
JSS Journal of Statistical Software
September 2021, Volume 99, Issue 6. doi: 10.18637/jss.v099.i06

Regularized Ordinal Regression and the ordinalNet
R Package

Michael J. Wurm
University of

Wisconsin–Madison

Paul J. Rathouz
University of

Texas at Austin

Bret M. Hanlon
University of

Wisconsin–Madison

Abstract

Regularization techniques such as the lasso (Tibshirani 1996) and elastic net (Zou and
Hastie 2005) can be used to improve regression model coefficient estimation and prediction
accuracy, as well as to perform variable selection. Ordinal regression models are widely
used in applications where the use of regularization could be beneficial; however, these
models are not included in many popular software packages for regularized regression. We
propose a coordinate descent algorithm to fit a broad class of ordinal regression models
with an elastic net penalty. Furthermore, we demonstrate that each model in this class
generalizes to a more flexible form, that can be used to model either ordered or unordered
categorical response data. We call this the elementwise link multinomial-ordinal class,
and it includes widely used models such as multinomial logistic regression (which also has
an ordinal form) and ordinal logistic regression (which also has an unordered multinomial
form). We introduce an elastic net penalty class that applies to either model form, and
additionally, this penalty can be used to shrink a non-ordinal model toward its ordinal
counterpart. Finally, we introduce the R package ordinalNet, which implements the al-
gorithm for this model class.

Keywords: ordinal regression, multinomial regression, variable selection, lasso, elastic net.

1. Introduction
Ordinal regression models arise in contexts where the response variable belongs to one of
several ordered categories, such as 1 = “poor”, 2 = “fair”, 3 = “good”, 4 = “excellent”.
One of the most common regression models for this type of data is ordinal logistic regression
(McCullagh 1980), which is also known as the cumulative logit or proportional odds model.
Other ordinal regression models include the stopping ratio model, the continuation ratio
model, and the adjacent category model.

https://doi.org/10.18637/jss.v099.i06
https://orcid.org/0000-0001-8380-4300
https://orcid.org/0000-0002-4517-1204

2 ordinalNet: Regularized Ordinal Regression in R

The prediction accuracy of regression models can often be improved by regularization such as
lasso (Tibshirani 1996) and elastic net (Zou and Hastie 2005), particularly in cases where the
number of predictors is large relative to the sample size and especially when the number of
predictors exceeds the sample size. Regularization shrinks the coefficient estimators toward
zero, resulting in estimators that are biased but with reduced variance. With an appropriate
degree of regularization, this trade-off can improve prediction accuracy. Furthermore, the
lasso and elastic net shrink some coefficients to zero exactly, so only those covariates with the
most predictive power are actually used to calculate predictions. This is an effective method
for variable selection in a high dimensional predictor space.
A variety of software packages exist for unpenalized ordinal regression. In R, VGAM (Yee
and Wild 1996; Yee 2010, 2015, 2021) is a comprehensive software package for ordinal models,
including all those mentioned in the first paragraph. The SAS CATMOD procedure also fits
some of these models (SAS Institute Inc 2017). However, these packages do not currently have
functionality for regularization or variable selection. Popular CRAN packages for penalized
regression, such as penalized (Goeman, Meijer, and Chaturvedi 2018) and glmnet (Friedman,
Hastie, and Tibshirani 2010; Friedman, Hastie, Tibshirani, Simon, Narasimhan, and Qian
2021), do not currently fit ordinal models.
Some algorithms and software do already exist for penalized ordinal regression. The lrm
function in the R package rms (Harrell, Jr. 2015, 2021) fits the cumulative logit model with
quadratic (ridge regression) penalty. The R packages glmnetcr (Archer 2020a) and glmpathcr
(Archer 2020b) fit stopping ratio models with the elastic net penalty. (Note that we follow the
naming convention of Yee (2010) in using the term “stopping ratio”, although some authors,
including Archer (2020a,b), use the term “continuation ratio” for these models.)
Archer, Hou, Zhou, Ferber, Layne, and Gentry (2014, 2019) also implemented the generalized
monotone incremental forward stagewise (GMIFS) algorithm for regularized ordinal regression
models in the R package ordinalgmifs. This procedure finds a solution path similar to the
L1 norm (lasso) penalty. In fact it is the same solution path if the lasso path is monotone
for each coefficient, but in other cases the GMIFS and lasso solution paths differ (Hastie,
Tibshirani, and Friedman 2009). A drawback of this algorithm is that it does not have
the flexibility of the elastic net mixing parameter (usually denoted by α). It can also be
computationally expensive for some use cases because the solution path must be fit in small
increments, whereas the lasso and elastic net solution path can be obtained only at specified
values of the regularization tuning parameter (usually denoted by λ). A sequence of, say,
twenty values may be enough to tune a model by cross-validation and will usually be faster
than fitting a longer sequence.
To summarize, existing algorithms for ordinal regression either do not allow regularization, or
they apply to specific models. Hence, options are limited for ordinal regression with a large
number of predictors. In that context, our contribution to this growing body of software and
literature is threefold.

1. We propose a general coordinate descent algorithm to fit a rich class of multinomial
regression models, both ordinal and non-ordinal, with elastic net penalty.

2. We define a class of models that (a) can be fit with the elastic net penalty by the afore-
mentioned algorithm, (b) contains some of the most common ordinal regression models,
(c) is convenient for modularizing the fitting algorithm, and (d) has both a parallel

Journal of Statistical Software 3

(ordinal) and a nonparallel form for each model (discussed in the next paragraph). We
call this the elementwise link multinomial-ordinal (ELMO) class of models. This class
is a subset of vector generalized linear models (Yee 2015).
Each model in this class uses a multivariate link function to link multinomial proba-
bilities to a set of linear predictors. The link function can be conveniently written as
a composite of two functions. The first determines the model family (e.g., cumulative
probability, stopping ratio, continuation ratio, or adjacent category). The second is a
standard link function (e.g., logit, probit, or complementary log-log), which is applied
elementwise to the result of the first function.
A feature of the ELMO class is that each model has a form that is appropriate for
ordinal response data, as well as a more flexible form that can be applied to either
ordinal or unordered categorical responses. We will refer to the first as the parallel form
and the second as the nonparallel form. For the parallel form, the linear predictors of
a given observation only differ by their intercept values – the other coefficients are the
same. This restriction is what Yee (2010) refers to as the parallelism assumption. The
nonparallel form allows all of the coefficients to vary.
The ELMO class includes ordinal logistic regression (a.k.a., the proportional odds
model), which is a parallel model that has a nonparallel counterpart, the partial propor-
tional odds model (Peterson and Harrell, Jr. 1990). Another example from this class is
multinomial logistic regression (see, e.g., Agresti (2003)), which is a nonparallel model
that also has a parallel counterpart. Note that the usual multinomial logistic regression
parameterization does not fit the ELMO class; however, the ELMO class does contain
an alternative but equivalent parameterization called the nonparallel adjacent category
model with logit link. For more details, see Appendix A.

3. Finally, we propose an elastic net penalty class that applies to both the parallel and
nonparallel forms. It can also be used to shrink the nonparallel model toward its parallel
counterpart. This can be useful in a situation where one would like to fit an ordinal
model but relax the parallelism assumption. This can be achieved by overparameterizing
the nonparallel model to include both the nonparallel and parallel coefficients. We call
this alternate parameterization the semi-parallel model. Although the regression model
itself is not identifiable under this parameterization, the penalized likelihood has a
unique optimum (or almost unique, as discussed in Appendix B). Tutz and Gertheiss
(2016) discuss related ideas about penalized regression models for ordinal response data
that allow the parallelism assumption to be relaxed.

We provide an outline for the remainder of the work. Section 2 defines the ELMO class
with specific examples. We also define the parallel, nonparallel, and semi-parallel parameter-
izations with the elastic net penalty. Section 3 provides the proposed algorithm for fitting
multinomial regression models with the elastic net penalty. Section 4 presents a simulation
study to compare prediction accuracy of the penalized parallel, nonparallel, and semi-parallel
models. Section 5 demonstrates the use of penalized ELMO class models for out-of-sample
prediction and variable selection alongside other methods. Section 6 provides details about
the ordinalNet R package (Wurm, Rathouz, and Hanlon 2021), which is available on the
Comprehensive R Archive Network at https://CRAN.R-project.org/package=ordinalNet.
Section 7 provides a demonstration of the ordinalNet package. Section 8 contains a summary
of the findings and contributions.

https://CRAN.R-project.org/package=ordinalNet

4 ordinalNet: Regularized Ordinal Regression in R

2. Elementwise link multinomial-ordinal (ELMO) class
This section is organized as follows. Section 2.1 introduces some common notation used in this
paper. Section 2.2 is the heart of Section 2, defining the ELMO model class. The remaining
subsections then discuss particular elements of the ELMO class and issues related to elastic
net penalization of this class. Sections 2.3 and Section 2.4 provide details for the family
function and elementwise link function, respectively. The parallel and nonparallel forms are
introduced in Section 2.5, and the semi-parallel form is introduced in Section 2.6. Finally,
Section 2.7 discusses the elastic net penalty and formulates the objective function under the
three model forms.

2.1. Notation

We introduce some common notation used in this paper. Other paper-specific notation is
developed throughout the work. For a vector x, we use x> to denote its transpose. We
use 1K to denote the length-K column vector of ones and IK×K = I to denote the K ×K
identity matrix. In both cases, the dependence on K will be suppressed when it is clear from
the context. We use ∇ for the gradient operator and D for the Jacobian operator. Consider a
vector-valued function f with vector argument x. As is standard, the Jacobian of f is defined
as

Df(x) = ∂f(x)
∂x>

,

in other words

[Df(x)]mn = ∂f(x)m
∂xn

.

2.2. An Introduction to the ELMO model class

We now define the ELMO model class. Models within this class are completely specified by
their multivariate link function, which is a composite of two functions. The first function de-
termines the model family (e.g., cumulative probability, stopping ratio, continuation ratio, or
adjacent category). We refer to these as multinomial-ordinal (MO) families because each has
a parallel form specifically for ordinal data, as well as a nonparallel form for any multinomial
data, ordinal or unordered. The second function is an elementwise link (EL) function, which
applies a standard link function on (0, 1)→ R (e.g., logit, probit, or complementary log-log)
elementwise to the result of the first function.
The data consists of vector pairs (yi, xi) for i = 1, . . . , N . Observations (e.g., subjects or
patients) are indexed by i, and N is the total number of observations. Here, xi is an ob-
served vector of covariates (without an intercept), and yi = (yi1, . . . , yi(K+1))> is a ran-
dom vector of counts summing to ni. We assume the conditional distribution yi | xi

indep.∼
Multinomial(ni, pi1, pi2, . . . , pi(K+1)). In other words, we have ni independent trials which fall
into K + 1 classes with probabilities (pi1, pi2, . . . , pi(K+1)). These probabilities are a function
of xi, and the choice of ELMO model determines this function. The K + 1 probabilities sum
to one, so they can be parameterized by the first K values, pi = (pi1, pi2, . . . , piK)>.

Journal of Statistical Software 5

Let P be the length of xi and let B be a P ×K matrix of regression coefficients. Let c be a
vector of K intercept values. The covariates are mapped to a vector of K linear predictors,
ηi = (ηi1, ηi2, . . . , ηiK), by the relationship ηi = c+B>xi.
Class probabilities are linked to the linear predictors by ηi = g(pi), where g : SK → RK is a
multivariate invertible link function and SK = {p : p ∈ (0, 1)K , ‖p‖1 < 1}. Furthermore, g
is a composite of two functions, gEL : (0, 1)K → RK and gMO : SK → (0, 1)K . The function
gEL simply applies a function g̃EL : (0, 1) → R elementwise to a vector of length K. More
concisely, ELMO class models have a link function of the form

g(p) = (gEL ◦ gMO)(p) ,

where
gMO(p) = δ = (δ1, . . . , δK)>

and
gEL(δ) = (g̃EL(δ1), . . . , g̃EL(δK))> .

To summarize, an ELMO model specifies a family function gMO and an elementwise link
function g̃EL such that

B>xi =


ηi1
ηi2
...
ηiK

 =


g̃EL(δi1)
g̃EL(δi2)

...
g̃EL(δiK)

 = gEL



δi1
δi2
...
δiK


 = (gEL ◦ gMO)



pi1
pi2
...
piK


 = g(pi) .

2.3. Family function

The function gMO determines the family of multinomial-ordinal models, such as cumulative
probability, stopping ratio, continuation ratio, or adjacent category. In order to belong to
a multinomial-ordinal family, the function gMO must be invertible and have the following
Monotonicity Property. This Monotonicity Property ensures that all parallel models in the
ELMO class are in fact ordinal models (discussed in Section 2.5). Examples of MO families
are given in Table 1.
Definition (Monotonicity Property) For any p ∈ SK , define γk(p) for k = 1, . . . ,K as
the sum of the first k elements (i.e., cumulative probabilities). Define δi = (δi1, . . . , δiK)> =
gMO(pi) for i ∈ {1, 2}. All MO families have either Property 1 or Property 2 below.

1. γk(p1) ≤ γk(p2) for all k if and only if δ1k ≤ δ2k for all k.

2. γk(p1) ≤ γk(p2) for all k if and only if δ1k ≥ δ2k for all k.

Let r(pi) = (pi(K+1), piK , . . . , pi2) denote the class probabilities in reverse order, leaving out
class 1 instead of class K + 1. If gMO is a MO function with Property 1, then the (gMO ◦ r) is
a MO function with Property 2 and vice versa. We can refer to one as the “forward” family
and the other as the “backward” family. Although the terms “forward” and “backward” are
commonly used in the literature, they do not have a consistent interpretation. We follow
the naming conventions used in Yee (2010). By these definitions, the forward cumulative

6 ordinalNet: Regularized Ordinal Regression in R

MO family δk

Cumulative Probability (forward) P(Y ≤ k)
Cumulative Probability (backward) P(Y ≥ k + 1)
Stopping Ratio (forward) P(Y = k | Y ≥ k)
Stopping Ratio (backward) P(Y = k + 1 | Y ≤ k + 1)
Continuation Ratio (forward) P(Y > k | Y ≥ k)
Continuation Ratio (backward) P(Y < k | Y ≤ k)
Adjacent Category (forward) P(Y = k + 1 | k ≤ Y ≤ k + 1)
Adjacent Category (backward) P(Y = k | k ≤ Y ≤ k + 1)

Table 1: Examples of multinomial-ordinal (MO) families. For each example, Y is a categorical
random variable with class probability vector (p1, p2, . . . , pK) = g−1

MO(δ1, δ2, . . . , δK).

probability and stopping ratio families have Property 1, and the forward continuation ratio
and adjacent category families have Property 2.
In addition, if gMO is an MO function, then g∗MO(p) = 1 − gMO(p) is also an MO function.
For the cumulative probability and adjacent category families, this is simply a transformation
between the forward and backward families. On the other hand, applying this transformation
to the forward (backward) stopping ratio family yields the forward (backward) continuation
ratio family.

2.4. Elementwise link function

The elementwise link function g̃EL : (0, 1) → R must be a monotone, invertible function.
It can be almost any link function used for binary data regression, such as logit, probit, or
complementary log-log. An important property that some elementwise link functions satisfy
is symmetry, that is

g̃EL(δ) = −g̃EL(1− δ) .

For example, logit and probit are symmetric, but complementary log-log is not. Under sym-
metry, the following model pairs are equivalent, with reversed signs on the coefficients: 1)
cumulative probability forward and backward models; 2) adjacent category forward and back-
ward models; 3) forward stopping ratio and forward continuation ratio; and 4) backward stop-
ping ratio and backward continuation ratio. However, if g̃EL is a non-symmmetric function,
such as complementary log-log, then none of these equivalences hold.

2.5. Parallel and nonparallel forms

Each model in the ELMO class has a parallel form and a nonparallel form. The difference
between them is that the parallel form restricts the columns of B to be identical. Yee (2010)
refer to this restriction as the parallelism assumption. Under the parallelism assumption, we
can write ηi = b>xi + c, where b is a vector. Now consider the distribution of yi | xi. The
Monotonicity Property of gMO, along with the monotonicity requirement on g̃EL, ensures that
a change in b>xi will shift all cumulative class probabilities in the same direction. This is the
defining characteristic of an ordinal regression model.

Journal of Statistical Software 7

In contrast, the nonparallel form places no restriction on B, and it does not force the cumu-
lative class probabilities to “shift together” in any way. The nonparallel form is appropriate
for unordered multinomial data, although it can also be used as a more flexible model for
ordinal data.
We point out here that the parallel cumulative probability model with logit link (either
forward or backward) is the ordinal logistic regression model (a.k.a. cumulative logit or
proportional odds model). We also point out that the nonparallel adjacent category model
with logit link (either forward or backward) is an alternative but equivalent parameterization
of multinomial logistic regression (see Appendix A for details).
A word of caution: the nonparallel cumulative probability model must a have linear predictor
vector, B>x, that is monotone to ensure that the cumulative probabilities are non-decreasing.
Specifically, B>x must be monotone increasing for the forward model and monotone decreas-
ing for the backward model. Thus, B should be constrained such that B>x is monotone for
any feasible x in the population of interest. This constraint is difficult to implement in prac-
tice, especially because the range of feasible x values may not be known. It is more practical
to constrain B>x to be monotone for all x in the training sample. However, this may lead to
non-monotone probabilities for out-of-sample x, so it is important to be mindful of this. This
is not a concern for the parallel cumulative probability model because the MLE (or penalized
MLE) will always have monotone intercepts, and hence monotone linear predictors for all x.
The other families in Table 1 do not have any restriction on the parameter space.

2.6. Semi-parallel form

In most applications with ordinal response data, domain knowledge does not make it clear
whether to use the parallel or nonparallel form. If the number of observations is large enough
to accurately estimate the nonparallel model by maximum likelihood, one might prefer this
option. After all, the nonparallel model includes the parallel model as a special case.
When the number of predictors is large relative to the number of observations, it is not
possible to estimate each coefficient with a high degree of accuracy by maximum likelihood.
A more realistic modeling goal is to build the best possible model for out-of-sample prediction
and determine which predictors are most important predictors. A regularization method such
as lasso or elastic net can help. In this context, one might forgive some incorrectness of the
parallelism assumption if it is reasonable enough to accomplish the modeling goals. Even if
a nonparallel model were the true data generating mechanism, the regularized parallel model
could still outperform the regularized nonparallel model for prediction.
The question becomes: how “parallel” does the data need to be to make the parallel model
a better choice? If the response categories have a natural ordering, then it seems prudent
to leverage this fact by using an ordinal regression model. However, the fact alone that
the response is ordinal does not mean that a parallel regression model will be a good fit.
Therefore, it also seems prudent to use a model that is sufficiently flexible to allow deviation
from the strict parallelism assumption. Tutz and Gertheiss (2016) note that although the
parallelism assumption “is very popular and reduces model complexity, it is quite restrictive
and sometimes not reasonable”.
With this motivation, we propose a model that (1) is ordinal in nature and (2) allows deviation
from the parallelism assumption. We call this the semi-parallel model. Recall that the
nonparallel model specifies ηi = c + B>xi, where c is a vector of K intercepts and B is an

8 ordinalNet: Regularized Ordinal Regression in R

unrestricted P ×K matrix of coefficients. The parallel model restricts the columns of B to
be identical and can be parameterized as ηi = c+(b>xi) ·1. The semi-parallel model specifies
ηi = c + B>xi + (b>xi) · 1. It is the nonparallel model but overparameterized to include
both the parallel and nonparallel coefficients. With the elastic net penalty, the penalized
likelihood has a unique solution in most cases (see Appendix B for details). We use the term
semi-parallel because for some covariates, the penalized semi-parallel model fit might only
contain the parallel coefficient, with the nonparallel coefficients all set to zero. For other
covariates, the fit might contain both parallel and nonparallel coefficients.
We point out that overparameterization of penalized regression models is used in other set-
tings. For example, Ollier and Viallon (2017) use overparameterization to avoid an arbitrary
choice of reference stratum when modeling interactions between a categorical covariate and
other predictors.

2.7. Elastic net penalty

This section discusses the elastic net penalty for the parallel, nonparallel, and semi-parallel
ELMO model forms. There are many useful resources on regularization, penalized regression,
and variable selection, which provide further details in various settings (Bickel and Li 2006;
Hesterberg, Choi, Meier, and Fraley 2008; Hastie et al. 2009; Friedman et al. 2010; Schifano,
Strawderman, and Wells 2010; Vidaurre, Bielza, and Larrañaga 2013).
If the sample size is large enough, it may be possible to accurately estimate a regression model
by maximum likelihood. However, in many applications the sample size is not large enough
to obtain reliable or even unique estimates. In situations like this, it may be advantageous
to optimize a penalized version of the log likelihood function. One such penalty is the elastic
net (Zou and Hastie 2005), which is a generalization of both the lasso (Tibshirani 1996) and
ridge regression penalties.
Lasso and ridge regression are techniques that minimize a penalized likelihood objective func-
tion, defined as the negative log-likelihood plus a penalty term that is a function of the
coefficient vector. For lasso, the penalty is proportional to the L1 norm of the coefficient
vector, and for ridge regression it is proportional to the squared L2 norm. Both of these
penalties result in a coefficient estimate that is closer to zero than the maximum likelihood
estimator, i.e., the estimate is “shrunk” toward zero. This biases the estimates toward zero,
but the trade-off is a reduction in variance which often reduces the overall mean squared
error. The lasso also has the property that some of the coefficient estimates are shrunk to
zero exactly. This provides a natural way to perform variable selection because only the the
predictors most associated with the response variable will have nonzero coefficients.
The elastic net penalty is a weighted average between the lasso and ridge regression penalties,
and it shares the lasso property of shrinking some coefficients to zero exactly. The weighting
parameter, typically denoted by α, must be selected or tuned on the data set. The degree
of penalization is controlled by another tuning parameter, typically denoted by λ. Typical
practice is to fit the penalized model for a sequence of λ values and use a tuning procedure
to select the best value (Hesterberg et al. 2008; Hastie et al. 2009; Arlot and Celisse 2010;
Sun, Wang, and Fang 2013). One tuning procedure is to select the model with best fit
as determined by Cp, AIC, BIC, or another fitness measure. Another approach, which we
generally prefer, is using cross-validation to select the value that gives the best out-of-sample
prediction.

Journal of Statistical Software 9

Let bj be the j-th element of b and Bjk be the (j, k)-th element of B. Let N+ = ∑N
i=1 ni

be the total number of multinomial trials in the data set. Let `(·) denote the log-likelihood
function. Below, we write the elastic net objective function for each of the three model forms.

Parallel model

The objective function is

M(c, b;α, λ) = − 1
N+

`(c, b) + λ
P∑
j=1

(
α|bj |+ 1

2(1− α)b2
j

)
.

Nonparallel model

The objective function is

M(c,B;α, λ) = − 1
N+

`(c,B) + λ
P∑
j=1

K∑
k=1

(
α|Bjk|+ 1

2(1− α)B2
jk

)
.

Semi-parallel model

The objective function is

M(c, b, B;α, λ, ρ) = − 1
N+

`(c, b, B)+

+ λ

ρ P∑
j=1

(
α|bj |+ 1

2(1− α)b2
j

)
+

P∑
j=1

K∑
k=1

(
α|Bjk|+ 1

2(1− α)B2
jk

) .

Here, λ ≥ 0 and α ∈ [0, 1] are the tuning parameters previously described. Also, ρ ≥ 0 is a
tuning parameter that determines the degree to which the parallel terms are penalized. Fixing
ρ at a very large value will set all parallel coefficients to zero, which is equivalent to the non-
parallel model. Fixing λ at a very large value and choosing ρ such that λρ = λ∗ is equivalent to
the parallel model with regularization parameter λ∗. Hence, the semi-parallel model includes
both the parallel and nonparallel models as special cases. Fixing ρ = 0 will leave the parallel
coefficients unpenalized, so the fit will shrink from the maximum likelihood nonparallel model
fit toward the maximum likelihood parallel model fit as λ increases from zero.
We follow the common convention of scaling the negative log-likelihood by the number of
observations (Friedman et al. 2010). We define the sample size as N+ rather than N so the
model fit is invariant to whether multinomial trials are grouped into a single observation or
split into multiple observations with ni = 1 and identical x.

3. Coordinate descent optimization algorithm
We propose optimizing ELMO models with the elastic net penalty using a coordinate descent
algorithm. Our algorithm mirrors that of Friedman, Hastie, Höfling, and Tibshirani (2007);
Friedman et al. (2010) for generalized linear models. The algorithm is iterative with an outer

10 ordinalNet: Regularized Ordinal Regression in R

and inner loop. The outer loop constructs a quadratic approximation to the log-likelihood –
the same quadratic approximation used for iteratively reweighted least squares (IRLS). This
approximation is the second order Taylor expansion at the current coefficient estimates. In the
spirit of Fisher scoring, the Hessian matrix is replaced by its expectation, the negative Fisher
information matrix. This approximation is used as a replacement for the true likelihood in the
elastic net objective function, resulting in an expression that can be optimized by coordinate
descent. The inner loop cycles through the coefficient estimates, updating each one with the
value that marginally optimizes the approximate objective function.
Wilhelm, Carter, and Hubert (1998) demonstrated the use of IRLS to obtain the maximum
likelihood estimates for a broad class of multinomial regression models. This class includes
ELMO models but is even more general. This algorithm can easily be applied to any multi-
nomial regression model that links a vector of K probabilities to a vector of K linear com-
binations of covariates by an invertible multivariate link function. To apply the coordinate
descent algorithm to any such model, all that is required is to derive the Jacobian of the
inverse link function.
The rest of this section is organized as follows. In order to formulate the IRLS quadratic
approximation, it is more convenient to parameterize ELMO models with a single coeffi-
cient vector instead of c, b, and B. Section 3.1 discusses this alternative parameterization.
Section 3.2 discusses the elastic net penalty under the alternative parameterization. Sec-
tion 3.3 discusses the outer loop of the optimization procedure, which updates the quadratic
approximation to the log-likelihood. Section 3.4 discusses the coordinate descent inner loop.
Section 3.5 discusses computational efficiency and numerical stability for the coordinate de-
scent updates. Sections 3.6, Section 3.7, and Section 3.8 discuss different aspects of the
algorithm specifications. Specifically, Section 3.6 presents a method for choosing a sequence
of regularization parameter values for the solution path. Section 3.7 presents a method for
choosing starting coefficient values for the optimization algorithm. And Section 3.8 suggests
a stopping rule for terminating the algorithm. Section 3.9 summarizes the algorithm in out-
line form. Finally, Section 3.10 discusses specific optimization issues that can arise with the
cumulative probability model family.

3.1. ELMO parameterization with a single coefficient vector

Until now, we have written ELMO coefficients in a compact form using an intercept vector c, a
coefficient vector b, and a coefficient matrix B. For coordinate descent, it is more convenient to
write the model with a single coefficient vector β. To do this, we need to introduce a covariate
matrix Xi, which is a function of xi. The vector of K linear combinations, ηi, can then be
written as ηi = X>i β for all three model forms – parallel, nonparallel, and semi-parallel.
Let B∗k denote the k-th column of B. Below, the structure of Xi and β is given for each of
the three model forms, with the dimensions written in subscript.

Parallel model

Xi =

 IK×K

x>i
...
x>i


K×(P+K)

, β =
(
c
b

)
(P+K)×1

.

Journal of Statistical Software 11

Nonparallel model

Xi =

 IK×K

x>i 0 · · · 0
0 x>i · · · 0
...

...
0 0 · · · x>i


K×(PK+K)

, β =


c
B∗1
B∗2
...

B∗K


(PK+K)×1

.

Semi-parallel model

Xi =

 IK×K

x>i x>i 0 · · · 0
x>i 0 x>i · · · 0
...

...
...

x>i 0 0 · · · x>i


K×(P (K+1)+K)

, β =



c
b
B∗1
B∗2
...

B∗K


(P [K+1]+K)×1

.

3.2. Elastic net penalty

Let Q denote the length of β, and let βj denote the j-th element. We write the elastic net
objective function as

M(β;α, λ, ω1, . . . , ωQ) = − 1
N+

`(β) + λ
Q∑
j=1

ωj
(
α|βj |+ 1

2(1− α)β2
j

)
,

where λ > 0 and 0 ≤ α ≤ 1. For all three model forms, ω1 = ω2 = · · · = ωK = 0, so the
intercept terms in c are not penalized. For j > K, ωj = 1, with the only exception being that
ωK+1 = ωK+2 = · · · = ωK+P = ρ for the semi-parallel model (i.e., the ωj corresponding to
the coefficients in b are equal to ρ for the semi-parallel model).
These are not firm rules regarding ωj , as there may be situations where one wishes to mod-
ify the ωj to accommodate more elaborate penalization schemes. For example, one might
wish leave to some covariates unpenalized or to penalize them with varying degrees. Such
modifications can easily be made and do not require any adjustment to the algorithm.
Typically, each covariate is standardized to have its sample standard deviation equal to one
so that the scale of a covariate does not affect the degree to which its coefficient is penalized
(Hesterberg et al. 2008; Friedman et al. 2010). However, this is not a requirement.

3.3. Optimization outer loop (quadratic approximation)

The optimization outer loop updates the quadratic approximation to the log-likelihood using
a Taylor expansion around the current coefficient estimates. This requires the score function
and Fisher information.

12 ordinalNet: Regularized Ordinal Regression in R

Log-likelihood

The log-likelihood of an observation with probability vector pi can be written as

Li(pi) =
K∑
j=1

yij log(pij) + yi(K+1) log

1−
K∑
j=1

pij

 .

Note that we drop the multinomial term log
(ni
yi1,yi2,...,yi(K+1)

)
because it does not depend on

the unknown coefficients, and hence does not affect the model fit. Now let h denote the
inverse link function, i.e., h = g−1. The log-likelihood as a function of β is

`i(β) = Li(h(Xiβ)) .

Score function

The score function can be obtained by a chain rule decomposition:

Ui(β) = ∇`i(β) = X>i Dh(ηi)>∇Li(pi) = X>i Wi(zi −Xiβ) ,

where
zi = W−1

i (Dh(ηi)>∇Li(pi)) +Xiβ

and

∇Li(pi) =
(
yi1
pi1

, . . . ,
yiK
piK

)>
−
(
yi(K+1)
pi(K+1)

)
· 1 .

See Appendix C for details about the inverse link Jacobian, Dh(·), specifically for ELMO
models.

Fisher information

The Fisher information matrix is

Ii(β) = Eβ
(
Ui(β)Ui(β)>

)
= X>i WiXi ,

where
Wi = Dh(ηi)>Σ−1

i Dh(ηi) ,

and

Σ−1
i = ni

(
[diag(pi)]−1 + 1

pi(K+1)
· 11>

)
since

Σ−1
i = Eβ

{
∇Li(pi)∇Li(pi)>

}
=
[
Eβ

{(
yim
pim
−
yi(K+1)
pi(K+1)

)(
yin
pin
−
yi(K+1)
pi(K+1)

)}]
mn

=
[
ni

(
I(m = n)

pim
+ 1
pi(K+1)

)]
mn

= ni

(
[diag(pi)]−1 + 1

pi(K+1)
· 11>

)
.

Journal of Statistical Software 13

Quadratic approximation

Because the yi are independent, the full data log-likelihood, score, and information are defined
as

`(β) =
N∑
i=1

`i(β) ,

U(β) =
N∑
i=1

Ui(β) = X>W (z −Xβ) , and

I(β) =
N∑
i=1
Ii(β) = X>WX ,

where X =

X1
...
XN

 , z =

 z1
...
zN

 , and W =


W1 0 · · · 0
0 W2 · · · 0
...

...
0 0 · · · WN

 .

Let β̂(r) denote the coefficient estimates after the rth outer loop iteration, and let the (r)
superscript denote terms that depend on β̂(r). Of course, starting values are required for the
first iteration, and this topic will be discussed later. We define the quadratic approximation
of `(β) as the weighted sum of squares expression

`(r)(β) = −1
2(z(r) −Xβ)> W (r) (z(r) −Xβ) .

The derivation is provided in Appendix D. This is the second order Taylor series expansion of
` at β̂(r), up to an additive constant that does not depend on β. Also, the Hessian is replaced
by its expectation, −I(β̂(r)). The inner loop computes β̂(r+1) by optimizing the penalized
quadratic approximation.

3.4. Optimization inner loop (coordinate descent)

For unpenalized maximum likelihood estimation, the quadratic approximation is maximized
by the usual weighted least squares solution β̂(r+1) = (X>W (r)X)−1X>W (r)z(r). With the
elastic net penalty, we can still follow the IRLS procedure, but the optimization step no longer
has a closed form solution. This is because partial derivatives of the elastic net penalty do
not exist at zero for any of the penalized coefficients. The optimization step can instead be
done with a coordinate descent procedure. This involves cycling through the coefficient esti-
mates, updating each one with the value that marginally optimizes the approximate objective
function. The cycle is iterated until convergence.
LetM(r)(β) denote the elastic net objective function with `(r)(β) in place of `(β). Let β̂(r,s)

j

denote the estimate of βj at the s-th inner loop iteration of the r-th outer loop iteration. Let
M(r,s)

j (t) =M(r)(β̂(r,s+1)
1 , . . . , β̂

(r,s+1)
j−1 , t, β̂

(r,s)
j+1 , . . . , β̂

(r,s)
Q) denoteM(r) as a marginal function

of the j-th regression coefficient only, with all other coefficients fixed at their current estimates.
The s-th iteration coordinate descent update of the j-th coefficient is arg minM(r,s)

j (t). If ωj =
0 (i.e., βj is unpenalized), then this can be solved straightforwardly by setting d

dtM
(r,s)
j (t) = 0.

14 ordinalNet: Regularized Ordinal Regression in R

In general, for t 6= 0,

d

dt
M(r,s)

j (t) = − 1
N+

XT
∗jW

(r)
(
z(r) −X∗−j β̂(r,s)

−j − tX∗j
)

+ λ (α · sign(t) + (1− α) · t) ,

where X∗j denotes the j-th column of X, X∗−j denotes X with the j-th column deleted, and
β̂

(r,s)
−j = (β̂(r,s+1)

1 , . . . , β̂
(r,s+1)
j−1 , β̂

(r,s)
j+1 , . . . , β̂

(r,s)
Q). M(r,s)

j (t) is convex because d
dtM

(r,s)
j (t) runs

from −∞ to +∞ and is monotonically increasing. The only point where the derivative does
not exist is at t = 0, where it jumps up by 2λαωj . If | 1

N+
XT
∗jW

(r)(z(r) −X∗−j β̂−j)| > λαωj ,
then the derivative attains zero, and the value at which this occurs is arg minM(r,s)

j (t).
Otherwise the derivative changes sign at t = 0, and arg minM(r,s)

j (t) = 0. Hence, the
coordinate descent update can be written as

β̂
(r,s+1)
j =

S
(

1
N+
X>∗jW

(r)
(
z(r) −X∗−j β̂(r,s)

−j

)
, λαωj

)
1
N+
X>∗jW

(r)X∗j + λ(1− α)ωj
,

where S(x, y) = sign(x)(|x| − y)+ is the soft-thresholding operator, as defined in Friedman
et al. (2010).
On a side note, in some situations one may wish to include a model constraint that forces
some or all of the coefficients to be non-negative (e.g., to implement the non-negative garrote
penalty discussed in Breiman (1995)). With this constraint, the coordinate descent update
becomes β̂(r,s+1)

j = arg mint≥0M(r,s)
j (t), where the only difference is the restriction that t ≥ 0.

When arg minM(r,s)
j (t) < 0, then arg mint≥0M(r,s)

j (t) = 0 becauseM(r,s)
j (t) is convex. The

coordinate descent update in this case is

β̂
(r,s+1)
j =

(
1
N+
X>∗jW

(r)
(
z(r) −X∗−j β̂(r,s)

−j

)
− λαωj

)
+

1
N+
X>∗jW

(r)X∗j + λ(1− α)ωj
.

3.5. Computational efficiency and numerical stability

The inner loop update can alternatively be written in terms of the score and information as

β̂
(r,s+1)
j =

S

(
1
N+

([
U(β̂(r))

]
j

+
[
I(β̂(r))β̂(r)

]
j
−
[
I(β̂(r))β̂(r,s)

]
j

)
, λαωj

)
1
N+

[
I(β̂(r))

]
jj

+ λ(1− α)ωj
,

where the subscripts on terms with square brackets indicate the j-th vector element or matrix
diagonal. Written in this form, we see that only the numerator term [I(β̂(r))β̂(r,s)]j needs to
be updated with each inner loop iteration. Furthermore, only one element of β̂(r,s) changes
with each inner loop iteration, so the numerator term can be updated without performing a
full matrix multiplication.
For computational efficiency, it is important to recognize the sparse block structure of W
when performing matrix multiplication. Also, the Xi matrices of the nonparallel and semi-
parallel models have a sparse block structure, so it may be advantageous to consider this as
well.

Journal of Statistical Software 15

Numerical instability of the information matrix can arise when the fitted class probabilities
approach zero for any observation. This is problematic even if the near-zero probability occurs
for an observation i and class j such that yij = 0. A way to prevent numerical instability
is to cap the fitted probabilities at some minimum value just for the information matrix
calculation. The score and likelihood can be computed with uncapped probabilities. (In the
ordinalNet R package, the pMin argument sets the minimum probability threshold for the
information matrix calculation.)

3.6. Regularization parameter sequence

Often we are interested in computing solutions for a sequence of λ values, rather than a single
value. For α > 0, there always exists a threshold value λmax where the first coefficient enters
the solution path. All penalized coefficients are set to zero for any λ > λmax. An off-the-shelf
method to generate a reasonable sequence of λ values is to let λmin = 0.01×λmax and consider
a sequence of λ values that is uniform between λmax and λmin on the log scale (Friedman et al.
2010).
To calculate λmax, we first fit the intercept-only model by unpenalized maximum likelihood.
Also include any unpenalized non-intercept coefficients if there are any. We then calculate
the quadratic approximation at this solution. Each penalized coefficient has a threshold value
of λ where its coordinate descent update becomes nonzero. The minimum threshold value
among all coefficients is λmax, as this is the value where the first coefficient enters the solution
path. Specifically,

λmax = min
j

1
N+αωj

∣∣∣X>∗jW (
z −X∗−j β̂−j

)∣∣∣ ,
where β̂ is the intercept-only maximum likelihood estimate, and W and z are calculated at β̂.

3.7. Starting values

Park and Hastie (2007) proposed an efficient estimation procedure for a decreasing sequence
of λ values. The β̂ solution for each λ value is used as the starting value for the next λ in
the sequence. This technique is known as “warm starts.” Furthermore, it is not necessary to
update all coefficient estimates during the coordinate descent inner loop. Many coefficient
estimates will begin and remain at zero throughout the inner loop, especially for larger λ val-
ues. It is more efficient to cycle through only the coefficients that had nonzero estimates at
the previous step. The set of nonzero coefficients is known as the “active set”. After the
coordinate descent inner loop converges, one pass can be made over each coefficient outside
the active set. If the coordinate descent update is zero for all of them, then the optimal
solution has been reached. If the final pass changes any coefficient estimate from zero to
a nonzero value, then the coordinate descent loop should be continued including these new
nonzero coefficients in the active set.
A reasonable set of starting values can usually be obtained by passing the observed response
category frequencies into the link function – this provides intercept starting values, and all
other coefficients can start at zero. This is also the solution corresponding to λmax if there
are no unpenalized non-intercept coefficients. If the first λ value is not λmax or some of the
non-intercepts are unpenalized, then this is still usually a reasonable set of starting values for
the first λ value.

16 ordinalNet: Regularized Ordinal Regression in R

3.8. Stopping rule

The coordinate descent procedure has an inner and outer loop, both of which require con-
vergence definitions and thresholds. A suggestion is to define convergence using the relative
change in the elastic net objective. For the outer loop, the definition is

∣∣∣∣M(β̂(r))−M(β̂(r−1))
M(β̂(r−1))

∣∣∣∣ < εout.
For the inner loop, the quadratic approximation to the log-likelihood should be used instead
of the true log-likelihood, so the definition is

∣∣∣∣M(r)(β̂(r,s))−M(r)(β̂(r,s−1))
M(r)(β̂(r,s−1))

∣∣∣∣ < εin. A small constant
can also be added to the denominator to allow convergence when the log-likelihood is near
zero. Based on some trial and error, it seems efficient to set the outer and inner convergence
thresholds, εout and εin, to the same value.

3.9. Algorithm summary

Let β̂[λ] denote the final coefficient vector estimate at a particular λ value in the solution
path. The full algorithm is as follows.

1. Fit the intercept-only model by maximum likelihood. (Also include any unpenalized
non-intercept coefficients if there are any.)

2. Calculate λmax and choose a decreasing sequence λmax = λ1, λ2, . . . , λM = λmin.

3. Set β̂[λ1] equal the solution of the intercept-only model.

4. For m = 2 to M :

(a) Set r ← 0 and β̂(0) ← β̂[λm−1].

(b) While
∣∣∣∣M(β̂(r))−M(β̂(r−1))

M(β̂(r−1))

∣∣∣∣ > εout:

i. Calculate U(β̂(r)) and I(β̂(r)).
ii. Set s← 0 and β̂(r,0) ← β̂(r).

iii. While
∣∣∣∣M(r)(β̂(r,s))−M(r)(β̂(r,s−1))

M(r)(β̂(r,s−1))

∣∣∣∣ > εin:

A. Calculate β̂(r,s+1) with a single cycle of coordinate descent updates over
the coefficient active set.

B. Set s← s+ 1.
iv. Do one loop of coordinate descent updates over coefficients outside the active

set. If any coefficient estimate changes to a nonzero value, then repeat the
previous loop with the new nonzero coefficients in the active set.

v. Set β̂(r+1) ← β̂(r,s).
vi. Set r ← r + 1.

(c) Set β̂[λm]← β̂(r).

Journal of Statistical Software 17

3.10. Issues with the cumulative probability family
The cumulative probability family has a constrained parameter space because the cumulative
probabilities must be monotone for every x in the population. It was discussed in Section 2.5
that if the constraint is only enforced for x in the training sample, then difficulties may arise
because an out-of-sample x may have fitted probabilities that are not monotone.
The parameter space constraint can also create difficulties during optimization. Although the
likelihood is undefined outside the constrained parameter space, we could define an improper
likelihood on the unrestricted parameter space that allows the cumulative probabilities to be
non-monotone. In this case, the class probabilities could be greater than one or less than
zero for some observations. The coefficient values that optimize the objective function may
even result in negative class probabilities provided no observation has negative probability
in a class that was observed. This is essentially the likelihood that our coordinate descent
algorithm is designed to optimize. As a result, the algorithm may seek a solution that lies
outside the constrained parameter space.
When the solution path leaves the constrained parameter space, we simply terminate the
optimization algorithm at the λ value where this occurred. Further work is required to devise
a constrained optimization procedure for the cumulative probability family.

4. Simulation
We have discussed three penalized ELMO model forms for ordinal data – parallel, nonparallel,
and semi-parallel. The purpose of the following simulation experiments is to show scenarios
where each of these three model types yields better out-of-sample prediction accuracy than
the others.
We conducted three simulation experiments, each based on 100 replicates. For each replicate,
we simulated a training data set of 50 observations, along with a very large validation set
of 10,000 observations for evaluating out-of-sample prediction accuracy. The validation data
set was chosen to be large so that the out-of-sample prediction accuracy could be estimated
precisely for each randomly generated training data set. Both the training and test data sets
were simulated from a forward stopping ratio model with the parameters shown in Table 2.
In each of the experiments, the covariates were simulated as independent, standard normal
random variables.
Now consider the estimation procedures. For each of the three models, parallel, nonparallel,
and semi-parallel, the elastic net tuning parameter was set to α = 1 (i.e., lasso penalty).
For the semi-parallel model, the tuning parameter ρ was set to one. A λ sequence of twenty
values was generated uniformly on the log scale between λmax of the full training data and
0.01 × λmax. For each simulated data set, five-fold cross-validation was used to select the
optimal tuning parameter. The λ value with the highest average out-of-sample log-likelihood
across the five folds was selected.
Boxplots of the simulation results are shown in Figure 1. Prediction accuracy was measured
using the percentage of deviance explained and the misclassification rate on the validation
data. Now, we compare the medians of these metrics for the three models in each simulation.
As one might expect, the nonparallel model performs the best in Simulation 1 because the
parallelism assumption is violated for every predictor with nonzero coefficients. The parallel
model performs the best in Simulation 2 because the parallelism assumption holds for every

18 ordinalNet: Regularized Ordinal Regression in R

Parameter Sim 1 Sim 2 Sim 3

c

(
−0.5

0

) (
−0.5

0

) (
−0.5

0

)

B



2 −2
...

... ×5
2 −2
0 0
...

... ×10
0 0





2 2
...

... ×5
2 2
0 0
...

... ×10
0 0





−2 2
2 2
...

... ×4
2 2
0 0
...

... ×10
0 0


Table 2: Data simulation parameters for the three simulation experiments. For each experi-
ment, the data generating mechanism was a forward stopping ratio model. The sample size
was N = 50 for training data and N = 10,000 for validation.

Figure 1: Out-of-sample percentage of deviance explained and misclassification rate across
100 replicates for the simulation experiment. For each replicate, out-of-sample prediction
accuracy was evaluated on 10,000 observations generated from the same distribution as the
training set. Deviance explained was calculated as 1 − loglik1/loglik0 where loglik1 is the
log-likelihood of the out-of-sample data calculated from the fitted model and loglik0 is the
within-sample log-likelihood of a null model (no covariates) fit to the out-of-sample data.
This quantity is usually positive but can be negative.

predictor. The semi-parallel model performs the best in Simulation 3 because the parallelism
assumption holds for most of the predictors, but it is violated for the first predictor.
Note that in every simulation scenario, the semi-parallel model fit is nearly as good, if not
better, than both the parallel and nonparallel model fits. This is not to say that the semi-
parallel model should always be preferred, but it is evidence that it is a highly versatile model.
In practice, cross-validation could be used to determine which of the three methods performs
the best, using out-of-sample log-likelihood, or another measure of fit. In addition, it could
be worthwhile to use cross-validation to compare different values of ρ for the semi-parallel fit.

Journal of Statistical Software 19

5. Method comparison
We now demonstrate ELMO class models alongside other established methods for out-of-
sample prediction and variable selection. We use a data set from a cancer genomics example
presented by Archer et al. (2014). The data are a subset of the Gene Expression Omnibus
GSE18081. The R package ordinalgmifs contains a filtered version of this data set called
hccframe. It contains methylation levels of 46 CpG sites from 56 human subjects. The
measurements come from liver tissue samples assayed using the Illumina GoldenGate Methy-
lation BeadArray Cancer Panel I (Archer, Mas, Maluf, and Fisher 2010). Twenty subjects
have a normal liver, 16 have cirrhosis (disease), and 20 have hepatocellular carcinoma (severe
disease). These categories have a natural ordering according to disease severity.
The analysis goal was to use CpG site methylation levels values to predict liver disease – more
specifically, to estimate the probability that each subject’s liver would be classified as healthy,
diseased, or severely diseased. The number of predictors is large relative to the sample size,
making regularization and/or variable selection imperative.
To compare the out-of-sample prediction performance of various methods, we used cross-
validation by fitting the models 100 times, each time holding out ten randomly selected
subjects from the training sample. The out-of-sample prediction performance was evaluated
using the Brier score (Brier 1950) and misclassification rate. We chose the Brier score as the
performance metric because likelihood-based metrics (e.g., percentage of deviance explained)
are highly sensitive to rare cases where the predicted probability of an observed class is very
small – this problem is known as hypersensitivity to the logarithmic scoring rule (Selten 1998).
A total of six models were compared, based on three methods summarized below. An abbre-
viation for each model is written in parentheses for reference.

1. Adjacent category models with elastic net penalty.

• Three models: parallel (ACAT-P), nonparallel (ACAT-N), and semi-parallel
(ACAT-S).

• Logit link with forward parameterization.
• α = 0.5
• λ was tuned by ten-fold cross-validation within each training sample, and the value

with the best average out-of-sample log-likelihood was selected.
• The same λ sequence was used for each of the ten cross-validation folds. λmax was

calculated from the full data, and a sequence of 100 values was generated uniformly
on the logarithmic scale from λmax to λmax × 10−4.

• Fit by ordinalNet.

2. Multinomial logistic regression models with elastic net penalty.

• Two models: standard lasso (ML) and group lasso (ML-G).
• α = 0.5
• λ was tuned by ten-fold cross-validation within each training sample, and the value

with the best average out-of-sample log-likelihood was selected.

20 ordinalNet: Regularized Ordinal Regression in R

• The same λ sequence was used for each of the ten cross validation folds. λmax was
calculated from the full data, and a sequence of 100 values was generated uniformly
on the logarithmic scale from λmax to λmax × 10−4.

• Fit by glmnet.

3. Adjacent category model with GMIFS solution path (GMIFS).

• Logit link with forward parameterization.

• The GMIFS solution path was fit with step size 0.01.

• The number of steps was tuned by ten-fold cross-validation within each training
sample, and the step number with the best out-of-sample-log-likelihood was se-
lected.

• The maximum number of steps was calculated from the full training data. If the
GMIFS algorithm terminated short of the maximum step limit for any of the ten
cross-validation folds, then model where the algorithm terminated was used for the
remaining steps.

• Fit by ordinalgmifs.

All of these models are forms of the forward adjacent category model with logit link (see
Appendix A for details). ACAT-N, ACAT-S, ML, and ML-G are all the same model but with
different forms of the elastic net penalty. ACAT-P and GMIFS also have the same model
space except that it is restricted by the parallelism assumption.
For both ordinalNet and glmnet, we set the argument standardize = TRUE to standardize
the training data and return the fitted model with coefficients on the scale of the original data
each time the model was fit. For ordinalgmifs, setting the argument scale = TRUE returns a
model on the scale of the standardized data. To be consistent with ordinalNet and glmnet,
we set scale = FALSE and standardized the training data before passing it to ordinalgmifs,
then scaled the coefficients and intercepts back to the scale of the original data to make
out-of-sample predictions.
Results for the experiment are summarized in Table 3, Figure 2, and Figure 3. All models
perform reasonably well, but ACAT-P had the best average Brier score and misclassification
rate by a slight margin. ACAT-S had the second best average Brier score while GMIFS had
the second best average misclassification rate. Undoubtedly the best model and regularization
technique combination will vary by application, but this comparison illustrates that ELMO
models with parallel, semi-parallel, and nonparallel penalties are a viable option.
In addition to class prediction, penalized regression can be used for variable selection, i.e., to
determine which of the 46 CpG site methylation levels are most associated with liver disease.
Table 4 shows which CpG sites were selected by each method. All models were tuned on the
full data the same way that they were trained in the cross-validation study. GMIFS is the
most sparse model, although ACAT-S selects nearly the same set of CpG sites.

Journal of Statistical Software 21

Brier score Misclassification rate
ACAT-P 0.123 (0.0091) 0.082 (0.0085)
ACAT-N 0.128 (0.0087) 0.093 (0.0078)
ACAT-S 0.123 (0.0088) 0.093 (0.0088)
ML 0.155 (0.0086) 0.116 (0.0081)
ML-G 0.153 (0.0084) 0.114 (0.0080)
GMIFS 0.132 (0.0097) 0.088 (0.0079)

Table 3: Out-of-sample Brier score and misclassification rate for the method comparison
on the liver disease dataset (GSE18081). Each model was fit 100 times, and each time ten
randomly selected subjects were held out from the training data. The Brier score and mis-
classification rate were calculated for the ten held out subjects. The value reported is the
mean (standard error) across 100 replicates.

Figure 2: Out-of-sample Brier score for the method comparison on the liver disease dataset
(GSE18081). The box plots summarize the results across 100 replicates. Note that a lower
score indicates better prediction accuracy.

Figure 3: Out-of-sample misclassification rate for the method comparison on the liver disease
dataset (GSE18081). Each replicate has a misclassification rate of 0, 0.1, 0.2, 0.3, or 0.4
corresponding to 0, 1, 2, 3, or 4 misclassifications among ten out-of-sample observations.

22 ordinalNet: Regularized Ordinal Regression in R

ACAT-P ACAT-N ACAT-S ML ML-G GMIFS
CDKN2B_seq_50_S294_F 14.0 1 2 2 3 14.4
DDIT3_P1313_R 7.6 2 1 2 3 8.1
ERN1_P809_R − 2.4 1 1 2 3 −1.9
GML_E144_F −6.6 2 2 2 3 −7.8
HDAC9_P137_R −0.2 · 1 1 3 −0.3
HLA.DPA1_P205_R −0.6 1 1 1 3 −1.3
HOXB2_P488_R 1.5 1 2 2 3 0.4
IL16_P226_F −10.0 1 2 2 3 −13.7
IL16_P93_R −3.2 1 1 1 3 −2.1
IL8_P83_F −1.3 1 2 2 3 −1.1
MPO_E302_R −10.0 1 2 1 3 −10.7
MPO_P883_R −1.2 1 1 1 3 −1.0
PADI4_P1158_R 4.6 2 2 2 3 4.5
SOX17_P287_R 6.4 2 2 2 3 9.1
TJP2_P518_F 15.3 1 2 1 3 22.5
WRN_E57_F −6.8 1 1 1 3 −4.8
CRIP1_P874_R · 2 1 2 3 ·
SLC22A3_P634_F 2.0 1 1 2 3 ·
CCNA1_P216_F 0.6 1 · 2 3 ·
SEPT9_P374_F · 1 · · · ·
ITGA2_E120_F · · · 1 3 ·
ITGA6_P718_R · 1 · · · ·
HGF_P1293_R −2.0 · · · · ·
DLG3_E340_F −0.2 1 · 1 3 ·
APP_E8_F −8.8 1 · · 3 ·
SFTPB_P689_R −7.0 1 2 1 3 −4.2
PENK_P447_R · 1 · 1 3 ·
COMT_E401_F −1.7 1 2 2 3 −2.5
NOTCH1_E452_R · · · · · ·
EPHA8_P456_R −6.3 1 1 1 3 ·
WT1_P853_F · · · · · ·
KLK10_P268_R · 1 · 2 3 ·
PCDH1_P264_F −0.3 2 1 1 3 ·
TDGF1_P428_R · 1 · · 3 ·
EFNB3_P442_R · 1 · · · ·
MMP19_P306_F · 1 · · · ·
FGFR2_P460_R · · · 1 3 ·
RAF1_P330_F · 1 · · · ·
BMPR2_E435_F · 1 · 1 3 ·
GRB10_P496_R · 1 · · · ·
CTSH_P238_F 3.2 1 · · 3 ·
SLC6A8_seq_28_S227_F · · · · · ·
PLXDC1_P236_F · · · · · ·
TFE3_P421_F · · · · · ·
TSG101_P139_R · · · · · ·

Table 4: Regression coefficient estimates for the method comparison on the liver disease
dataset (GSE18081). For ACAT-P and GMIFS, the coefficients are reported on the scale of
the unstandardized data, and positive coefficients shift probability toward higher response
categories. For the methods with multiple coefficients per predictor, the number of nonzero
coefficient estimates is reported instead of coefficient values. ACAT-N, ACAT-S, and ML
can have up to two nonzero coefficients per predictor. (The latter two models have three
coefficients per predictor, but at least one is always set to zero.) ML-G has three coefficients
per predictor, and by design, either selects all three coefficients or sets them all to zero.

Journal of Statistical Software 23

6. The ordinalNet R package
The ordinalNet package (version 2.10) (Wurm et al. 2021) contains the following functions:

• ordinalNet is the main function for fitting parallel, nonparallel, and semi-parallel re-
gression models with the elastic net penalty. It returns an ‘ordinalNet’ S3 object. This
object has print, summary, coef, and predict methods.

• ordinalNetTune uses K-fold cross-validation to obtain the out-of-sample log-likelihood,
misclassification rate, Brier score, or percentage of deviance explained for a sequence of
λ values. It returns an ‘ordinalNetTune’ S3 object. This object has print, summary,
and print methods.

• ordinalNetCV uses K-fold cross-validation to obtain the out-of-sample log-likelihood,
misclassification rate, Brier score, or percentage of deviance explained. Lambda is tuned
within each cross-validation fold. It returns an ‘ordinalNetCV’ S3 object. This object
has print and summary methods.

Below is a description of the ordinalNet function and its arguments.

ordinalNet(x, y, alpha = 1, standardize = TRUE, penaltyFactors = NULL,
positiveID = NULL,
family = c("cumulative", "sratio", "cratio", "acat"),
reverse = FALSE, link = c("logit", "probit", "cloglog", "cauchit"),
customLink = NULL, parallelTerms = TRUE, nonparallelTerms = FALSE,
parallelPenaltyFactor = 1, lambdaVals = NULL, nLambda = 20,
lambdaMinRatio = 0.01, includeLambda0 = FALSE, alphaMin = 0.01,
pMin = 1e-8, stopThresh = 1e-8, threshOut = 1e-8, threshIn = 1e-8,
maxiterOut = 100, maxiterIn = 100, printIter = FALSE,
printBeta = FALSE, warn = TRUE, keepTrainingData = TRUE)

Arguments

x Covariate matrix. It is recommended that categorical covariates are converted to a set
of indicator variables with a variable for each category (i.e., no baseline category);
otherwise the choice of baseline category will affect the model fit.

y Response variable. Can be a factor, ordered factor, or a matrix where each row is a
multinomial vector of counts. A weighted fit can be obtained using the matrix option,
since the row sums are essentially observation weights. Non-integer matrix entries are
allowed.

alpha The elastic net mixing parameter, with 0 <= alpha <= 1. alpha = 1 corresponds to
the lasso penalty, and alpha = 0 corresponds to the ridge penalty.

standardize If standardize = TRUE, the predictor variables are scaled to have unit vari-
ance. Coefficient estimates are returned on the original scale.

24 ordinalNet: Regularized Ordinal Regression in R

penaltyFactors Optional non-negative vector of penalty factors with length equal to the
number of columns in x. If this argument is used, then the penalty for each variable is
scaled by its corresponding factor. If NULL, the penalty factor is one for each coefficient.

positiveID Logical vector indicating whether each coefficient should be constrained to be
non-negative. If NULL, the default value is FALSE for all coefficients.

family Specifies the type of model family. Options are "cumulative" for cumulative prob-
ability, "sratio" for stopping ratio, "cratio" for continuation ratio, and "acat" for
adjacent category.

reverse Logical. If TRUE, then the “backward” form of the model is fit, i.e., the model is
defined with response categories in reverse order. For example, the reverse cumula-
tive model with K + 1 response categories applies the link function to the cumulative
probabilities P (Y ≥ 2), . . . , P (Y ≥ K + 1), rather then P (Y ≤ 1), . . . , P (Y ≤ K).

link Specifies the link function. The options supported are logit, probit, complementary
log-log, and cauchit. Only used if customLink = NULL.

customLink Optional list containing a vectorized link function g, a vectorized inverse link h,
and the Jacobian function of the inverse link getQ. The Jacobian should be defined as
∂h(η)/∂η> (as opposed to the transpose of this matrix).

parallelTerms Logical. If TRUE, then parallel coefficient terms will be included in the model.
parallelTerms and nonparallelTerms cannot both be FALSE.

nonparallelTerms Logical. If TRUE, then nonparallel coefficient terms will be included in
the model. parallelTerms and nonparallelTerms cannot both be FALSE.

parallelPenaltyFactor Non-negative numeric value equal to one by default. The penalty
on all parallel terms is scaled by this factor (as well as variable-specific penaltyFactors).
Only used if parallelTerms = TRUE.

lambdaVals An optional user-specified lambda sequence (vector). If NULL, a sequence will be
generated based on nLambda and lambdaMinRatio. In this case, the maximum lambda
is the smallest value that sets all penalized coefficients to zero, and the minimum lambda
is the maximum value multiplied by the factor lambdaMinRatio.

nLambda Positive integer. The number of lambda values in the solution path. Only used if
lambdaVals = NULL.

lambdaMinRatio A factor greater than zero and less than one. Only used if lambdaVals =
NULL.

includeLambda0 Logical. If TRUE, then zero is added to the end of the sequence of lambdaVals.
This is not done by default because it can significantly increase computational time. An
unpenalized saturated model may have infinite coefficient solutions, in which case the
fitting algorithm will still terminate when the relative change in log-likelihood becomes
small. Only used if lambdaVals = NULL.

Journal of Statistical Software 25

alphaMin max(alpha, alphaMin) is used to calculate the starting lambda value when lambdaVals
= NULL. In this case, the default lambda sequence begins with the smallest lambda value
such that all penalized coefficients are set to zero (i.e., the value where the first penal-
ized coefficient enters the solution path). The purpose of this argument is to help select
a starting value for the lambda sequence when alpha = 0, because otherwise it would
be infinite. Note that alphaMin is only used to determine the default λ sequence and
that the model is always fit using alpha to calculate the penalty.

pMin Value greater than zero, but much less than one. During the optimization routine, the
Fisher information is calculated using fitted probabilities. For this calculation, fitted
probabilities are capped below by this value to prevent numerical instability.

stopThresh In the relative log-likelihood change between successive λ values falls below this
threshold, then the last model fit is used for all remaining lambda.

threshOut Convergence threshold for the coordinate descent outer loop. The optimization
routine terminates when the relative change in the penalized log-likelihood between
successive iterations falls below this threshold. It is recommended to set theshOut
equal to threshIn.

threshIn Convergence threshold for the coordinate descent inner loop. Each iteration con-
sists of a single loop through each coefficient. The inner loop terminates when the
relative change in the penalized approximate log-likelihood between successive itera-
tions falls below this threshold. It is recommended to set theshOut equal to threshIn.

maxiterOut Maximum number of outer loop iterations.

maxiterIn Maximum number of inner loop iterations.

printIter Logical. If TRUE, the optimization routine progress is printed to the terminal.

printBeta Logical. If TRUE, coefficient estimates are printed after each coordinate descent
outer loop iteration.

warn Logical. If TRUE, the following warning message is displayed when fitting a cumulative
probability model with nonparallelTerms = TRUE (i.e., nonparallel or semi-parallel
model). “Warning message: For out-of-sample data, the cumulative probability model
with nonparallelTerms = TRUE may predict cumulative probabilities that are not
monotone increasing.” The warning is displayed by default, but the user may wish
to disable it.

keepTrainingData Logical. If TRUE, then x and y are saved with the returned ‘ordinalNet’
object. This allows predict.ordinalNet to return fitted values for the training data
without passing a newx argument.

7. Demonstration in R
This section contains five examples that demonstrate different aspects of the ordinalNet
package (Wurm et al. 2021) using the same subset of the Gene Expression Omnibus GSE18081
data set used in Section 5.

26 ordinalNet: Regularized Ordinal Regression in R

parallelTerms nonparallelTerms
Parallel TRUE FALSE
Nonparallel FALSE TRUE
Semi-parallel TRUE TRUE

Table 5: Argument settings for the parallel, nonparallel, and semi-parallel model forms.

Examples 1–3 (Sections 7.1–7.3) demonstrate how to fit the parallel, semi-parallel, and non-
parallel model forms, respectively, using the ordinalNet function. The model form is de-
termined by the Boolean arguments parallelTerms and nonparallelTerms, as shown in
Table 5.
Example 4 (Section 7.4) demonstrates how one might use the ordinalNetTune function to
select an appropriate value for the tuning parameter λ. This function uses cross-validation
to evaluate the out-of-sample prediction performance of a sequence of λ values.
Example 5 (Section 7.5) demonstrates the ordinalNetCV function, which tunes the model
within each cross-validation fold and evaluates the out-of-sample prediction performance.
This provides an estimate of the out-of-sample performance of a tuned model. A variety of
tuning procedures can be used, including AIC, BIC, and cross-validation (within each fold).

7.1. Example 1

We fit a parallel cumulative probability model with logit link (proportional odds model). We
set parallelTerms = TRUE and nonparallelTerms = FALSE to obtain the parallel model
fit. We use the default elastic net tuning parameter alpha = 1 to select the lasso penalty.
We use the default settings of lambdaVals = NULL, nLambda = 20, and lambdaMinRatio =
0.01 to generate a sequence of twenty λ values, with λmax equal to the smallest value that
sets every coefficient to zero and λmin = λmax · 0.01. The sequence runs from λmin to λmax
uniformly on the logarithmic scale.

R> library("ordinalNet")
R> library("ordinalgmifs")
R> data("hccframe")
R> y <- hccframe$group
R> x <- as.matrix(subset(hccframe, select = -group))
R> fit1 <- ordinalNet(x, y, family = "cumulative", link = "logit",
+ parallelTerms = TRUE, nonparallelTerms = FALSE)

The summary method displays the lambda sequence (lambdaVals), number of nonzero coef-
ficients (nNonzero), the log-likelihood (loglik), percent deviance explained (pctDev), and
AIC and BIC. The AIC and BIC are calculated using nNonzero as the approximate degrees
of freedom

R> head(summary(fit1))

lambdaVals nNonzero loglik devPct aic bic
1 0.4287829 2 -61.22898 0.0000000 126.45797 130.5087
2 0.3364916 6 -49.70793 0.1881634 111.41586 123.5680

Journal of Statistical Software 27

3 0.2640652 10 -40.97485 0.3307932 101.94970 122.2032
4 0.2072278 11 -33.86289 0.4469467 89.72579 112.0047
5 0.1626241 12 -28.29049 0.5379560 80.58097 104.8852
6 0.1276209 15 -23.15157 0.6218855 76.30313 106.6834

The coef method can return the coefficient estimates of any model fit in the λ sequence.
The best AIC fit is selected by default. The matrix = TRUE option returns the coefficients in
matrix form with a column corresponding to each linear predictor. Because this is a parallel
model, the coefficient columns are identical except for the intercepts.

R> head(coef(fit1, matrix = TRUE))

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) -27.997567 -19.157113
CDKN2B_seq_50_S294_F -13.774058 -13.774058
DDIT3_P1313_R -8.393522 -8.393522
ERN1_P809_R 1.215556 1.215556
GML_E144_F 7.263032 7.263032
HDAC9_P137_R 0.000000 0.000000

The coefficients have relatively large magnitude. One reason is that the coefficients are on
the scale of the unstandardized covariates, all of which have fairly small standard deviations.
Another reason is that the best AIC fit explains over 96% of total deviance, so naturally some
of the effects are quite large.

7.2. Example 2

By setting parallelTerms = TRUE and nonparallelTerms = TRUE, we obtain the semi-
parallel model fit. Because this is a cumulative probability model, we set warn = FALSE
to suppress the warning that the semi-parallel form is susceptible to non-monotone cumu-
lative probabilities for out-of-sample predictions. We use the default semi-parallel tuning
parameter ρ, which is parallelPenaltyFactor = 1. The coefficient matrix of the best AIC
fit has identical columns for most, but not all, of the predictors.

R> fit2 <- ordinalNet(x, y, family = "cumulative", link = "logit",
+ parallelTerms = TRUE, nonparallelTerms = TRUE, warn = FALSE)
R> head(summary(fit2))

lambdaVals nNonzero loglik devPct aic bic
1 0.4287829 2 -61.22898 0.0000000 126.45797 130.5087
2 0.3364916 7 -49.66682 0.1888349 113.33363 127.5111
3 0.2640652 9 -40.70441 0.3352102 99.40881 117.6370
4 0.2072278 11 -33.66859 0.4501201 89.33718 111.6160
5 0.1626241 14 -27.93291 0.5437959 83.86583 112.2208
6 0.1276209 16 -22.97691 0.6247381 77.95381 110.3594

R> head(coef(fit2, matrix = TRUE))

28 ordinalNet: Regularized Ordinal Regression in R

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) -23.518682 -22.199967
CDKN2B_seq_50_S294_F -5.732730 -18.218945
DDIT3_P1313_R -8.604492 -8.604492
ERN1_P809_R 1.010048 1.010048
GML_E144_F 7.414796 7.414796
HDAC9_P137_R 0.000000 0.000000

7.3. Example 3

By setting parallelTerms = FALSE and nonparallelTerms = TRUE, we obtain the nonpar-
allel model fit. This example demonstrates the problem with the nonparallel cumulative
probability model discussed in Sections 2.5 and 3.10. The solution path is terminated after
the third λ value where the optimum leaves the constrained parameter space. This can be
seen from the summary method output.
The semi-parallel model is also susceptible to this issue, but it is less prone. The stopping
ratio, continuation ratio, and adjacent category models avoid this issue altogether because
their parameter space is not restricted. These may be better options than the nonparallel
cumulative probability model in cases like this.

R> fit3 <- ordinalNet(x, y, family = "cumulative", link = "logit",
+ parallelTerms = FALSE, nonparallelTerms = TRUE, warn = FALSE)
R> head(summary(fit3), 8)

lambdaVals nNonzero loglik devPct aic bic
1 0.40460545 2 -61.22898 0.0000000 126.4580 130.5087
2 0.31751816 4 -52.35095 0.1449972 112.7019 120.8033
3 0.24917554 7 -45.58072 0.2555696 105.1614 119.3389
4 0.19554299 20 -44.73266 0.2694202 129.4653 169.9724
5 0.15345431 27 -44.73265 0.2694204 143.4653 198.1498
6 0.12042480 27 -44.73265 0.2694204 143.4653 198.1498
7 0.09450456 27 -44.73265 0.2694204 143.4653 198.1498
8 0.07416340 27 -44.73265 0.2694204 143.4653 198.1498

R> head(coef(fit3, matrix = TRUE))

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 1.192961 -1.008505
CDKN2B_seq_50_S294_F 0.000000 0.000000
DDIT3_P1313_R 0.000000 0.000000
ERN1_P809_R 0.000000 0.000000
GML_E144_F 0.000000 0.000000
HDAC9_P137_R 0.000000 0.000000

Journal of Statistical Software 29

7.4. Example 4

The ordinalNetTune function uses K-fold cross-validation to obtain out-of-sample perfor-
mance for a sequence on λ values. We demonstrate this function using the parallel cumulative
logit model. We use the default setting of nFolds = 5 and the default sequence of twenty
λ values obtained from the model fit to the full data. We also set lambdaMinRatio = 1e-4
instead of the default value 0.01.
The summary method returns the average out-of-sample log-likelihood, misclassification rate,
Brier score, and percentage of deviance explained for each λ value. The average is taken across
all cross-validation folds. The user can use this information to tune the model, for example
by selecting the λ value with the best average out-of-sample log-likelihood, as demonstrated
below. We obtain the coefficient estimates at this λ value, which happens to be the thirteenth
value in the sequence.

R> RNGkind(sample.kind = "Rounding")
R> set.seed(123)
R> fit1_tune <- ordinalNetTune(x, y, family = "cumulative", link = "logit",
+ lambdaMinRatio = 1e-04, printProgress = FALSE)
R>
R> summary(fit1_tune)

lambda loglik_avg misclass_avg brier_avg devPct_avg
1 4.287829e-01 -12.116291 0.55151515 0.65478933 0.001124981
2 2.640652e-01 -9.072777 0.28484848 0.47093864 0.250327320
3 1.626241e-01 -7.060731 0.21363636 0.36088470 0.416917751
4 1.001517e-01 -5.300077 0.10606061 0.26720041 0.563612864
5 6.167827e-02 -3.914669 0.08787879 0.18989857 0.678678299
6 3.798445e-02 -3.025536 0.08787879 0.14636709 0.752340784
7 2.339266e-02 -2.442410 0.06969697 0.12236662 0.800617784
8 1.440633e-02 -2.042826 0.06969697 0.10569608 0.833781030
9 8.872110e-03 -1.792745 0.05151515 0.09531195 0.854663408
10 5.463873e-03 -1.665212 0.06969697 0.09020582 0.865216734
11 3.364916e-03 -1.659950 0.06969697 0.09250623 0.865655597
12 2.072278e-03 -1.613669 0.06969697 0.09051878 0.869552720
13 1.276209e-03 -1.600092 0.06969697 0.09060128 0.870756540
14 7.859507e-04 -1.623919 0.08787879 0.09322183 0.868875491
15 4.840264e-04 -1.688259 0.06969697 0.09790222 0.863648319
16 2.980868e-04 -1.773510 0.06969697 0.10269534 0.856739885
17 1.835762e-04 -1.883527 0.06969697 0.10755198 0.847825825
18 1.130551e-04 -2.006329 0.06969697 0.11185762 0.837903212
19 6.962477e-05 -2.124826 0.06969697 0.11568726 0.828309912
20 4.287829e-05 -2.248561 0.06969697 0.11947760 0.818317707

R> head(coef(fit1_tune$fit, matrix = TRUE, whichLambda = 13))

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) -74.49220 -60.13542

30 ordinalNet: Regularized Ordinal Regression in R

CDKN2B_seq_50_S294_F -22.25175 -22.25175
DDIT3_P1313_R -12.44390 -12.44390
ERN1_P809_R 3.56758 3.56758
GML_E144_F 12.10814 12.10814
HDAC9_P137_R 0.00000 0.00000

7.5. Example 5

Suppose we use ordinalNetTune to choose the λ value with, say, the best average out-
of-sample misclassification rate. Then the average misclassification rate obtained by cross-
validation for that λ value is a biased estimate for the tuned model’s true out-of-sample
misclassification rate (likely better than the true rate). In order to get an unbiased estimate,
we need to evaluate the tuned model on data that has not been used to either train or
tune the model. Rather than reserving data for that purpose, another option is to use the
ordinalNetCV function, which uses cross-validation to evaluate the out-of-sample prediction
performance of a model tuned by cross validation.
The ordinalNetCV function does this by performing a nested cross validation procedure.
Essentially, ordinalNetCV calls ordinalNetTune on the training set of each training/test
split and selects the λ value with the best average out-of-sample prediction according to the
metric specified by the tuneMethod argument (misclassification rate, Brier score, etc.). The
out-of-sample prediction is then assessed on the test set using the selected λ value.
We demonstrate this function again using the parallel cumulative logit model. We use the
default value of nFolds = 5 to obtain five estimates of the out-of-sample prediction. We also
use the default settings of nFoldsCV = 5 and tuneMethod = "cvLoglik" to tune λ by 5-fold
cross-validation on the training set of each fold, each time selecting the λ value with the best
average out-of-sample log-likelihood. As in Example 4 (Section 7.4), we set lambdaMinRatio
= 1e-4.
The summary method returns the λ value selected by the tuning procedure for each cross-
validation fold, along with the out-of-sample log-likelihood, misclassification rate, Brier score,
and percentage of deviance explained.

R> set.seed(123)
R> fit1_cv <- ordinalNetCV(x, y, family = "cumulative", link = "logit",
+ lambdaMinRatio = 1e-04, printProgress = FALSE)
R>
R> summary(fit1_cv)

lambda loglik misclass brier devPct
fold1 0.008872110 -3.7368700 0.16666667 0.21204288 0.7110074
fold2 0.005463873 -0.6340910 0.00000000 0.02362936 0.9471179
fold3 0.008872110 -0.9913706 0.00000000 0.04707506 0.9155417
fold4 0.023392656 -2.6007982 0.09090909 0.13826233 0.7830979
fold5 0.037984451 -3.7018244 0.09090909 0.17728753 0.6912742

Taking the average across folds gives a single estimate for each metric.

Journal of Statistical Software 31

R> colMeans(summary(fit1_cv))

lambda loglik misclass brier devPct
0.01691704 -2.33299083 0.06969697 0.11965943 0.80960782

8. Discussion
This paper introduced the elementwise link multinomial-ordinal (ELMO) model class, a rich
class of multinomial regression models that includes some of the most commonly used cat-
egorical regression models. Each of these models has both a parallel and nonparallel form.
The parallel form is appropriate for ordinal data, while the nonparallel form is a more flexible
model which can be used with either an ordered or unordered categorical response. We also
introduced the semi-parallel model form, which can be used with elastic net penalty to shrink
the nonparallel model toward the parallel model.
The motivation for this work began with a need to extend variable selection tools for ordinal
logistic regression. For instance, consider the problem of developing a gene signature to
predict response to a novel therapy, where the observed patient response belongs to one of
the following categories: no response, partial response, or complete response. We developed
these tools in the general ELMO framework. Specifically, we proposed a coordinate descent
fitting algorithm for the ELMO class with elastic net penalty. The algorithm is general and
can also be applied to multinomial regression models outside the ELMO class.
We conducted numerical experiments to highlight different features of the model class and
to demonstrate the use of the related R code. We presented different simulation scenarios
to demonstrate cases where the parallel, nonparallel, and semi-parallel each achieved better
out-of-sample prediction performance than the other two models. With a subset of the Gene
Expression Omnibus GSE18081 data set, we demonstrated the use of the penalized ELMO
class for prediction and variable selection.
Finally, we introduced the R package ordinalNet, which implements the coordinate descent
algorithm for parallel, nonparallel, and semi-parallel models of the ELMO class.
We consider two possible directions for future research: code speedup via C++ (Stroustrup
2013) and questions of statistical inference. Rcpp and RcppArmadillo are R packages which
allow integration of C++ code into R (Eddelbuettel and François 2011; Eddelbuettel 2013;
Eddelbuettel and Sanderson 2014). Our code is written with separate functions for the inner
and outer coordinate descent loops. Because of the number of calls to it in a typical run of
the algorithm, the inner loop, in particular, could benefit from speed up via C++.
The ordinalNet package does not provide standard errors for estimates. We quote a relevant
section from the penalized vignette (Goeman et al. 2018).

It is a very natural question to ask for standard errors of regression coefficients
or other estimated quantities. In principle such standard errors can easily be
calculated, e.g., using the bootstrap. Still, this package deliberately does not
provide them. The reason for this is that standard errors are not very meaningful
for strongly biased estimates such as arise from penalized estimation methods.
Penalized estimation is a procedure that reduces the variance of estimators by

32 ordinalNet: Regularized Ordinal Regression in R

introducing substantial bias. The bias of each estimator is therefore a major
component of its mean squared error, whereas its variance may contribute only a
small part.

The topic of post-selection inference has been studied in both the classic setting (Zhang
1992; Leeb and Pötscher 2005; Wang and Lagakos 2009; Berk, Brown, Buja, Zhang, and
Zhao 2013), where the number of observations exceeds the number of predictors, and the
high-dimensional setting (Javanmard and Montanari 2014; Lockhart, Taylor, Tibshirani, and
Tibshirani 2014; Tibshirani, Taylor, Lockhart, and Tibshirani 2016). In the high-dimensional
setting, we would like to highlight the groundbreaking work of Lockhart et al. (2014). They
proved the asymptotic distribution of their test statistic specifically for the linear model, but
their simulation results suggest that the same test statistic could be used for generalized linear
models. This work may provide a path for post-selection inference for penalized multinomial
and ordinal regression models.

Acknowledgments
The authors thank Alex Tahk for the suggestion that led them to explore shrinking the
nonparallel model to the parallel model. On this project, Wurm was supported by NIH grant
T32HL083806, Rathouz was supported by NIH grant R01HL094786-05A1, and Hanlon was
supported by NIH grant R01HG007377.

References

Agresti A (2003). Categorical Data Analysis, volume 482. John Wiley & Sons. doi:10.1002/
0471249688.

Archer KJ (2020a). glmnetcr: Fit a Penalized Constrained Continuation Ratio Model for
Predicting an Ordinal Response. R package version 1.0.6, URL https://CRAN.R-project.
org/package=glmnetcr.

Archer KJ (2020b). glmpathcr: Fit a Penalized Continuation Ratio Model for Predicting an
Ordinal Response. R package version 1.0.8, URL https://CRAN.R-project.org/package=
glmpathcr.

Archer KJ, Hou J, Zhou Q, Ferber K, Layne JG, Gentry A (2019). ordinalgmifs: Ordinal
Regression for High-Dimensional Data. R package version 1.0.6, URL https://CRAN.
R-project.org/package=ordinalgmifs.

Archer KJ, Hou J, Zhou Q, Ferber K, Layne JG, Gentry AE (2014). “ordinalgmifs: An
R package for Ordinal Regression in High-Dimensional Data Settings.” Cancer Informatics,
13, 187. doi:10.4137/cin.s20806.

Archer KJ, Mas VR, Maluf DG, Fisher RA (2010). “High-Throughput Assessment of
CpG Site Methylation for Distinguishing between HCV-Cirrhosis and HCV-Associated
Hepatocellular Carcinoma.” Molecular Genetics and Genomics, 283(4), 341–349. doi:
10.1007/s00438-010-0522-y.

https://doi.org/10.1002/0471249688
https://doi.org/10.1002/0471249688
https://CRAN.R-project.org/package=glmnetcr
https://CRAN.R-project.org/package=glmnetcr
https://CRAN.R-project.org/package=glmpathcr
https://CRAN.R-project.org/package=glmpathcr
https://CRAN.R-project.org/package=ordinalgmifs
https://CRAN.R-project.org/package=ordinalgmifs
https://doi.org/10.4137/cin.s20806
https://doi.org/10.1007/s00438-010-0522-y
https://doi.org/10.1007/s00438-010-0522-y

Journal of Statistical Software 33

Arlot S, Celisse A (2010). “A Survey of Cross-Validation Procedures for Model Selection.”
Statistics Surveys, 4, 40–79. doi:10.1214/09-ss054.

Berk R, Brown L, Buja A, Zhang K, Zhao L (2013). “Valid Post-Selection Inference.” The
Annals of Statistics, 41(2), 802–837. doi:10.1214/12-aos1077.

Bickel PJ, Li B (2006). “Regularization in Statistics.” Test, 15(2), 271–344. doi:10.1007/
bf02607055.

Breiman L (1995). “Better Subset Regression Using the Nonnegative Garrote.” Technometrics,
37(4), 373–384. doi:10.1080/00401706.1995.10484371.

Brier GW (1950). “Verification of Forecasts Expressed in Terms of Probability.” Monthey
Weather Review, 78(1), 1–3. doi:10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;
2.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag. doi:
10.1007/978-1-4614-6868-4.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Friedman J, Hastie T, Höfling H, Tibshirani R (2007). “Pathwise Coordinate Optimization.”
The Annals of Applied Statistics, 1(2), 302–332. doi:10.1214/07-aoas131.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

Friedman J, Hastie T, Tibshirani R, Simon N, Narasimhan B, Qian J (2021). glmnet: Lasso
and Elastic-Net Regularized Generalized Linear Models. R package version 4.1-2, URL
https://CRAN.R-project.org/package=glmnet.

Goeman JJ, Meijer RJ, Chaturvedi N (2018). penalized: L1 (Lasso and Fused Lasso) and L2
(Ridge) Penalized Estimation in GLMs and in the Cox Model. R package version 0.9-51,
URL https://CRAN.R-project.org/package=penalized.

Harrell, Jr FE (2015). Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. 2nd edition. Springer-Verlag. doi:
10.1007/978-3-319-19425-7.

Harrell, Jr FE (2021). rms: Regression Modeling Strategies. R package version 6.2-0, URL
https://CRAN.R-project.org/package=rms.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning. 2nd edition.
Springer-Verlag. doi:10.1007/b94608.

Hesterberg T, Choi NH, Meier L, Fraley C (2008). “Least Angle and `1 Penalized Regression:
A Review.” Statistics Surveys, 2, 61–93. doi:10.1214/08-ss035.

https://doi.org/10.1214/09-ss054
https://doi.org/10.1214/12-aos1077
https://doi.org/10.1007/bf02607055
https://doi.org/10.1007/bf02607055
https://doi.org/10.1080/00401706.1995.10484371
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1214/07-aoas131
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=penalized
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1007/978-3-319-19425-7
https://CRAN.R-project.org/package=rms
https://doi.org/10.1007/b94608
https://doi.org/10.1214/08-ss035

34 ordinalNet: Regularized Ordinal Regression in R

Javanmard A, Montanari A (2014). “Confidence Intervals and Hypothesis Testing for High-
Dimensional Regression.” Journal of Machine Learning Research, 15(1), 2869–2909. doi:
10.1109/allerton.2013.6736695.

Leeb H, Pötscher BM (2005). “Model Selection and Inference: Facts and Fiction.” Econo-
metric Theory, 21(01), 21–59. doi:10.1017/s0266466605050036.

Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R (2014). “A Significance Test for the Lasso.”
The Annals of Statistics, 42(2), 413. doi:10.1214/13-aos1175.

McCullagh P (1980). “Regression Models for Ordinal Data.” Journal of the Royal Statistical
Society B, 42(2), 109–142. doi:10.1111/j.2517-6161.1980.tb01109.x.

Ollier E, Viallon V (2017). “Regression Modelling on Stratified Data with the Lasso.”
Biometrika, 104(1), 83–96. doi:10.1093/biomet/asw065.

Osborne MR, Presnell B, Turlach BA (2000). “On the Lasso and Its Dual.” Journal of
Computational and Graphical Statistics, 9(2), 319–337. doi:10.1080/10618600.2000.
10474883.

Park MY, Hastie T (2007). “L1-Regularization Path Algorithm for Generalized Linear
Models.” Journal of the Royal Statistical Society B, 69(4), 659–677. doi:10.1111/j.
1467-9868.2007.00607.x.

Peterson B, Harrell, Jr FE (1990). “Partial Proportional Odds Models for Ordinal Response
Variables.” Journal of the Royal Statistical Society C, 39(2), 205–217. doi:10.2307/
2347760.

Rinaldo A (2008). “A Note on the Uniqueness of the Lasso Solution.” Technical report,
Department of Statistics Carnegie Mellon University. URL http://www.stat.cmu.edu/
research/publications_and_reports/technical_reports.

SAS Institute Inc (2017). SAS/STAT User’s Guide Procedures. SAS Institute Inc., Cary. URL
http://support.sas.com/documentation/onlinedoc/stat/indexproc.html.

Schifano ED, Strawderman RL, Wells MT (2010). “Majorization-Minimization Algorithms
for Nonsmoothly Penalized Objective Functions.” Electronic Journal of Statistics, 4, 1258–
1299. doi:10.1214/10-ejs582.

Selten R (1998). “Axiomatic Characterization of the Quadratic Scoring Rule.” Experimental
Economics, 1(1), 43–62. ISSN 1573-6938. doi:10.1007/bf01426214.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Sun W, Wang J, Fang Y (2013). “Consistent Selection of Tuning Parameters via Variable
Selection Stability.” Journal of Machine Learning Research, 14(1), 3419–3440. doi:10.
1109/icmlc.2006.258712.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, pp. 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x.

Tibshirani RJ (2013). “The Lasso Problem and Uniqueness.” Electronic Journal of Statistics,
7, 1456–1490. doi:10.1214/13-ejs815.

https://doi.org/10.1109/allerton.2013.6736695
https://doi.org/10.1109/allerton.2013.6736695
https://doi.org/10.1017/s0266466605050036
https://doi.org/10.1214/13-aos1175
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1093/biomet/asw065
https://doi.org/10.1080/10618600.2000.10474883
https://doi.org/10.1080/10618600.2000.10474883
https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.2307/2347760
https://doi.org/10.2307/2347760
http://www.stat.cmu.edu/research/publications_and_reports/technical_reports
http://www.stat.cmu.edu/research/publications_and_reports/technical_reports
http://support.sas.com/documentation/onlinedoc/stat/indexproc.html
https://doi.org/10.1214/10-ejs582
https://doi.org/10.1007/bf01426214
https://doi.org/10.1109/icmlc.2006.258712
https://doi.org/10.1109/icmlc.2006.258712
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/13-ejs815

Journal of Statistical Software 35

Tibshirani RJ, Taylor J, Lockhart R, Tibshirani R (2016). “Exact Post-Selection Inference
for Sequential Regression Procedures.” Journal of the American Statistical Association,
111(514), 600–620. doi:10.1080/01621459.2015.1108848.

Tutz G, Gertheiss J (2016). “Regularized Regression for Categorical Data.” Statistical Mod-
elling, 16(3), 161–200. doi:10.1177/1471082x16642560.

Vidaurre D, Bielza C, Larrañaga P (2013). “A Survey of L1 Regression.” International
Statistical Review, 81(3), 361–387. doi:10.1111/insr.12023.

Wang R, Lagakos SW (2009). “Inference after Variable Selection Using Restricted Permuta-
tion Methods.” Canadian Journal of Statistics, 37(4), 625–644. doi:10.1002/cjs.10039.

Wilhelm MS, Carter EM, Hubert JJ (1998). “Multivariate Iteratively Re-Weighted Least
Squares, with Applications to Dose-Response Data.” Environmetrics, 9(3), 303–315. doi:
10.1002/(sici)1099-095x(199805/06)9:3<303::aid-env305>3.0.co;2-1.

Wurm MJ, Rathouz PJ, Hanlon BM (2021). ordinalNet: Penalized Ordinal Regression.
R package version 2.10, URL https://CRAN.R-project.org/package=ordinalNet.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

Yee TW (2015). Vector Generalized Linear and Additive Models: With an Implementation in
R. Springer-Verlag. doi:10.1007/978-1-4939-2818-7.

Yee TW (2021). VGAM: Vector Generalized Linear and Additive Models. R package version
1.1-5, URL https://CRAN.R-project.org/package=VGAM.

Yee TW, Wild CJ (1996). “Vector Generalized Additive Models.” Journal of Royal Statistical
Society B, 58(3), 481–493. doi:10.1111/j.2517-6161.1996.tb02095.x.

Zhang P (1992). “Inference after Variable Selection in Linear Regression Models.” Biometrika,
79(4), 741–746. doi:10.1093/biomet/79.4.741.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal of
the Royal Statistical Society B, 67(2), 301–320. doi:10.1111/j.1467-9868.2005.00503.
x.

https://doi.org/10.1080/01621459.2015.1108848
https://doi.org/10.1177/1471082x16642560
https://doi.org/10.1111/insr.12023
https://doi.org/10.1002/cjs.10039
https://doi.org/10.1002/(sici)1099-095x(199805/06)9:3<303::aid-env305>3.0.co;2-1
https://doi.org/10.1002/(sici)1099-095x(199805/06)9:3<303::aid-env305>3.0.co;2-1
https://CRAN.R-project.org/package=ordinalNet
https://doi.org/10.18637/jss.v032.i10
https://doi.org/10.1007/978-1-4939-2818-7
https://CRAN.R-project.org/package=VGAM
https://doi.org/10.1111/j.2517-6161.1996.tb02095.x
https://doi.org/10.1093/biomet/79.4.741
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

36 ordinalNet: Regularized Ordinal Regression in R

A. Equivalence of multinomial logit and nonparallel ACAT
We show that the nonparallel adjacent category model with logit link (either forward or
backward) is an alternative but equivalent parameterization of multinomial logistic regression.
To see the equivalence, let B∗k denote the kth column of B, and let ck denote the kth intercept
term under the backward adjacent category model with logit link. Note that for k = 1, . . . ,K,

B>∗kx+ ck = logit (P (Y = k | k ≤ Y ≤ k + 1)) = log
(
pk
pk+1

)
.

Therefore,

log
(

pk
pK+1

)
= log

(
pk
pk+1

· pk+1
pk+2

· · · pK
pK+1

)
= log

(
pk
pk+1

)
+ log

(
pk+1
pk+2

)
+ · · ·+ log

(
pK
pK+1

)
= (B>∗kx+ ck) + (B>∗(k+1)x+ ck+1) + · · ·+ (B>∗Kx+ cK)
= B̃>k x+ c̃k ,

where B̃k = B∗k + B∗(k+1) + · · · + B∗K and c̃k = ck + ck+1 + · · · + cK . This is the usual
parameterization for multinomial logistic regression, where class K + 1 serves as a reference
class and B̃1, B̃2, . . . , B̃K are the coefficient vectors.
We point out that although these are equivalent parameterizations of the same model, the
elastic net penalty function differs depending on which parameterization is used.

B. Uniqueness of the semi-parallel model estimator
This section addresses the uniqueness problem for the semi-parallel model. The semi-parallel
model without the elastic net penalty is not identifiable, as there are infinitely many pa-
rameterizations for any particular model. However, different parameterizations have different
elastic net penalty terms; therefore, the penalized likelihood favors some parameterizations
over others. We will demonstrate that among almost all parameterizations for a given model,
the elastic net penalty has a unique optimum; hence, the penalized likelihood has a unique
optimum. There is one exception: the lasso penalty with integer-valued ρ. In this case, there
may be a small range of optima on a closed interval.
We proceed in the following manner. First, we formulate the basic problem. Next we consider
uniqueness for the ridge penalty (α = 0), which is the simplest case. We then consider the
lasso penalty (α = 1), where this exception can occur. Finally, we consider the elastic net
penalty with α ∈ (0, 1). These derivations are related to derivations for the lasso in the linear
model setting (Osborne, Presnell, and Turlach 2000; Rinaldo 2008; Tibshirani 2013).
To formulate the problem, take any row of the semi-parallel model coefficient matrix
(Bj1, Bj2, . . . , BjK) and the corresponding component of the coefficient vector, bj . Denote
their values as (δ1, δ2, . . . , δK) and ζ, respectively. For any set of values (β1, β2, . . . , βK), there
are an infinite number of parameterizations such that

(δ1 + ζ, δ2 + ζ, . . . , δK + ζ) = (β1, β2, . . . , βK).

Journal of Statistical Software 37

To see this, for any ζ set δk = βk − ζ for all k. All of these parameterizations have the same
likelihood because they specify the same model, but they have different elastic net penalty
terms proportional to

α

(
ρ|ζ|+

K∑
k=1
|δk|

)
+ 1

2(1− α)
(
ρζ2 +

K∑
k=1

δ2
k

)
.

Our goal is to find the value of ζ that minimizes the elastic net penalty.
We solve this as a constrained optimization problem, minimizing the penalty over
(ζ, δ1, δ2, . . . , δK) subject to the constraints δ1 + ζ = β1, δ2 + ζ = β2, . . . , δK + ζ = βK .
This is equivalent to minimizing the Lagrangian

L(ζ, δ1, δ2, . . . , δK , λ1, λ2, . . . , λK) = α

(
ρ|ζ|+

K∑
k=1
|δk|

)
+ 1

2(1− α)
(
ρζ2 +

K∑
k=1

δ2
k

)
+

+λ1(δ1 + ζ − β1) + λ2(δ2 + ζ − β1) + · · ·+ λK(δK + ζ − βK) .

Ridge regression

In this case, the Lagrangian is differentiable everywhere. Consider

0 set= ∂L

∂δk
= δk + λk = βk − ζ + λk.

Solving this yields

λk = ζ − βk.

Now consider,

0 set= ∂L

∂ζ
= ρζ + λ1 + λ2 + · · ·+ λK = ρζ +Kζ − (β1 + β2 + · · ·+ βK).

Solving this yields

ζ = 1
K + ρ

(β1 + β2 + · · ·+ βK).

The solution is unique for any ρ ≥ 0.

Lasso

Consider

0 set= ∂L

∂δk
= sign(δk) + λk = I{βk > ζ} − I{βk < ζ}+ λk.

Solving this yields

λk = I{βk < ζ} − I{βk > ζ}.

38 ordinalNet: Regularized Ordinal Regression in R

Next, consider

∂L

∂ζ
= ρ · sign(ζ) + λ1 + λ2 + · · ·+ λK

= ρ · sign(ζ)−
(∑

I{βk > ζ} −
∑

I{βk < ζ}
)
.

We want the solution where ∂L
∂ζ equals or crosses zero. That is, we are searching for the value

of ζ where f(ζ) equals or crosses ρ, with

f(ζ) = sign(ζ) ·
(∑

I{βk > ζ} −
∑

I{βk < ζ}
)
.

Note that if ρ ≥ K, then the solution will be ζ = 0. Hence, if ρ ≥ K, then all parallel
coefficients will be penalized to zero, and the fit will be equivalent to the nonparallel model
with the elastic net penalty.
Now, if ρ is not an integer, then the solution is unique. If ρ is an integer, then the solution
could be unique, or there may be a range of solutions on a closed interval between two
consecutive β’s, ranked by value.

Elastic net

Consider

0 set= ∂L

∂δk
= α · sign(δk) + (1− α)δk + λk = α · (I{βk > ζ} − I{βk < ζ}) + (1− α)(βk − ζ) + λk.

Solving this yields

λk = α · (I{βk < ζ} − I{βk > ζ}) + (1− α)(ζ − βk).

Now, consider

∂L

∂ζ
= ρα · sign(ζ) + ρ(1− α)ζ + λ1 + λ2 + · · ·+ λK

= ρα · sign(ζ) + ρ(1− α)ζ − α
(∑

I{βk > ζ} −
∑

I{βk < ζ}
)
−

− (1− α)(β1 + β2 + · · ·+ βK −Kζ)

= ρα · sign(ζ) + (1− α)(ρ+K)ζ − α
(∑

I{βk > ζ} −
∑

I{βk < ζ}
)
−

− (1− α)(β1 + β2 + · · ·+ βK −Kζ).

We want the solution where ∂L
∂ζ equals or crosses zero. This solution is less transparent than

that of ridge or lasso. However, the partial derivative is piecewise linear in ζ and never
constant over a range of values. Hence, the solution is unique.

C. The inverse link function and its Jacobian for MO families
The Jacobian of the inverse link function is required for the coordinate descent algorithm.
This computation can be compartmentalized for link functions in the ELMO class because

Journal of Statistical Software 39

of their composite form. Define h, hEL, h̃EL, and hMO to be the inverses of g, gEL, g̃EL, and
gMO, respectively. The inverse link function can be written as

h(η) = hMO(δ) = hMO(hEL(η)) ,

where hEL(η) =
(
h̃EL(η1), h̃EL(η2), . . . , h̃EL(ηK)

)
.

The Jacobian of the inverse link can be written as

Dh(η) = DhEL(η) DhMO(p) ,

where DhEL(η) = diag
{
h̃′EL(η1), h̃′EL(η2), . . . , h̃′EL(ηK)

}
.

The inverse and its derivative are well-known for common elementwise link functions, so we
do not discuss these any further (see, e.g., the make.link function in the R package stats).
To calculate h(η), it only remains to calculate hMO(δ) and DhMO(δ).
Each MO family is defined by the gMO(p) component of its multivariate link function. For
optimization, it is necessary to compute the inverse hMO(δ) and its Jacobian DhMO(δ). In
this section, we provide a method to compute these three functions for the cumulative prob-
ability, stopping ratio, continuation ratio, and adjacent category families. In some cases, it is
convenient to compute the elements of these functions recursively. Although the Jacobian is,
strictly speaking, a function of δ, we write it in terms of both p and δ when convenient. This
can be done because there is a one-to-one correspondence between δ and p.
Each family has a forward and backward form. We present only one of these forms for each
family. To fit the backward form, one can simply define the response categories in reverse
order and fit the forward model, and vice versa.

C.1. Forward cumulative probability family

This family is defined by δj = P (Y ≤ j) (see Table 1). From this definition, for all j,

[gMO(p)]j =
j∑
i=1

pi.

Now, hMO has a closed form with

[hMO(δ)]j = δj − δj−1, for all j.

DhMO also has a closed form with

[DhMO(δ)]mn =


δm(1− δm) m = n

−δm(1− δm) n = m− 1
0 otherwise.

C.2. Forward stopping ratio family

This family is defined by δj = P (Y = j | Y ≥ j) (see Table 1). From this definition,
[gMO(p)]1 = p1 and, for j = 2, . . . ,K,

[gMO(p)]j = pj

1−∑j−1
i=1 pi

.

40 ordinalNet: Regularized Ordinal Regression in R

hMO(δ) can be computed recursively, beginning with [hMO(δ)]1 = δ1. For j = 2, . . . ,K,

[hMO(δ)]j = δj

1−
j−1∑
i=1

[hMO(δ)]i

 .

DhMO(δ) can also be computed recursively. For the first row we have

[DhMO(δ)]1∗ = (1, 0, . . . , 0).

For m = 2, . . .K,

[DhMO(δ)]m∗ = −δm
m−1∑
i=1

[DhMO(δ)]i∗ +
(

1−
m−1∑
i=1

[hMO(δ)]i
)
· (0, . . . , 0, 1

mth
, 0, . . . , 0) .

C.3. Forward continuation ratio family

This family is defined by δj = P (Y > j | Y ≥ j) (Table 1). Let gMO:FSR, hMO:FSR, and
DhMO:FSR denote link, inverse link and inverse link Jacobian, respectively, for the forward
stopping ratio family. Using these function definitions, it is straightforward to compute the
corresponding functions for the forward continuation ratio family. We have

gMO(p) = 1− gMO:FSR(p),
hMO(δ) = hMO:FSR(1− δ),

DhMO(δ) = −DhMO:FSR(1− δ).

C.4. Forward adjacent category family

This family is defined by δj = P (Y = j + 1 | j ≤ Y ≤ j + 1) (see Table 1). From this
definition, for all j, we have

[gMO(p)]j = pj+1
pj + pj+1

.

Now, let ∆j = δj/(1− δj). hMO(δ) can be computed recursively, beginning with

[hMO(δ)]1 = 1
1 +∑K

i=1
∏i
j=1 ∆j

.

For j = 2, . . . ,K,
[hMO(δ)]j = [hMO(δ)]j−1∆j−1.

To compute DhMO(δ), we write p = (p1, p1∆1, p2∆2, . . . , pK−1∆K−1). DhMO(δ) can also be
computed recursively. Beginning with the first row, we have

[DhMO(δ)]1∗ = −p1(1− p1)
∆1

,−p1(1− p1 − p2)
∆2

, . . . ,−p1(1− p1 − · · · − pK)
∆K

.

Journal of Statistical Software 41

Then, for m = 2, . . . ,K,

[DhMO(δ)]m∗ = ∆m−1[DhMO(δ)](m−1)∗ + pm−1(0, . . . , 0, 1
mth

, 0, . . . , 0).

D. Quadratic approximation to the log-likelihood

We derive the quadratic approximation `(r)(β) defined in Section 3.3. We begin with the
second order Taylor expansion of the log-likelihood at β̂(r) with the Hessian replaced by its
expectation, −I(β̂(r)). We show that this equals the weighted sum of squares expression
defined as `(r)(β), up to an additive constant that does not depend on β. Letting C= denote
equality up to an additive constant, we have

`(β̂(r)) + (β − β̂(r))>U(β̂(r))− 1
2(β − β̂(r))> I(β̂(r)) (β − β̂(r))

C= β>U(β̂(r)) + β>I(β̂(r))β̂(r) − 1
2β
>I(β̂(r))β

= β>X>W (r)(z(r) −Xβ̂(r)) + β>X>W (r)Xβ̂(r) − 1
2β
>X>W (r)Xβ

= β>X>W (r)z(r) − 1
2β
>X>W (r)Xβ

C= β>X>W (r)z(r) − 1
2β
>X>W (r)Xβ − 1

2{z
(r)}>W (r)z(r) (completing the square)

= −1
2(z(r) −Xβ)> W (r) (z(r) −Xβ)

= `(r)(β).

Affiliation:
Michael J. Wurm
Department of Statistics
University of Wisconsin–Madison
1300 University Avenue, Madison, WI 53706, United States of America
E-mail: wurm@uwalumni.com

Paul J. Rathouz
Department of Population Health
Dell Medical School at the University of Texas at Austin
1601 Trinity Street, Building B, Austin, TX 78712, United States of America
E-mail: paul.rathouz@austin.utexas.edu

mailto:wurm@uwalumni.com
mailto:paul.rathouz@austin.utexas.edu

42 ordinalNet: Regularized Ordinal Regression in R

Bret M. Hanlon
Department of Biostatistics and Medical Informatics
University of Wisconsin–Madison
610 Walnut Street, Madison, WI 53726, United States of America
E-mail: bret.hanlon@wisc.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

September 2021, Volume 99, Issue 6 Submitted: 2017-06-15
doi:10.18637/jss.v099.i06 Accepted: 2019-12-09

mailto:bret.hanlon@wisc.edu
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v099.i06

	Introduction
	Elementwise link multinomial-ordinal (ELMO) class
	Notation
	An Introduction to the ELMO model class
	Family function
	Elementwise link function
	Parallel and nonparallel forms
	Semi-parallel form
	Elastic net penalty

	Coordinate descent optimization algorithm
	ELMO parameterization with a single coefficient vector
	Elastic net penalty
	Optimization outer loop (quadratic approximation)
	Optimization inner loop (coordinate descent)
	Computational efficiency and numerical stability
	Regularization parameter sequence
	Starting values
	Stopping rule
	Algorithm summary
	Issues with the cumulative probability family

	Simulation
	Method comparison
	The ordinalNet R package
	Demonstration in R
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Discussion
	Equivalence of multinomial logit and nonparallel ACAT
	Uniqueness of the semi-parallel model estimator
	The inverse link function and its Jacobian for MO families
	Forward cumulative probability family
	Forward stopping ratio family
	Forward continuation ratio family
	Forward adjacent category family

	Quadratic approximation to the log-likelihood

