1

1+(λt)ρ log{1 + (λt)ρ} λ > 0 , ρ > 0
Log-normal φ{(log t−λ)/ρ}/(ρt)

Φ{−(log t−λ)/ρ} − log
{

Φ(− log t−λ
ρ )

}
−∞ < λ <∞ , ρ > 0

Gompertz λeρt λ
ρ (eρt − 1) λ > 0 , ρ > 0

Gamma f(t;λ, ρ)/S(t;λ, ρ) − logS(t;λ, ρ) λ > 0 , ρ > 0
Log-Burr ρλη(λt)ρ−1

η+(λt)ρ η log{1 + (λt)ρ/η} λ > 0 , ρ > 0 , η > 0
Piecewise const. λi for t ∈ [τj−1, τj)

∑J
j=1 λj∆j(t) λj > 0 , j = 1, . . . , J

Table 2: Possible choices of baseline hazard functions. f(t;λ, ρ) = λ(λt)ρ−1e−λt/Γ(ρ) is the
density of gamma distribution; S(t;λ, ρ) = 1−

∫ t
0 f(x;λ, ρ)dx is the survival function of gamma

distribution; φ and Φ are pdf and CDF of the standard normal distribution, respectively; for
the piecewise constant hazard, 0 = τ0 < τ1 < · · · < τJ =∞, ∆j(t) = 0 if t < τj−1, t− τj−1 if
τj−1 ≤ t < τj , or τj − τj−1 if t ≥ τj , j = 1, . . . , J .

where βX is the vector of regression coefficients for measured covariates X and βG is the
regression coefficient for the genetic variable G. This PH regression model is used to estimate
the probabilities of disease onset at age t via its cumulative distribution function (CDF)

P (T ≤ t;G,X) =
∫ t

0
h(s;G,X) exp

{
−
∫ s

0
h(v;G,X)dv

}
ds

= 1− S(t;G,X) ,

where S(t;G,X) = exp
{
−
∫ t

0 h(v;G,X)dv
}
is the survival function at age at disease onset t.

Penetrance functions for variable age at disease onset are based on this CDF, which conditions
on measured covariates including mutation status and gender (Wijsman 2005).
The baseline hazard h0(t) is usually unspecified in PH models for evaluating covariate effects.
For the purpose of estimating survival probabilities, a parametric assumption of the h0(t)
is made. The possible choices for the parametric baseline hazard distribution are Weibull,
log-logistic, log-normal, Gompertz, gamma, and more flexible distributions, including the
log-Burr and a piecewise constant baseline. The generalized log-Burr distribution allows a
flexible baseline that includes the Weibull model (η → ∞) or the log-logistic model (η = 1)
as special cases (Lawless 2003; Kopciuk et al. 2009). The Weibull model is quite flexible but
does have a monotonic functional form of the hazard whereas the log-logistic specification
does not. The hazard and cumulative hazard functions are summarized in Table 2.

Shared frailty models

The shared frailty model is used in conjunction with the PH model, where the frailty term
acts multiplicatively on the baseline hazard function to describe the unknown common risks
shared within family.
Let Tfi denote the age at disease onset for individual i in family f and Zf > 0 be the frailty
shared within family f . The shared frailty models can be expressed as:

h(tfi|Zf , Gfi,Xfi) = Zfh0(tfi) exp(β>XXfi + βGGfi), (1)
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Distribution Laplace transform L(s)
Gamma (1 + s/k)−k k > 0
Lognormal

∫∞
−∞ exp(−sex)φ(x; k)dx k > 0

Table 3: Possible choices of frailty distributions for familial correlation. φ(x; k) is the density
function of the normal distribution with mean 0 and variance k.

where h0(tfi) is the baseline hazard function and Xfi is a vector of covariates for individual
i in family f and Gfi is a genetic covariate indicating carrier status of a mutated gene.
As the frailty is an unknown quantity, the penetrance function is obtained by integrating
over the frailty distribution, G(z), where the indexes i and f are dropped for simplicity of
notation,

P (T ≤ t|X, G) = 1−
∫ ∞

0
exp

{
−
∫ t

0
h(v; z,X, G)dv

}
dG(z)

= 1− L
{
H0(t) exp(β>XX + βGG)

}
,

where L(s) is the Laplace transform of the frailty distribution, H0(t) =
∫ t

0 h0(v)dv is the
cumulative baseline hazard function and X and G are their covariates and mutation status
of a gene, respectively.
The penetrance function is determined by the choice of baseline hazard and frailty distri-
butions with given covariate values and regression coefficients. The possible choices of the
baseline functions and the frailty distributions and their Laplace transforms are listed in Ta-
bles 2 and 3, respectively. For example, if Weibull baseline and gamma frailty are assumed,
the penetrance function can be obtained as

1−
{

1 + (λt)ρ exp(β>XX + βGG)
κ

}−κ
.

Two-gene models
In the two-gene model, we suppose that in addition to a major gene, G1, families share a
second gene, G2, that induces familial correlation. G2 is considered as a covariate, that acts
multiplicatively on the baseline hazard, but is completely unobserved. The two-gene model
can be written, dropping indexes i and f , as:

h(t|X, G1, G2) = h0(t) exp(β>XX + βG1G1 + βG2G2),

where G1 and G2, respectively, indicate carrier (= 1) or non-carrier (= 0) status of the major
and second genes.
Similarly, the penetrance function for the two-gene model is obtained depending on the choice
of hazard function and the status of the second gene,

1− exp{−H0(t) exp(β>XX + βG1G1 + βG2G2)}.

However, as the second gene G2 is unobserved, the penetrance functions can be obtained as
a weighted sum over the two possible values of the second gene status.

1−
∑

G2={0,1}
exp{−H0(t) exp(β>XX + βG1G1 + βG2G2)}p(G2),
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where p(G2) is the probability of the second gene status, which is determined by the assumed
allele frequency, and G2 takes values of 1 or 0, representing carrier or non-carrier, respectively.

4. Methods

4.1. Ascertainment correction

Assuming, without loss of generality, that the affected family member (proband) who led to
selection of the family into the study is a disease gene carrier, then ascertainment correction
for the selection process takes one of two forms. If the proband is randomly sampled from
the population (POP or POP+ design), say through a disease registry, then ascertainment
correction depends only on this individual. If the proband is selected from a high risk disease
clinic (CLI or CLI+ design), then ascertainment correction involves other, possibly affected
family members. In the prospective likelihood method, the ascertainment correction is based
solely on the probability of individuals being affected before their age at examination (Choi,
Kopciuk, and Briollais 2008).
For family f of size nf , we define Df = (Df1 , . . . , Dfnf

), Gf = (Gf1 , . . . , Gfnf ) and Xf =
(Xf1 , . . . , Xfnf

) as the vector forms that represent their phenotypes (disease outcomes), geno-
types and covariates, respectively. The contribution of family f to the ascertainment-corrected
prospective likelihood is

Lf = P (Df |Gf , Xf , Af ) = P (Af |Df , Gf , Xf )P (Df |Gf , Xf )
P (Af |Gf , Xf ) ∝ P (Df |Gf , Xf )

P (Af |Gf , Xf ) ,

where we assume that P (Af |Df , Gf , Xf ) is 1 if family f qualifies for ascertainment (Af ),
and 0 otherwise. The numerator, regardless of family study design, assumes conditional
independence of family members’ phenotypes given their genotypes, and is specified as

P (Df |Gf , Xf ) =
nf∏
i=1

P (Dfi |Gfi , Xfi) =
nf∏
i=1

h(tfi |Gfi , Xfi)δfiS(tfi |Gfi , Xfi) .

Ascertainment correction of family f from the population-based designs (POP or POP+)
depends on the proband (p) in family f being affected before his or her current age at exam-
ination (afp), and hence, the denominator P (Af |Gf , Xf ) can be written as

P (Af |Gf , Xf ) = P (T < afp |Gfp , Xfp),

where Gfp and Xfp represents the proband’s genotype and observed covariates in family f .
For the clinic-based designs (CLI or CLI+), the ascertainment correction is determined by
three additional family members – another affected sibling and at least one affected parent.
By the conditional independence assumption of disease status given genotype information,
the denominator for the clinic-based designs is given by

P (Af |Gf , Xf ) = P (T < afp |Gfp , Xfp)P (T < afs |Gfs , Xfs)×
{1− P (T ≥ aff |Gff , Xff )P (T ≥ afm |Gfm , Xfm)},

where indices fp, fs, ff , fm represent the proband, proband’s sibling, father and mother in
family f , respectively.
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In two-stage sampling, the ascertainment correction is based on the sampling weights derived
from an inverse probability of sampling families, which are implemented into the compos-
ite likelihood as a weighted product of ascertainment-corrected likelihoods corresponding to
each family (Choi and Briollais 2011; Lawless, Kalbfleisch, and Wild 1999). The likelihood
contribution of n families sampled from two-stage sampling is written as

L =
n∏
f=1

L
wf
f ,

where Lf is the ascertainment-corrected likelihood for family f by a population-based design
at the first stage and wf represents the sampling weight for family f at the second stage, which
is obtained by the inverse probability of sampling family from the two stages of sampling.

4.2. EM algorithm for missing genotype data

In addition to ascertainment or selection correction, family members with phenotype (disease
outcome) but no genotype information can be included via an EM algorithm. Given their
family’s observed genotypes and phenotypes, the probabilities of an individual’s possible
genotypes are computed in the expectation or E-step. In the maximization or M-step, the
model parameters are estimated by maximizing a weighted log-likelihood. The conditional
genotype probabilities found in the E-step form these weights.
The vector of genetic covariates in family f , Gf , is partitioned into observed genotypes Gof
and missing genotypes Gmf . Both the measured covariates Xf and phenotypes Df are fully
observed, with the phenotypes subject to right censoring. Then the single-iteration EM is
implemented as follows:

E-step. Compute the possible genotype probabilities for each individual i with missing
genotype in family f as

wgfi = P (Gfi = gfi |Df , Xf , G
o
f ) ,

where gfi can take the value 1 or 0 to represent a carrier or non-carrier of the mutated gene,
respectively, and their probabilities P (Gfi = 1|Df , Xf , G

o
f ) and P (Gfi = 0|Df , Xf , G

o
f ) can

be obtained empirically from the family data or analytically from the assumed penetrance
model. The empirical carrier probabilities (non-carrier probabilities just as the complemen-
tary probability) can be obtained with observed genotype and phenotype information for each
subset of the data defined by Df , Xf , G

o
f after excluding the probands. Based on the pene-

trance model, these carrier probabilities are obtained as the posterior distribution with the
assumed or estimated allele frequency (as shown in Section 4.4). For individuals with known
carrier status, their weights are one. Then, the conditional expectation of the log-likelihood
function of the complete data given the observed data (D,X,Go) can be written as a weighted
log-likelihood which has the form

Eθ[`(θ)|D,X,Go] =
n∑
f

nf∑
i

∑
gfi∈Gfi

wgfi logP (Dfi |Xfi , Gfi = gfi , Af ) ,

where Gfi is the set of all possible genotypes for individual i in family f .

M-step. Maximize the weighted log likelihood to obtain the parameter estimates in the
model.
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No iteration between the E- and M-steps is necessary when the empirical carrier probability
is used as the possible genotype probabilities only need to be calculated once in the E-step.
Otherwise, the EM steps iterate until convergence.

4.3. Robust variance estimation

To account for familial correlation, as our penetrance model assumes conditional independence
of the individuals in the family, the robust variance estimator of the parameter estimates θ̂
is provided in a ‘sandwich’ form (White 1982) as

VAR(θ̂) = I0(θ)−1

∑
f

(
∂`f (θ)
∂θ

)(
∂`f (θ)
∂θ

)> I0(θ)−1,

where I0(θ) is the observed information matrix obtained from

I0(θ) = − ∂
2`(θ)

∂θ∂θ>
,

`f (θ) is the ascertainment-corrected log-likelihood for family f and `(θ) =
∑
f `f (θ).

The robust variance-covariance matrix then can be consistently estimated by evaluating the
VAR(θ̂) at the maximum likelihood estimates.

4.4. Disease gene carrier probabilities

Mutation carrier probabilities for relatives with missing genotype information can be esti-
mated using observed genotypes within the families or alternatively, with the addition of
phenotype information. The carrier probability can be calculated based on only observed
genotypes using Mendelian transmission probabilities or using data-driven probabilities em-
pirically calculated from the aggregated data for each subgroup based on relation, proband’s
mutation status, mode of inheritance, disease status and disease-allele frequency in the popu-
lation. It can be also obtained based on both observed genotype and phenotype information
using the penetrance model fit.
The carrier probability for individual i conditional on the observed phenotype and carrier
status of his or her family members is calculated by

P (Gi = 1|Di, G
oo) = P (Di|Gi = 1)P (Gi = 1|Go)

P (Di|Gi = 1)P (Gi = 1|Go) + P (Di|Gi = 0)P (Gi = 0|Go) ,

where Gi indicates the carrier status of individual i and Go represents the observed carrier
status in his or her family members, Di represents the observed phenotype (ti; δi) of individual
i in terms of age at disease onset ti and disease status indicator δi (1 for affected individuals
and 0 for unaffected individuals).

5. Package description
The R package FamEvent is available for download from CRAN. This package will appeal to
users who want to simulate complex pedigree data for age-at-onset phenotypes for families
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Functions Description
carrierprob Computes the carrier probability from observed genotype or phenotype data

or from the penetrance model fit.
fampower Computes the power of detecting genetic effect in the penetrance model

based on a family-based simulation study.
penetrance Estimates the cumulative disease risks (penetrances) and confidence intervals

at given age(s) based on the fitted penetrance model.
penmodel Fits penetrance models for complete family data.
penmodelEM Fits penetrance models for family data with missing genetic information.
penplot Plots the penetrance functions given the values of baseline parameters and

regression coefficients and choices of baseline and frailty distributions.
simfam Simulates family data.

Table 4: Description of main functions in FamEvent package.

who carry a major gene and/or users who want to estimate disease gene penetrance func-
tions using their own family data with correction for selection bias and missing genotype
information. Plotting functions permit visual examination of individual pedigrees, the true
penetrance functions and the estimated penetrance functions based on the fitted model. Mu-
tation carrier probabilities for individuals with missing genotype information are estimated
using information on family members genotypes and possibly phenotypes. The main func-
tions used in FamEvent are summarized in Table 4 and their usage in practice is described in
this section.
The package in R is installed and loaded in the usual way:

R> install.packages("FamEvent")
R> library("FamEvent")

5.1. Penetrance curves

The function penplot enables researchers to see the shape of the penetrance function and to
choose appropriate penetrance functions for checking the performance of a penetrance model
or planing a simulation study.
The shape of penetrance functions is determined by choosing the baseline hazard distribution
(base.dist) with their parameter values (base.parms), the regression coefficient values for
gender and major gene (vbeta) and the source of residual familial correlation (variation).
Familial correlation can be induced by either a shared frailty (variation = "frailty")
or a second gene shared within the family (variation = "secondgene"). The default is
"none" implying that event times are independent given major genotypes. When variation
= "frailty", the choice of the frailty distribution (frailty.dist) and the variance of the
frailty distribution (depend) should be specified.
For example, the following function call will display the penetrance functions and return
penetrance estimates by age 70 specific to gender and mutation-status, based on the Weibull
baseline distribution with scale parameter, λ, set to 0.01, shape parameter, ρ, set to 3 and
familial correlation induced by a shared frailty within each family which follows a gamma
distribution with mean 1 and variance 1 that was specified by the argument depend = 1. We
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can also specify the minimum age of disease onset agemin for the penetrance function to start.

R> penplot(base.parms = c(0.01, 3), vbeta = c(-1.3, 2.35),
+ base.dist = "Weibull", frailty.dist = "gamma", variation = "frailty",
+ depend = 1, agemin = 20)

Call: gamma frailty with Weibull baseline
Penetrance by age 70:

male-carrier female-carrier male-noncarr female-noncarr
0.26319239 0.56723000 0.03294418 0.11111111

5.2. Family data generation

The simfam function generates data for all family members, including their age, gender, family
relation, disease gene mutation status, and times to an event, based on the penetrance model
associated with mutated genes and gender as we described in Section 3. The principles of
generating family data were described in (Choi et al. 2008). Each family consists of three
generations – two parents and their offspring whose number ranges in size from 2–5, one of
whom is the proband. Each offspring has a spouse and their children whose number ranges in
size from 2–5. The age difference between the second and third generations is assumed to be
20 years on average. Given the study design, the proband’s mutation status is generated first
and their age at onset generated conditional on the mutation status. Other family members’
mutation statuses are determined based on the proband’s status and then their ages at onset
are generated. Finally, their affection status is determined if their ages at onset are before
their current age. This procedure is repeated until the ascertainment criteria specified by the
study design is satisfied.
The standard code with default values for generating family data is

simfam(N.fam, design = "pop", variation = "none", interaction = FALSE,
base.dist = "Weibull", frailty.dist = NULL, base.parms, vbeta,
depend = NULL, allelefreq = c(0.02, 0.2), dominant.m = TRUE,
dominant.s = TRUE, mrate = 0, hr = 0, probandage = c(45, 2),
agemin = 20, agemax = 100)

With the simfam function, family data can be simulated under various family study designs
(design) listed in Table 1. For the two-stage design (design = "twostage"), the propor-
tion of high risk families to be included in the sample should be specified by argument hr.
Simulating families under the clinic-based ("cli" or "cli+") or the two-stage designs can
be slower since the ascertainment criteria for the high risk families are difficult to meet in
such settings. In particular, the "cli" design could be slower than the "cli+" design since
the proband’s mutation status is randomly selected from a disease population in the "cli"
design, so his or her family members are less likely to be mutation carriers and to be affected,
whereas when the probands are all mutation carriers ("cli+"), their family members have
higher chance to be carriers and affected by disease. Therefore, the "cli" design requires
more iterations to sample high risk families than the "cli+" design. All simulations that
include variation = "frailty" could be slower in order to generate families with specific
familial correlations induced by the chosen frailty distribution.



12 FamEvent: Generating and Modeling Time-to-Event Data in Family Designs in R

Argument Description
N.fam Number of families to generate.
design Family-based study design. Possible choices are "pop", "pop+", "cli",

"cli+", "twostage".
variation Source of familial correlation. Possible choices are "frailty" for frailty

shared within families, "secondgene" for second gene variation, "none"
for no familial correlation given major genotypes.

interaction Logical; if TRUE, allows the interaction between gender and major gene.
depend Variance of the frailty distribution. Dependence within families increases

with depend value.
base.dist Choice of baseline hazard distribution. Possible choices are "Weibull",

"loglogistic", "Gompertz", "lognormal", "gamma", "logBurr".
base.parms Vector of baseline parameter values.
vbeta Vector of regression coefficients for gender, major gene, interaction be-

tween gender and major gene (if interaction = TRUE), and second gene
(if variation = "secondgene").

frailty.dist Choice of frailty distribution. Possible choices are "gamma", "lognormal"
or NULL.

mrate Proportion of missing genotypes; value between 0 and 1.
hr Proportion of high risk families, which include at least two affected mem-

bers, to be sampled from the two stage sampling (design = "twostage");
value should lie between 0 and 1.

probandage Vector of mean and standard deviation of the proband’s age.
agemin Minimum age of disease onset.
agemax Maximum age of disease onset.

Table 5: Description of arguments for simfam function.

Popular hazard function distributions – such as Weibull, loglogistic, Gompertz, lognormal,
gamma, or logBurr – are available to generate the baseline hazard distribution. Residual fa-
milial correlation can be created by incorporating a frailty term (variation = "frailty")
with a choice of lognormal or gamma distribution or via a two-gene model (variation =
"secondgene"). For the major and possibly second gene, users can specify if the genetic
model is dominant or recessive (dominant.m for the major gene and dominant.s for the sec-
ond gene) and their population allele frequencies (allelefreq) . Additional parameter option
values can fix the proportion of missing genotypes (mrate) and the minimum (agemin) and
maximum (agemax) age of disease onset.

Details of selected arguments for the simfam function are described in Table 5.

The following example shows the use of simfam function to generate 200 families using
set.seed(4321) from the study design "pop+", where families are sampled based on af-
fected and mutation carrier probands. The ages to disease onset are assumed to follow a
Weibull baseline hazard distribution with the effects of gender and mutation status set at
βs = −1.13, βg = 2.35, respectively. The familial correlation is due to a shared frailty follow-
ing a gamma distribution with mean 1 and variance 1. The allele frequency of the major gene
is assumed to be 0.02.
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R> fam <- simfam(N.fam = 200, design = "pop+", variation = "frailty",
+ base.dist = "Weibull", frailty.dist = "gamma", depend = 1,
+ base.parms = c(0.01, 3), vbeta = c(-1.13, 2.35), allelefreq = 0.02,
+ agemin = 20)

Below we present the first seven out of 18 rows of the simulated data for the first family, which
includes the founders, probands, ages at disease onset, gene carriers assuming a dominant
model as well as other variables needed for estimation.

R> head(fam[fam$famID == 1, ], n = 7)

famID indID gender motherID fatherID proband generation majorgene
1 1 1 1 0 0 0 1 2
2 1 2 0 0 0 0 1 2
3 1 3 0 2 1 1 2 2
4 1 4 1 0 0 0 0 3
5 1 9 0 3 4 0 3 2
6 1 10 1 3 4 0 3 3
7 1 11 1 3 4 0 3 3

secondgene ageonset currentage time status mgene relation fsize
1 0 103.76925 69.19250 69.19250 0 1 4 18
2 0 64.88982 67.31119 64.88982 1 1 4 18
3 0 45.84891 47.57119 45.84891 1 1 1 18
4 0 269.71990 47.37403 47.37403 0 0 6 18
5 0 69.78355 27.80081 27.80081 0 1 3 18
6 0 192.09392 25.34148 25.34148 0 0 3 18
7 0 124.54791 23.42188 23.42188 0 0 3 18

naff weight
1 2 1
2 2 1
3 2 1
4 2 1
5 2 1
6 2 1
7 2 1

The data frame includes columns famID, indID, motherID, fatherID for family, individual,
mother and father IDs, respectively; generation which takes values 1, 2, 3 or 0, where 0
indicates spouses; and gender indicating males (= 1) and females (= 0); majorgene indicates
the genotype status of a major gene of interest, denoting 1 for AA, 2 for Aa and 3 for aa,
where A is a disease-causing allele; ageonset is the age of disease onset generated by the
penetrance model shown in Equation 1. However, we do not observe ageonset beyond the
current age (currentage), so time takes the minimum value of ageonset and currentage
and status indicates disease status at current age, i.e., 1 if the disease is observed by current
age and 0 otherwise; mgene records the mutated gene carrier status derived from the major
gene genotype, indicating 1 if carrier of disease gene, 0 otherwise; relation represents the
family members’ relationship with the proband as described in Table 6.
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Relation Description
1 Proband (self)
2 Brother or sister
3 Son or daughter
4 Parent
5 Nephew or niece
6 Spouse
7 Brother or sister in law

Table 6: Family relation code used in simulated data.

In addition, data include the family size fsize, the number of affected family members naff
and sampling weight weight for each family. For example, the family with famID = 1 has 18
members and includes only one affected individual in addition to the proband. The individual
with indID = 3 is the proband whose current age is 47 years old, he was affected (status
= 1) at age 47 and is a mutation carrier (mgene = 1) with genotype Aa (majorgene = 2).
Figure 1 also graphically displays the pedigree of this family, where the red colour indicates
the proband, right shading indicates mutation carriers, non-shading for non-carriers, left filled
symbol indicates affected by the disease and non-filled symbol for unaffected by the disease.
The output of simfam function is an object of class ‘simfam’. The ‘simfam’ class has
its own summary and plot methods: summary function prints the summary of generated
data and plot function provides the pedigree plots of specified families with indication of
family members’ affection status and mutation carrier status. Examining several individual
pedigrees is helpful for assessing the genetic transmission model, number of carriers and
affected individuals within the simulated families.

R> summary(fam)

Study design: pop+
Baseline distribution: Weibull
Frailty distribution: gamma
Number of families: 200
Average number of affected per family: 2.02
Average number of carriers per family: 5.88
Average family size: 15.27
Average age of onset for affected: 43.31
Sampling weights used: 1

R> plot(fam, famid = 1, pdf = TRUE, file = "pedigreeplot.pdf")

5.3. Penetrance model estimation

The penetrance model is estimated with either the penmodel function for complete genetic
data or the penmodelEM function in presence of missing genetic data using the EM algorithm.
These functions provide the model parameter estimates with their conventional standard
errors based on the Hessian matrix or robust standard errors based on the sandwich variance
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Figure 1: Pedigree plot generated by plot function for a selected family.

formula if robust = TRUE. The output of penmodel or penmodelEM is an object of class
‘penmodel’, which has a list with elements of model parameter estimates, their covariance
matrix, standard errors, (or robust covariance matrix, robust standard errors if robust =
TRUE is specified).
The corresponding program codes for fitting a proportional hazard model for complete or
missing genetic data are:

penmodel(formula, cluster = "famID", gvar = "mgene", parms, cuts = NULL,
data, design = "pop", base.dist = "Weibull", agemin = NULL, robust = FALSE)

penmodelEM(formula, cluster = "famID", gvar = "mgene", parms, cuts = NULL,
data, design = "pop", base.dist = "Weibull", agemin = NULL,
robust = FALSE, method = "data", mode = "dominant", q = 0.02)

Both functions take the formula expression as used in other regression models with time-to-
event data using the Surv function and covariates, name of the cluster variable (cluster),
name of the genetic variable (gvar), initial parameter values including baseline parameters
and regression coefficients (parms), family data set (data), as well as specification of the
family study design (design), baseline hazard distribution (base.dist) options, allowing
for the same or different choice of baseline hazard from the simulated data. In addition
to the options for base.dist listed in Table 5, base.dist = "piecewise" fits a piecewise
constant baseline hazard function with specified cuts that define the intervals where the
hazard function is constant. A prospective likelihood that corrects for ascertainment is used
with the type of correction depending on the family study design specified in the design
argument.
When imputation of missing genotype is needed, the penmodelEM function implements the
EM algorithm to estimate the disease gene carrier probabilities for family members who are



16 FamEvent: Generating and Modeling Time-to-Event Data in Family Designs in R

missing this key variable. Two methods are available: if sufficient genotype information is
available within every family, then carrier probabilities can be empirically calculated from
the aggregated data for each subgroup based on generation and proband’s mutation status
(method = "data") otherwise they can be calculated based on Mendelian transmission prob-
abilities by selecting method = "mendelian" with mode of inheritance (mode) specifying as
either "dominant" or "recessive" and the allele frequency (q) as a value between 0 and 1.
The output of penetrance model fit includes the parameter estimates, their variance-covariance
matrix, the corresponding standard errors (SEs), the log-likelihood and Akaike information
criterion (AIC) values at its maximum value. In addition, robust SEs and ‘sandwich’ variance-
covariance matrix are provided if robust = TRUE. Robust SEs could be smaller than the con-
ventional SEs when the sample sizes are small or a parameter is estimated from effectively few
non-zero covariate values (Fay and Graubard 2001). When sample sizes are small, the robust
SE can be biased downward and some particular techniques can be used to correct this bias
(see for example, Imbens and Kolesár (2016)). Conventional SEs could be considered instead
although we do not expect a large difference from the robust SE.
The ‘penmodel’ class has its own print, summary and plot methods. The summary method
returns and displays the model parameter estimates of transformed baseline parameters and
regression coefficients with their SEs (or robust SEs if robust = TRUE), t statistics and cor-
responding two-sided p values. The plot method produces a graph of estimated penetrance
functions for four subgroups by gender and mutation status in different colours along with
Kaplan-Meier curves from family data used for fitting the model excluding probands, in order
to naïvely correct for ascertainment. Thus, this plot displays both parametric and non-
parametric estimates of penetrances from the minimum to the maximum age at onset, along
with their 95% confidence intervals if conf.int = TRUE.
Continuing our example from Section 5.2, we fit the data set consisting of 200 families (data
= fam) to a penetrance model for the right censored time-to-event outcome, Surv(time,
status), with two covariates, gender and mgene, assumed a Weibull baseline hazard dis-
tribution and accounted for the family study design (design = "pop+") used to sample the
families. We specified the name of the cluster variable as cluster = "famID", the name
of genetic variable as gvar = "mgene" and the initial values of the baseline parameters, λ
and ρ, as well as the gender and mutation effects on the baseline hazard function as parms
= c(0.01, 3, -1.13, 2.35). The summary of the model fit is given below and the plot
function generates the penetrance curves shown in Figure 2.

R> fit <- penmodel(Surv(time, status) ~ gender + mgene, cluster = "famID",
+ gvar = "mgene", parms = c(0.01, 3, -1.13, 2.35), data = fam,
+ design = "pop+", base.dist = "Weibull", robust = TRUE)
R> summary(fit)

Estimates:
Estimate Std. Error Robust SE t value Pr(>|t|)

log(lambda) -4.345 0.06489 0.06177 -70.350 0.009049 **
log(rho) 1.066 0.04075 0.03813 27.947 0.022770 *
gender -1.003 0.14877 0.15130 -6.628 0.095336 .
mgene 2.085 0.17462 0.16008 13.023 0.048790 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 2: Penetrance curves estimated with ascertainment correction.

R> plot(fit, agemax = 80, conf.int = FALSE, add.KM = TRUE)

Estimates:
log(lambda) log(rho) gender mgene

-4.345359 1.065674 -1.002791 2.084711

Penetrance (%) by age 70:
male-carrier female-carrier male-noncarr female-noncarr

0.56770489 0.89833272 0.09902695 0.24742489

5.4. Age-specific penetrance estimation with confidence intervals

At given age(s) and fixed covariate values, the penetrance function provides penetrance es-
timates with 95% confidence intervals (CIs) and SEs of the penetrance estimates through
Monte Carlo (MC) simulations of the estimated penetrance model. Provided a model fit from
penmodel or penmodelEM, parameter estimates of both the transformed baseline parameters
and regression coefficients along with their variance-covariance matrix are used as the inputs
to a multivariate normal distribution. Based on these inputs, MC = n sets of parameters are
generated for given age(s) and fixed covariates and their corresponding penetrance estimates
calculated. For baseline parameter estimation, a log transformation is applied to both scale
and shape parameters (λ, ρ) for the Weibull, loglogistic, Gompertz, gamma baseline distribu-
tions, to (λ, ρ, η) for the log-Burr distribution and to the piecewise constant parameters for
a piecewise baseline hazard. But for the lognormal baseline distribution, the log transforma-
tion is applied only to ρ, not to λ, which represents the location parameter for the normally
distributed logarithm.
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Empirical estimates of the the 95% CIs at given age(s) are based on the 2.5th and 97.5th
percentiles of the penetrance functions estimated from the n simulated data values. The SE of
the penetrance estimate, also for given age(s), is calculated via the standard deviation of the
n simulated penetrance functions. Both the 95% CIs and SEs are obtained for fixed covariates
at the given age(s). For example, using the penetrance model fitted to the 200 families in
Section 5.3, the penetrance estimates by age 50, 60, and 70 for male mutation carriers fixed
= c(1, 1) can be obtained using 100 MC simulations (MC = 100) as follows:

R> penetrance(fit, fixed = c(1,1), age = c(50, 60, 70), CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 50 0.1733465 0.1363541 0.2124313 0.02027396
2 60 0.3551920 0.2853417 0.4259700 0.03598732
3 70 0.5677049 0.4681654 0.6560173 0.04815732

5.5. Carrier probability estimation

The carrierprob function estimates mutation carrier probabilities for relatives with missing
genotype information using observed genotypes within the families condition = "geno" or
alternatively, with the addition of phenotype information, using condition = "geno+pheno".
When condition = "geno", inputs for carrierprob include two methods of estimation:
method = "mendelian" uses Mendelian transmission probabilities or method = "data" uses
data-driven probabilities calculated from the aggregated data for each subgroup based on
relation, proband’s mutation status, mode of inheritance, disease status and disease-allele
frequency in the population. When condition = "geno+pheno", method = "model" should
be used to calculate the carrier probabilities based on both observed genotype and phenotype
information, where the penetrance model should be specified by fit obtained from either the
penmodel or penmodelEM functions.
The carrierprob function returns a data frame that includes the estimated carrier proba-
bilities, named carrp.geno or carrp.pheno, appended after the last column in the family
data set, indicating carrier probabilities based on observed genotypes only and those based
on both observed genotypes and phenotype, respectively.

6. Illustrating examples

6.1. Penetrance estimation in presence of missing genotype data

The presence of missing genotypes is a common issue in genetic studies. The R package
FamEvent can be used to generate and analyze family data with missing genotypes for the
major gene. For example, we can generate families with 30% of missing genotypes, assuming
a Weibull baseline function with scale and shape parameters of 0.01 and 3, βsex = 0.5 and
βgene = 2. Given the parameter values in the Weibull model, the function penplot displays
penetrance functions (not shown) and also returns the true penetrance values by age 70. In
our situation, those are 0.868, 0.708, 0.240, and 0.153 in male carriers, female carriers, male
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non-carriers, and female non-carriers, respectively. For this example, set.seed(4321) was
used.

R> fam <- simfam(N.fam = 300, design = "pop+", base.dist = "Weibull",
+ allelefreq = 0.02, base.parms = c(0.01, 3), vbeta = c(0.5, 2),
+ probandage = c(45, 2.5), agemin = 15, mrate = 0.3)
R> penplot(base.parms = c(0.01, 3), vbeta = c(0.5, 2),
+ base.dist = "Weibull", agemin = 15)

Call: Weibull baseline
Penetrance by age 70:

male-carrier female-carrier male-noncarr female-noncarr
0.8682518 0.7075186 0.2399006 0.1532713

For model fitting in the presence of missing genotypes, we can consider two approaches:
complete-case analysis and an EM algorithm as implemented in FamEvent. The complete-
case approach simply ignores the missing genotypes, i.e., considers only the subset of individ-
uals with complete information. Alternatively, the EM algorithm approach can infer missing
genotypes by computing the conditional probability of being carriers given the phenotype
information in the family (see Section 3.3). In FamEvent, the complete-case analysis is per-
formed with the penmodel function and the EM algorithm with the penmodelEM function.
The penetrance estimates by age 70 and their CIs and SEs for male and female carriers are
obtained with penetrance function. The command lines and output are:

R> fam0 <- fam[!is.na(fam$mgene), ]
R> fit0 <- penmodel(Surv(time, status) ~ gender + mgene, cluster = "famID",
+ gvar = "mgene", parms=c(0.01, 1, 0.5, 2), data = fam0, design = "pop+",
+ base.dist = "Weibull")
R> summary(fit0)

Estimates:
Estimate Std. Error t value Pr(>|t|)

log(lambda) -4.7264 0.06762 -69.897 0.009107 **
log(rho) 1.0854 0.03471 31.274 0.020349 *
gender 0.6189 0.12627 4.901 0.128125
mgene 2.3206 0.16534 14.036 0.045281 *

R> penetrance(fit0, fixed = c(1,1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fit0, fixed = c(0,1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.8945003 0.8375743 0.9331045 0.02447084

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.7021482 0.6284211 0.7860912 0.0388353
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Complete case EM algorithm
Parameter True value Estimate SE Estimate SE
βsex 0.5 0.46 0.13 0.38 0.11
βgene 2.0 2.06 0.16 2.17 0.13
Penetrance (%) by age 70
male carrier 86.83 85.46 2.87 85.64 2.29
female carrier 70.75 70.30 3.71 73.33 3.11

Table 7: The accuracy and precision of parameter and penetrance (%) estimates using com-
plete case analysis and the EM algorithm for 300 POP+ simulated families with 30% missing
genotypes.

R> fitEM <- penmodelEM(Surv(time, status) ~ gender + mgene,
+ cluster = "famID", gvar = "mgene", parms = c(0.01, 1, 0.5, 2),
+ data = fam, design = "pop+", base.dist = "Weibull",
+ method = "mendelian")
R> summary(fitEM)

Estimates:
Estimate Std. Error t value Pr(>|t|)

log(lambda) -4.6767 0.05429 -86.141 0.00739 **
log(rho) 1.0938 0.03142 34.812 0.01828 *
gender 0.6246 0.10890 5.736 0.10989
mgene 2.2165 0.13085 16.939 0.03754 *

R> penetrance(fitEM, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fitEM, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.9019908 0.8583819 0.9376345 0.02017367

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.7116887 0.6405922 0.7625834 0.03032378

The accuracy and precision of parameter and penetrance estimates for the two approaches
are summarized in Table 7. The estimates obtained from these two approaches are similar
since the missing genotypes were generated at random using the simfam function.

6.2. Sample size and power calculation

Sample size calculation is a critical task when designing a new family study. In penetrance
estimation studies, the goal is to collect enough families to detect a genetic relative risk
associated for a known mutation or genetic variant with a specified statistical power and/or
to estimate the penetrance function at a certain age in gene carriers with a certain precision.
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We can use our R package FamEvent to perform the sample size calculation in these two
situations.
For the first situation, we can construct the Wald test statistic as

W = (β̂ − β0)/ŜE(β̂) ∼ N (0, 1) under the null hypothesis,

where β̂ is the estimated log hazard ratio (HR) associated with a given mutation, β0 its value
under the null hypothesis (e.g., β0 = 0) and ŜE(β̂) is a standard error estimate of β̂. For
the one-sided test H0 : β ≤ β0 vs. H1 : β > β0, the power of the Wald test is defined as:
P (W > Z1−α) under the alternative hypothesis, where Z1−α is the (1 − α) quantile of the
standard normal distribution. The power function for β > β0 can then be obtained from the
asymptotic normality of the maximum likelihood estimator as

P
(
(β̂ − β + β − β0)/ŜE(β̂) > Z1−α

)
= P

(
(β̂ − β)/ŜE(β̂) > Z1−α − (β − β0)/ŜE(β̂)

)
= Φ

(
−Z1−α + (β − β0)/ŜE(β̂)

)
,

where Φ(.) the cumulative normal distribution.
We can then perform some simulations with FamEvent package to determine the number of
families needed to achieve a certain power. Since β and β0 are fixed, simulating different
family sizes will affect the standard error of β̂ and hence the power of the test. For example,
we simulated 50 families under the POP+ design, using a Weibull baseline function with
shape and scale parameters of 0.01 and 3, a gender effect with βgender = 1 (i.e., HR = 2.72),
a dominant model for the major gene with allele frequency of 0.02 for the minor allele and
βgene = 1 (HR = 2.72).
We obtained a robust standard error for β̂gene of 0.34. If we assume β0 = 0 and a one-sided
test with α = 0.05, the power of the Wald statistic to test for βgene > 0 is 89.8%.

R> set.seed(5432)
R> fam50 <- simfam(50, design = "pop+", variation = "none",
+ base.dist = "Weibull", base.parms = c(0.01, 3), vbeta = c(1, 1),
+ allelefreq = 0.02, probandage = c(45, 2.5), agemin = 20)
R> fit50 <- penmodel(Surv(time, status) ~ gender + mgene, cluster = "famID",
+ gvar = "mgene", parms = c(0.01, 3, 1, 1), data = fam50,
+ design = "pop+", base.dist = "Weibull", robust = TRUE)
R> summary(fit50)

Estimates:
Estimate Std. Error Robust SE t value Pr(>|t|)

log(lambda) -4.875 0.20437 0.21674 -22.493 0.02828 *
log(rho) 1.090 0.09317 0.08719 12.503 0.05081 .
gender 1.756 0.44694 0.46596 3.769 0.16509
mgene 1.384 0.37311 0.34382 4.025 0.15504
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Empirically, we can also obtain the power for testing βgene > 0 from simulations using
fampower function. Based on 100 simulations of 50 POP+ families, the power of 87% was
obtained using the following code, i.e., the probability of 87% to reject the null hypothesis
when the true effect size βgene = 1.
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R> fampower(N.fam = 50, N.sim = 100, effectsize = 1, beta.sex = 1, side = 1,
+ base.dist = "Weibull", design = "pop+", base.parms = c(0.01, 3),
+ probandage = c(45, 2.5), agemin = 20)

Number of families = 50
1 sided test
alpha = 0.05
Effect size = 1
Power = 0.87

For the second situation, using similar code as above we can obtain the penetrance estimate
in gene carriers at 70 years of age and its 95% CI. With 50 POP+ families and under the
assumptions given above, the penetrance estimate at 70 years is 73.20% (SE = 8.74%) in
males and 20.34 (SE = 8.82%) in females.

R> penetrance(fit50, fixed = c(1,1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fit50, fixed = c(0,1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.7320258 0.60744 0.8614747 0.07477524

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.203384 0.08559869 0.3979108 0.09022858

If an investigator wants a standard error for the penetrance estimate to reach a maximum of
5% in both males and females, about 200 POP+ families would be needed as shown below
the output from fitting the 200 simulated families.

R> penetrance(fit200, fixed = c(1,1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fit200, fixed = c(0,1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.6070111 0.5082368 0.6971345 0.05077343

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.2494493 0.1833709 0.3494781 0.04337289

6.3. Optimal designs

Designing efficient studies is an important aspect of family studies. We illustrate this problem
by considering a two-stage family design. Typically case patients (i.e., probands) are selected
in the first stage and asked about the history of disease in their family and stratified into
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Penetrance at 70 years Penetrance at 70 years
Design Log HR in men (%) in women (%)
CLI+ (High) 1.84 (0.13) 97.12 (0.95) 75.63 (4.34)
POP+ (Med) 0.95 (0.21) 62.08 (5.62) 25.08 (5.23)
POP (Low) 0.46 (0.52) 35.92 (13.73) 14.17 (7.86)

Table 8: Estimates of the log hazard ratio (HR) for mutation gene and penetrance at 70 years
under different family designs with family size n = 150. The standard errors of the estimates
are indicated in brackets.

different categories, e.g., high-risk (High), intermediate-risk (Med) and low-risk (Low). In
the second stage, case patients and their relatives are subsampled with different sampling
probabilities that could depend on their risk category. For a fixed sample size, the goal is
to estimate the sampling probability for each stratum that minimizes the variance of the
estimate of the parameter of interest.
To construct an optimal design we therefore determine some optimal weights for each stratum
and then decide the optimal sample sizes accordingly (in our case, the number of families to
include into the study). The optimal weighting problem was discussed by Lindsay (1988) who
obtained optimal weights in a way that maximizes the information over a class of estimating
functions. Let w be the vector of weights, S the vector of component scores and U the score
function based on the full likelihood. Then, the optimal weights are obtained by minimizing
with respect to w,

Eβ(U − w>S)2,

and are given by
wopt = [VAR(S)]−1E(US),

with E(US) = E(S2) where S2 denotes the vector whose elements are the squared elements
of S and the variance VAR(S) is a block matrix where the size of each block depends on the
size of the stratum.
Consider the problems of determining the optimal weights for estimating: 1) the log hazard
ratio measuring the effect of a mutation on a time-to-event outcome, and, 2) the penetrance of
the mutation by age 70. We simulated family data corresponding to the three risk categories
(High, Med, Low) assuming that High corresponds to the CLI+ design, Med to POP+ and
Low to POP. We simulated 150 families from each design. To simulate the family data, we
used a Weibull baseline function with shape and scale parameters of 0.01 and 3, respectively,
a gender effect with βsex = 1 (HR = 2.72), a dominant model for the major gene with allele
frequency of 0.02 for the minor allele, a mean and standard deviation for the proband’s age
of 45 and 2.5 years, respectively, and a minimum age at onset for the disease of 20 years. We
assumed βgene = 1.5, 0.8, and 0.5 for the High, Med and Low designs, respectively, and the
associated penetrance as given in Table 8. The command lines to generate and fit family data
are similar to the one described in Section 6.1.
We are first interested in an optimal design for the log HR estimates. The variances for
the log HR estimates in high-risk, intermediate-risk and low-risk families are 0.132, 0.212 and
0.522, respectively (Table 8). As the sampling probabilities are inversely proportional to these
variances, if we plan to have a total sample size of n = 300 families, we need the collection
of 212 high-, 75 intermediate-, and 13 low-risk families. However, if one wants to optimize
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the design for the penetrance estimate in males this will lead to the collection of 290 high-, 8
intermediate-, and 2 low-risk families and in females of 150 high-, 104 intermediate-, and 46
low-risk families, respectively.

6.4. Real data analysis

To analyze real data using penmodel or penmodelEM, the data should be prepared following
the same data frame that the simfam function provides. The data frame should include
column names famID, indID, motherID, fatherID, proband (coded 1 for proband, 0 for non-
proband), gender (coded 1 for male, 0 for female), currentage, time, status (coded 1 for
affected, 0 for unaffected), mgene (coded 1 for carrier, 0 for noncarrier, or NA for missing).
When data includes a sampling weight, it should be named as weight in the data frame.
Without this weight variable, all families will be equally weighted. In addition, agemin has
to be specified by attr(data, "agemin") <- 18, for example.
The package includes data named LSfam from 32 Lynch Syndrome (LS) families identified
through the Ontario Familial Colorectal Cancer Registry (OFCCR) (Cotterchio et al. 2000).
Lynch Syndrome is an autosomal dominant condition caused by several DNA mismatch re-
pair (MMR) genes, predominantly MLH1 and MSH2, that predisposes carriers to colorectal
cancers.
The OFCCR used the population-based Ontario Cancer Registry to identify incident col-
orectal cancer (CRC) cases (probands), aged 20–74, diagnosed from July 1997 to July 2000.
Probands were screened for any MMR gene mutations. For each proband found to carry
an MMR mutation, all first- and second-degree relatives of the proband’s family were con-
sidered to be eligible for the study. The data set includes a total of 765 individuals. Ex-
cluding individuals without information on age at diagnosis or examination or disease status,
n = 503 individuals are used for analysis including 32 probands and 471 relatives. The
probands are all mutation carriers and of the 471 relatives, 60 are known mutation carri-
ers, 62 are known non-carriers, and the mutation statuses of the rest are unknown. After
loading the data, data("LSfam", package = "FamEvent"), summary.simfam(LSfam) and
plot.simfam(LSfam) can be applied to provide a summary of the data and a graphical dis-
play of the pedigree structure for the first family, respectively. Using the LS family data,
we aimed to estimate the effects of gender and mutation status on CRC risk and to provide
age-specific penetrance estimates specific to gender and mutation status by taking missing
genetic information into account. To begin, we specified the minimum age of onset as 18 years
and used those whose age at onset or current age is greater than the minimum age into the
analysis. What follows are two penetrance models fitted using baselines hazard distributions
– Weibull and piecewise constant with cut points at c(30,40,50,60).

R> data("LSfam", package = "FamEvent")
R> attr(LSfam, "agemin") <- 18
R> fitLS.Weibull <- penmodelEM(Surv(time, status) ~ gender + mgene,
+ design = "pop+", cluster = "famID", gvar = "mgene",
+ parms = c(0.05, 2, 1, 3), base.dist = "Weibull", method = "mendelian",
+ data = LSfam[!is.na(LSfam$time), ])
R> summary(fitLS.Weibull)

Estimates:
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Estimate Std. Error t value Pr(>|t|)
log(lambda) -4.7159 0.10741 -43.906 0.01450 *
log(rho) 1.0455 0.07044 14.843 0.04283 *
gender 0.4518 0.21070 2.144 0.27779
mgene 2.3436 0.27743 8.447 0.07501 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> plot(fitLS.Weibull, add.KM = FALSE, conf.int = TRUE, ylim = c(0, 1),
+ print = FALSE)
R> penetrance(fitLS.Weibull, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fitLS.Weibull, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.8441975 0.7280118 0.9182888 0.04929543

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.6937294 0.5948167 0.7942104 0.0566577

Based on the penetrance model with a Weibull baseline hazard distribution, the penetrance
estimates by age 70 for male and female carriers are 84.42% (95% CI = (76.44%, 92.44%))
and 69.37% (95% CI = (60.35%, 80.12%)), respectively.
What follows is the penetrance model fitted with a piecewise-constant baseline. Although it
provides more flexibility, it takes longer time to converge as it uses more parameters to esti-
mate the baseline hazard. The penetrance estimates by age 70 for male and female carriers
are 80.47% (95% CI = (70.37%, 90.59%)) and 67.22% (95% CI = (58.89%, 78.04%)), respec-
tively, which are slightly lower compared to the Weibull baseline hazards model. The AIC
values for these models are 1111 and 1149, respectively obtained from fitLS.Weibull$AIC
and fitLS.piece$AIC.

R> fitLS.piece <- penmodelEM(Surv(time, status) ~ gender + mgene,
+ design = "pop+", cluster = "famID", gvar = "mgene",
+ base.dist = "piecewise", parms = c(rep(0.01, 5), 1, 1.5),
+ cuts = c(30, 40, 50, 60), method = "mendelian",
+ data = LSfam[ ! is.na(LSfam$time), ] )
R> summary(fitLS.piece)

Estimates:
Estimate Std. Error t value Pr(>|t|)

log(q1) -8.1065 0.4346 -18.654 0.03409 *
log(q2) -7.0434 0.3649 -19.304 0.03295 *
log(q3) -5.8203 0.3141 -18.530 0.03432 *
log(q4) -5.4490 0.3118 -17.474 0.03639 *
log(q5) -4.9240 0.2801 -17.578 0.03618 *
gender 0.3815 0.2110 1.808 0.32163
mgene 1.9561 0.2581 7.580 0.08351 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 3: Penetrance functions estimated using Weibull (left) and piecewise constant (right)
baselines for Lynch Syndrome families recruited from the OFCCR.

R> plot(fitLS.piece, add.KM = FALSE, conf.int = TRUE, ylim = c(0, 1),
+ print = FALSE)
R> penetrance(fitLS.piece, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)
R> penetrance(fitLS.piece, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1
age penentrance lower upper se

1 70 0.804729 0.6971953 0.8992272 0.05271314

Fixed covariate values: gender = 0 mgene = 1
age penentrance lower upper se

1 70 0.672183 0.5344487 0.7650079 0.05917689

Figure 3 displays the penetrance curves ranging from 20 to 80 years for four groups specific
to gender and mutation status based on the Weibull (left panel) and piecewise constant (right
panel) baselines.

7. Conclusions
FamEvent is a comprehensive R package for simulating and modeling time-to-event data from
family-based study designs. Family-based designs continue to be powerful approaches to study
complex diseases with a genetic basis, even with increasingly low costs for whole genome
sequencing. For example, a recent consortium for affective and psychotic disorders has been
developed to identify genetic factors for mental illness (Glahn et al. 2019). Genetic factors
are being identified from family studies in vastly different diseases, disorders and behaviors
including the intergenerational transmission of divorce (Salvatore et al. 2018), Alzheimer’s
Disease (Beecham et al. 2017), human longevity (Yashin et al. 2018), and the impact of the
rearing environment on children’s behavior (Liu and Neiderhiser 2017).
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Common issues encountered in family-based designs, regardless of the research domain, in-
clude missing genotype information on family members, selection of the families and residual
correlation after conditioning on the major gene. Substantial bias in penetrance parameter
estimates as well as underestimation of variability can occur without addressing these issues
in the analysis of data. No existing R packages, such as gap, pbatR, or coxme, address the
missing genotype information or selection bias in their methods. FamEvent is a versatile and
user-friendly R package for simulating and fitting time-to-event data in complex pedigrees
under various sampling designs. It assumes the segregation of a major gene with or without
the presence of residual correlation due to a second gene or shared frailty. The simulated
data can mimic real data obtained in many types of family studies. Mutation carrier proba-
bilities for individuals with missing genotypes can also be estimated using information on the
relatives’ genotypes and possibly phenotypes using the carrierprob function in FamEvent.
Plotting functions permit visual examination of individual pedigrees, as well as the true and
estimated penetrance functions while several summary and print methods provide the key
parameter and penetrance estimates from fitted models or details of the simulated family
data set. The power of detecting a genetic effect in the penetrance model based on a family-
based simulation study is available in the fampower function. The FamEvent R package
also includes data from 32 Lynch Syndrome families segregating MMR mutations selected
from the Ontario Familial Colorectal Cancer Registry, including 765 relatives; these data will
permit other users to evaluate their models or methods. This package addresses important
features of age-at-onset data from common family-based designs, generates data that mimics
real family data, and provides important tools for investigators planning family-based studies
or analyzing their corresponding data.
Future extensions will include more sophisticated functions for penetrance estimation as well
as the simulation of time-to-event data in the context of familial sequencing studies. For
instance, we have started to use FamEvent in combination with our other R package sim1000G
(Dimitromanolakis, Xu, Król, and Briollais 2019), which simulates genetic variants according
to the 1000 Genomes data. The penetrance function can then depend on a multi-allelic
genetic marker, where the marker can be composed of rare or common genetic variants or a
combination of both. This is particularly useful to simulate a pattern of familial aggregation
of age-at-onset outcomes given a complex genetic architecture. For example, we recently used
FamEvent to simulate a familial aggregation of age at colorectal cancer onset in Familial
Colorectal Cancer Type X families to investigate the type of genetic architecture that could
explain this familial aggregation (Choi et al. 2019). FamEvent was also used in combination
with sim1000G to assess the power of rare variant association tests in family designs for
time-to-event data (Dimitromanolakis et al. 2019) and to simulate sister pair data under
early age at onset ascertainment, where the genetic model reflects a scientific hypothesis
of locus heterogeneity (Romanescu, Green, Andrulis, and Bull 2020). This demonstrates
that FamEvent can have a broad range of applications in complex genomic studies and we
anticipate more to come. This will motivate our future extensions of FamEvent.
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