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Abstract

When testing for reduction of the mean value structure in linear mixed models, it is
common to use an asymptotic χ2 test. Such tests can, however, be very poor for small
and moderate sample sizes. The pbkrtest package implements two alternatives to such
approximate χ2 tests: The package implements (1) a Kenward-Roger approximation for
performing F tests for reduction of the mean structure and (2) parametric bootstrap
methods for achieving the same goal. The implementation is focused on linear mixed
models with independent residual errors. In addition to describing the methods and as-
pects of their implementation, the paper also contains several examples and a comparison
of the various methods.
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1. Introduction

In this paper we address the question of testing for reduction of the systematic components
in mixed effects models. Attention is restricted to models which are linear and where all
random effects are Gaussian. The focus in this paper is on the implementation of these
models in the lme4 package (Bates, Maechler, Bolker, and Walker 2014a) for R (R Core Team
2014); specifically as implemented in the lmer() function. The package pbkrtest (Halekoh
and Højsgaard 2014) implements the methods described in this paper and the package is
available on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.

org/package=pbkrtest.

It is always possible to exploit that the likelihood ratio (LR) test statistic has a limiting

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=pbkrtest
http://CRAN.R-project.org/package=pbkrtest


2 pbkrtest: Tests in Linear Mixed Models in R

χ2 distribution as the amount of information in the sample goes to infinity. We shall refer to
this test as the asymptotic χ2 test. However, the χ2 approximation can be poor and lead to
misleading conclusions for small and moderate sample sizes. For certain types of studies it is
possible to base the inference on an F statistic. Such studies generally need to be balanced in
some way, for example, the number of observations in each treatment group being the same
and so on. These balance requirements can often not be met in practice. Therefore there
is a need for tests which, for a large class of linear mixed models, (1) are better than the
asymptotic χ2 test and (2) which are relatively easy to compute in practice.

The paper is structured as follows: Section 2 describes the problem addressed in more detail
and sets the notation of the paper. Section 3 illustrates the problems related to tests in
mixed models through several examples. In Section 4 we describe the approach taken by
Kenward and Roger (1997) to address the inference problem. Section 5 describes an alternative
approach based on parametric bootstrap methods. In Section 6 we apply the methods to
several data sets. Section 7 contains a discussion and outlines some additional improvements
that can be made to the implementation in pbkrtest.

Throughout this paper we will use the CRAN version 1.0-5 of the lme4 package.

2. Preliminaries and notation

In this paper we focus on linear mixed models which, in the formulation of Laird and Ware
(1982), are of the form

YN = XN×pβp + ZN×ubu + εN , (1)

where Y is an N vector of observables. The superscripts in Equation 1 refer to the dimension
of the quantities and these superscripts will be omitted whenever possible in the following.

In (1), X and Z are design matrices of the fixed and random effect, b is the random effect
vector distributed as b ∼ N(0,Γ) and ε ∼ N(0, σ2I) is the vector of residual errors where I
is the N × N identity matrix. It is assumed that b and ε are independent. The covariance
matrix of Y is therefore Var(Y) = ΣN×N = ZΓZ> + σ2I. This model is a simplification of
the more general model proposed in Laird and Ware (1982), who allow the covariance matrix
of ε to be a general positive definite matrix.

We are interested in testing hypotheses about the fixed effects in (1), i.e., testing for the
smaller model

M0 : Y = X0β0 + Zb + ε, (2)

where C(X0) ⊂ C(X) with C(X) denoting the column space of X. Let d = dim(C(X)) −
dim(C(X0)). Notice that the structural forms of the random components of the two models
are identical.

Testing the reduction of E(Y) = Xβ to E(Y) = X0β0 can in some cases be made as an
F test; one example is given in Section 3. However, in many practical cases, such an exact
F test is not available and one often resorts to asymptotic tests. One approach is based on
the LR test statistic T which is twice the difference of the maximized log-likelihoods

T = 2(logL− logL0). (3)

Under the hypothesis, T has an asymptotic χ2
d distribution (Wilks 1938). The reduction of

the large model to the small model can equivalently be expressed by the equation Lβ = 0
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with a non-singular d × p restriction matrix L. In Appendix B it is shown how L can be
constructed from X and X0.

A test of the more general hypothesis L(β−βH) = 0 can be based on the Wald test statistic

W = (β̂ − βH)>L>(LV̂L>)−1L(β̂ − βH), (4)

where β̂ is an estimate for β and V̂ for the covariance matrix of β̂. In this paper we focus
on the case where βH = 0. Under the hypothesis, W also has an asymptotic χ2

d distribution
and the Wald and the LR test are hence asymptotically equivalent.

The approximation of the null distribution of T or W by a χ2
d distribution can for small

samples be quite poor and this can lead to misleading conclusions. An example of this is
given in Section 3. Nonetheless, this approximation is often used in practice – mainly because
of the lack of attractive alternatives. This paper is aimed at providing some remedies for this.

(a) Kenward and Roger (1997) provide a modification of W given in (4). They also argue
that this modified statistic is asymptotically distributed as an Fd,m distribution for which
they provide a method for estimating the denominator degrees of freedom m. We have
implemented their work in the function KRmodcomp() for models of the form (1); notice in
particular that attention is restricted to models for which the residuals are independent
and have constant variance. Throughout this paper we shall refer to Kenward and Roger
(1997) as KR.

(b) The second contribution of this paper is to determine either the full null distribution or
moments of the null distribution of the LR test statistic (3) by a parametric bootstrap
approach (Davison and Hinkley 1997, Chapter 4). This has been implemented in the
function PBmodcomp().

3. The degree-of-freedom issue for linear mixed models

In this section we discuss the degree-of-freedom issue on the basis of the beets dataset in
the pbkrtest package. The beets data, which to our knowledge have not been published
elsewhere, come from a split-plot experiment. Although the classical analysis of split-plot
experiments is described in many places in the literature, see e.g., Cochran and Cox (1957,
Chapter 7), we treat the topic in some detail in order to put the other parts of the article
into context.

3.1. The sugar beets example

The experiment was laid out as follows: The effect of harvesting time and sowing time on
(i) yield (in kg) and (ii) sugar percentage of sugar beets is investigated. Five different sowing
dates and two different harvesting dates were used and the experiment was laid out in three
blocks. The experimental plan is as follows:

Experimental plan for sugar beets experiment

Sowing dates:

1: 4/4, 2: 12/4, 3: 21/4, 4: 29/4, 5: 18/5
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Figure 1: Dependence of sugar percentage and yield [kg] on sowing time and harvesting time.

Harvesting dates:

1: 2/10, 2: 21/10

Plot allocation:

| Block 1 | Block 2 | Block 3 | Time

+----------------|----------------|----------------+

Split-plots | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | Harvesting

1-15 | s3 s4 s5 s2 s1 | s3 s2 s4 s5 s1 | s5 s2 s3 s4 s1 | Sowing

-----------------|----------------|----------------|

Split-plots | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | Harvesting

16-30 | s2 s1 s5 s4 s3 | s4 s1 s3 s2 s5 | s1 s4 s3 s2 s5 | Sowing

+----------------|----------------|----------------+

Each block is sub-divided into two whole-plots (a term used in the experimental design liter-
ature) which are harvested at two different dates. Each whole-plot is further sub-divided into
five split-plots and each of the five sowing dates are allocated to one of these split-plots. So,
for example, the first split-plot in the upper left corner above has harvest time h1 (October
2nd) and sowing time s3 (April 21st). All together there are hence 6 whole-plots and 30
split-plots. The harvesting time is called the whole-plot treatment and the sowing time is
called the split-plot treatment. The area of each split-plot was 25m2.

In the following i denotes harvesting dates (i = 1, 2), j denotes block (j = 1, 2, 3) and k
denotes sowing dates (k = 1, . . . , 5). Let I = 2, J = 3 and K = 5. For simplicity we assume
that there is no interaction between sowing and harvesting time (this assumption is supported
by Figure 1). A typical model for such an experiment would be

yijk = µ+ αi + βj + δk + Uij + εijk, (5)

where Uij ∼ N(0, ω2) and εijk ∼ N(0, σ2). Notice that Uij describes the random variation
between whole-plots (within blocks) and the presence of this term implies that measurements
on the same split-plot will be positively correlated.
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3.2. The asymptotic χ2 test

We can fit the models and test for no effect of sowing and harvesting time using the lmer()

function from lme4 (Bates et al. 2014a).

R> library("lme4")

R> data("beets", package = "pbkrtest")

R> sug <- lmer(sugpct ~ block + sow + harvest + (1 | block:harvest),

+ data = beets, REML = FALSE)

R> sug_no.harv <- update(sug, . ~ . - harvest)

R> sug_no.sow <- update(sug, . ~ . - sow)

We then proceed by testing for no effect of sowing and of harvesting time:

R> anova(sug, sug_no.sow)

Data: beets

Models:

sug_no.sow: sugpct ~ block + harvest + (1 | block:harvest)

sug: sugpct ~ block + sow + harvest + (1 | block:harvest)

Df AIC BIC logLik deviance Chisq Chi Df

sug_no.sow 6 -2.795 5.612 7.398 -14.795

sug 10 -79.998 -65.986 49.999 -99.998 85.203 4

Pr(>Chisq)

sug_no.sow

sug < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> anova(sug, sug_no.harv)

Data: beets

Models:

sug_no.harv: sugpct ~ block + sow + (1 | block:harvest)

sug: sugpct ~ block + sow + harvest + (1 | block:harvest)

Df AIC BIC logLik deviance Chisq Chi Df

sug_no.harv 9 -69.084 -56.473 43.542 -87.084

sug 10 -79.998 -65.986 49.999 -99.998 12.914 1

Pr(>Chisq)

sug_no.harv

sug 0.0003261 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These tests are based on the limiting χ2 distribution of the LR test statistic and suggest a
highly significant effect of both sowing and harvesting time. Notice that above we have fitted
the models with REML = FALSE, i.e., by maximum likelihood rather than by restricted maxi-
mum likelihood. We must do so for the following asymptotic χ2 tests to make sense. However
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the test for no effect of harvesting time is misleading because the hierarchical structure of the
data has not been appropriately accounted for. We shall discuss this important issue in detail
below.

3.3. The exact F test

Consider a comparison of two sowing dates and of two harvesting dates. From (5) we get:

yij1 − yij2 = δ1 − δ2 + εij1 − εij2 ∼ N(δ1 − δ2, 2σ2) (6)

y1jk − y2jk = α1 − α2 + U1j − U2j + ε1jk − ε2jk ∼ N(α1 − α2, 2ω
2 + 2σ2). (7)

For the sowing dates the whole plot variation cancels out whereas the whole-plot variation
prevails for the harvesting dates. This means that the effect of whole-plot treatments are
determined with smaller precision than the effect of split-plot treatments. In some applications
(for example if whole-plots are animals and split plots correspond to an application of a
treatment at different time points) it is often the case that ω2 is considerably larger than σ2.
Estimated contrasts for sowing dates and harvesting dates hence become

1

IJ

∑
ij

(yij1 − yij2) ∼ N(δ1 − δ2,
2

J
{σ2/I}) (8)

1

JK

∑
jk

(y1jk − y2jk) ∼ N(α1 − α2,
2

J
{ω2 + σ2/K}). (9)

Test for no effect of harvesting time

Next we consider test statistics. We shall use the notation yi++ =
∑

jk yijk and ȳi++ =

yi++/(JK) etc. Also we let σ̃2 = ω2 + σ2/K. The test for no effect of harvesting time is
based on the marginal model obtained after averaging over the sowing dates, i.e.,

ȳij+ = µ+ αi + βj + δ̄+ + Ūij + ε̄ij+ ∼ N(µ+ αi + βj + δ̄+, σ̃
2). (10)

Observe that ȳij+ in (10) has the structure of a model for a balanced two-way layout (with
factors harvesting times and block) without replicates.

Let SS I =
∑

ijk(ȳi++ − ȳ+++)2 be the sums of squares associated with harvesting time.

Direct calculation shows that E(SS I) = QI + (I − 1)Kσ̃2 where QI = JK
∑

i(αi− ᾱ+)2. The
corresponding mean squares MS I = SS I/(I − 1) then has expectation E(MS I) = QI/(I −
1) +Kσ̃2. Since QI ≥ 0 and QI = 0 iff all αi are identical, MS I can be used for constructing
a test for no effect of harvesting time.

The relevant error sum of squares becomes the residual sum of squares in the marginal
model (10), i.e., SS I+J =

∑
ijk(ȳij+ − ȳi++ − ȳ+j+ + ȳ+++)2. Direct calculation shows that

E(SS I+J) = (I−1)(J−1)Kσ̃2. Define the mean squares as MS I+J = SS I+J/[(I−1)(J−1)].
Then E(MS I+J) = Kσ̃2. From this we obtain the F statistic for testing for no effect of
harvesting time:

F =
MS I

MS I+J
∼ F(I−1),(I−1)(J−1) under the hypothesis. (11)
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Test for no effect of sowing time

Let SSK =
∑

ijk(y++k − ȳ+++)2 =
∑

ijk{(δk − δ̄+) + (ε̄++k − ε̄+++)}2 be the sum of squares
associated with sowing time and let MSK = SSK/(K−1) be the corresponding mean squares.
Defining QK = IJ

∑
k(δk− δ̄+)2, a direct calculation shows that E(MSK) = QK/(K−1)+σ2.

The corresponding error term becomes SS ε =
∑

ijk(yijk − yij+ − y++k + y+++)2 which is
the residual sum of squares for a linear normal model with an effect of sowing time plus an
interaction between harvesting time and block. Define the mean squares as MS ε = SS ε/(IJ−
1)(K−1) and direct calculation shows that E(MS ε) = σ2. From this we obtain the F statistic
for testing of no effect of sowing times as

F =
MSK
MS ε

∼ F(K−1),(IJ−1)(K−1) under the hypothesis. (12)

Making the relevant F tests with aov()

The aov() function makes the tests in (11) and (12) as follows:

R> beets$bh <- with(beets, interaction(block, harvest))

R> summary(aov(sugpct ~ block + sow + harvest + Error(bh), data = beets))

Error: bh

Df Sum Sq Mean Sq F value Pr(>F)

block 2 0.03267 0.01633 2.579 0.2794

harvest 1 0.09633 0.09633 15.211 0.0599 .

Residuals 2 0.01267 0.00633

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

sow 4 1.01 0.2525 101 5.74e-13 ***

Residuals 20 0.05 0.0025

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hence we get ˆ̃σ2 = 0.00633 and σ̂2 = 0.0025. From σ̃2 = ω2 + σ2/K we obtain the estimate
of ω2 as ω̂2 = ˆ̃σ2 − σ̂2/K = 0.00633− 0.0025/5 = 0.00583.

Hence, when the hierarchical structure of the experiment has been accounted for, the effect
of harvesting time is not significant at the 5% level.

3.4. The Mississippi influents example

The Mississippi dataset in the SASmixed package (Bates 2011) contains the nitrogen con-
centration (in PPM) from several sites at six randomly selected influents of the Mississippi
river.
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Figure 2: Nitrogen concentration in PPM at six different influents of the Mississippi differen-
tiated for three types of watershed.

R> data("Mississippi", package = "SASmixed")

R> Mississippi$influent <- factor(Mississippi$influent)

R> Mississippi$Type <- factor(Mississippi$Type)

R> head(Mississippi)

influent y Type

1 1 21 2

2 1 27 2

3 1 29 2

4 1 17 2

5 1 19 2

6 1 12 2

The influents were characterized according to watersheds as follows. Type = 1: No farm-
land in watershed (influents no. 3 and 5); Type = 2: Less than 50% farmland in watershed
(influents no. 1, 2 and 4); Type = 3: More than 50% farmland in watershed (influent no.
6). Measurements from the same influent are expected to be similar and there is no partic-
ular interest in the individual influents. It is more interesting to investigate the effect of the
watershed type on the nitrogen concentration.

A typical model for such data would be

yi = αType(i) + Uinfluent(i) + εi,

where Ul ∼ N(0, ω2) and εi ∼ N(0, σ2). The χ2 test suggests that the effect of Type is highly
significant:

R> miss1 <- lmer(y ~ Type + (1 | influent), data = Mississippi, REML = FALSE)

R> miss0 <- update(miss1, . ~ . - Type)

R> anova(miss1, miss0)
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Data: Mississippi

Models:

miss0: y ~ (1 | influent)

miss1: y ~ Type + (1 | influent)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

miss0 3 262.56 267.39 -128.28 256.56

miss1 5 256.57 264.63 -123.29 246.57 9.9834 2 0.006794 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Trusting large sample asymptotic results is questionable. If the data had been balanced such
that there were the same number of influents for each watershed type and the same number
of recordings for each influent, then we could have made a proper F test along the lines of
Section 3.1.

An alternative is to analyze the means for each influent and this yields a much less clear
indication of an effect of watershed type. To calculate the means we employ the doBy package
(Højsgaard and Halekoh 2013)

R> library("doBy")

R> Miss.mean <- summaryBy(y ~ influent + Type, data = Mississippi,

+ FUN = mean)

R> detach("package:doBy")

R> miss1_lm <- lm(y.mean ~ Type, data = Miss.mean)

R> anova(miss1_lm)

Analysis of Variance Table

Response: y.mean

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 298.276 149.138 7.0702 0.07322 .

Residuals 3 63.282 21.094

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Approximate F statistic and the KR approximation

In this section we describe first the KR approach of testing the hypothesis L(β−βH) = 0 for
a more general model than (1). We describe then the class of linear mixed models fitted with
lmer() for which function KRmodcomp() of the package pbkrtest provides the KR approach.

4.1. A multivariate normal model

KR consider for Y the multivariate normal model

Y ∼ N(Xβ,Σ).



10 pbkrtest: Tests in Linear Mixed Models in R

The covariance-matrix Σ = Σ(γ) is assumed to be a function of M parameters collected in
the vector γ. We denote the REML estimates of these parameters with γ̂. The unbiased
REML estimate of β is then, see Kackar and Harville (1984),

β̂ = Φ(γ̂)X>Σ(γ̂)−1Y with Φ(γ̂) =
(
X>Σ(γ̂)−1X

)−1
, (13)

where Φ is the covariance matrix of the asymptotic distribution of β and Φ(γ̂) is a consistent
estimate of Φ.

A scaled Wald-type statistics for testing the hypothesis L(β − βH) = 0 is

F =
1

d
(β̂ − βH)>L>(LV̂L>)−1L(β̂ − βH), (14)

where V̂ is some positive definite symmetric matrix. The usual Wald test statistic uses
V̂ = Φ(γ̂). In this case F has asymptotically a 1

dχ
2
d distribution (which can be thought of

as the limiting distribution of an Fd,m distribution when m → ∞.) For some models, F has
an exact F distribution under the hypothesis. One example of this is a balanced one-way
analysis of variance.

4.2. The approach of Kenward and Roger

KR modify the statistic F in (14) to improve the small sample properties by approximating
the distribution of F by an Fd,m distribution, and they also provide a method for calculating
the denominator degrees of freedom m. The fundamental idea is to calculate the approximate
mean and variance of their statistic and then match moments with an F distribution to obtain
the denominator degrees of freedom. KR left out some detail in the derivation of their method.
Alnosaier (2007) provides more details, weakens some of the assumptions for the approach,
and extends the list of models for which it is known that the approach yields exact F tests.

KR take two steps to improve the small sample distributional properties of F . Firstly, Kackar
and Harville (1984) showed that the covariance matrix of β̂ can be written as the sum
Var(β̂) = Φ + Λ where Λ expresses the bias by which the asymptotic covariance matrix
Φ underestimates Var(β̂). KR combine a Taylor approximation to Λ with a bias-corrected
modification of Φ(γ̂) using second order Taylor expansion to derive a new estimate ΦA(γ̂).
In the statistic F in (14), KR replace the matrix V̂ with V̂ = ΦA(γ̂). Secondly, KR derive a
scaling factor λ (such that the statistic they consider is λF ) and a denominator degree of free-
dom m by matching approximations of the expectation and variance of λF with the moments
of an Fd,m distribution. In more detail, KR derive an approximation for the expectation E?

and variance V ? of F based on a first order Taylor expansion. Then they solve the system of
equations

E(F ) ≈ λE? = E(Fd,m) =
m

m− 2
, (15)

Var(F ) ≈ λ2V ? = Var(Fd,m) =
2m2(d+m− 2)

d(m− 2)2(m− 4)
= {E(Fd,m)}2 2(d+m− 2)

d(m− 4)
, (16)

where E(Fd,m) and Var(Fd,m) denote expectation and variance of an Fd,m distributed random
variable. The E? and V ? are slightly modified without changing the order of approximation
such that for the balanced one-way ANOVA model and the Hoteling’s T 2 model the exact
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F tests are reproduced (Alnosaier 2007, Chapters 4.1 and 4.2). We shall refer to these two
steps as the Kenward-Roger approximation (or KR approximation in short). Details of the
computations are provided in Appendix A.1. In particular, the solution to the equations
above is given in (27). Recall that the mean of an Fd,m distribution exists provided that
m > 2 and the variance exists provided that m > 4. The moment matching method does
however not prevent estimates of m that are less than or equal to 2. KR did not address this
problem and neither did we in our implementation.

4.3. Models for which KRmodcomp() provides tests

The KRmodcomp() function of the pbkrtest package provides the KR approximation for linear
mixed models of the form (1) where Σ is a sum of known matrices

Σ =
∑
r

γrGr + σ2I. (17)

The matrices Gr are usually very sparse matrices. Variance component models and random
coefficient models are models which have this simplified covariance structure. For details we
refer to Appendix A.1.

5. Parametric bootstrap

An alternative approach is based on parametric bootstrap, and this is also implemented in
pbkrtest. The setting is the LR test statistic T for which we have an observed value tobs .
The question is in which reference distribution tobs should be evaluated; i.e., what is the
null distribution of T . Instead of relying on the approximation of the null distribution by a
χ2
d distribution one can use parametric bootstrap:

First, create B (e.g., B = 1000) bootstrap samples y1, . . . , yB by simulating from f̂0(y) (where
f̂0 denotes the fitted distribution under the hypothesis). Next, calculate the corresponding
values T ∗ = {t1, . . . , tB} of the LR test statistic. For what follows, let E∗T and V ∗T denote
sample mean and sample variance of T ∗. These simulated values can then be regarded as
samples from the null distribution and these values can be used in different ways which
are implemented in the PBmodcomp() function. The labels below refer to the output from
PBmodcomp(), see Section 6:

PBtest: Direct calculation of tail probabilities: The values T ∗ provide an empirical null
distribution in which tobs can be evaluated. Let I(x) be an indicator function which is
1 if x is true and 0 otherwise. Following Davison and Hinkley (1997, Chapter 4), the
p value then becomes

p =
nextreme + 1

B + 1
, where nextreme =

B∑
k=1

I(tk ≥ tobs). (18)

Gamma: Approximate the null distribution by a gamma distribution with mean E∗T and vari-
ance V ∗T .

Bartlett: Improve the LR test statistic by a Bartlett type correction: The LR test statistic
T can be scaled to better match the χ2

d distribution as TB = Td/E∗T .
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F: Approximate the null distribution of T/d by an Fd,m distribution with mean E∗/d. This
yields a single equation for deriving m, namely m = 2E∗T /(E

∗
T − d).

Notice that the parametric bootstrap approach is not restricted to linear mixed models of
the type discussed in this paper. In fact, pbkrtest implements parametric bootstrap also for
generalized linear and for generalized linear mixed models.

We shall make the following remarks about the quantities mentioned in the listing above (in
Section 6 we also provide graphical illustrations of these approaches):

1. Regarding PBtest recall that the definition of a p value for a composite hypothesis is
(see e.g., Casella and Berger 2002, p. 397)

p = sup
θ

Pθ(T > tobs),

where the supremum is taken over all possible values θ = (β0,γ) under the hypothesis.
When this supremum can not be evaluated in practice, it is often exploited that for
large samples Pθ is approximately the distribution function for a χ2

d distribution which
is independent of θ. Implicit in (18) is therefore a definition of a bootstrapped p value
to be p = Pθ̂(T > tobs) and then (18) is used for the calculation. Determining the tail
of a distribution as in (18) by sampling requires a large number of samples B (but how
large B must be depends in practice on the size of tobs).

2. The quantities Gamma, Bartlett and F are based on assuming a parametric form of the
null distribution such that the null distribution can be determined from at most the
first two sample moments of T ∗. It requires in general fewer samples to obtain credible
estimates for these moments than for obtaining the tail probabilities in (18). We have no
compelling mathematical argument why T ∗ should be well approximated by a gamma
distribution, but since a χ2

d distribution is also a gamma distribution, it is appealing to
approximate T ∗ by a gamma distribution where we match the first two moments. In
practice this means that we obtain a distribution which can have a heavier tail than
the χ2

d distribution. The idea behind adjusting the LR test statistic by a Bartlett
type correction as in TB = T

E∗T /d
is to obtain a a statistic whose distribution becomes

closer to a χ2
d distribution (cfr. Cox 2006, p. 130). See also e.g., Jensen (1993) for a more

comprehensive treatment of Bartlett corrections. Approximating the distribution of T/d
by an Fd,m distribution can be motivated as follows: Under the hypothesis, T is in the
limit χ2

d distributed so T/d has in the limit a χ2
d/d distribution with expectation 1 and

variance 2/d. This is, loosely speaking, the same as an Fd,m distribution with an infinite
number of denominator degrees of freedom m. By estimating m as m = 2E∗T /(E

∗
T − d)

we obtain the increased flexibility of an F distribution with a larger variance than 2/d,
i.e., a distribution with a heavier tail than that of a χ2

d/d distribution.

3. A general problem with the parametric bootstrap approach is that it is computationally
intensive. However the pbkrtest package allows for the samples to be drawn in parallel
by utilizing several processors on the computer.

4. The parametric bootstrap approach may be modified into a sequential scheme as follows:
Instead of fixing the number of parametric bootstrap samples B in advance, on may
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draw samples until h (e.g., h = 20) values of the test statistic which are more extreme
than the observed test statistic have been obtained. If this takes B′ samples then the
p value to report is (h+1)/(B′+1). If there is little evidence against the hypothesis then
only a small number B′ of simulations would be needed. This idea is the parametric
bootstrap version of the approach of Besag and Clifford (1991) for calculating sequential
Monte Carlo p values. This idea is illustrated below.

6. Applications of the methods

This section contains applications of the methods described in Sections 4 and 5 to the examples
in Section 3. This section also contains additional examples. In connection with parametric
bootstrap, pbkrtest allows for samples to be drawn in parallel by utilizing several processors
on the computer via the facilities provided in the parallel package. To do so we create clusters:

R> nc <- detectCores()

R> clus <- makeCluster(rep("localhost", nc))

6.1. The sugar beets example

For the sugar beets example of Section 3.1, the KR approximation provides the following
results.

Harvesting time

The test for harvesting time yields

R> (sug.kr.h <- KRmodcomp(sug, sug_no.harv))

F-test with Kenward-Roger approximation; computing time: 0.16 sec.

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + sow + (1 | block:harvest)

stat ndf ddf F.scaling p.value

Ftest 15.21 1.00 2.00 1 0.0599 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> (sug.pb.h <- PBmodcomp(sug, sug_no.harv, cl = clus))

Parametric bootstrap test; time: 66.09 sec; samples: 1000 extremes: 37;

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + sow + (1 | block:harvest)

stat df p.value

LRT 12.914 1 0.0003261 ***

PBtest 12.914 0.0379620 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Sowing time

The test for sowing time yields

R> (sug.kr.s <- KRmodcomp(sug, sug_no.sow))

F-test with Kenward-Roger approximation; computing time: 0.17 sec.

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + harvest + (1 | block:harvest)

stat ndf ddf F.scaling p.value

Ftest 101 4 20 1 5.741e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> (sug.pb.s <- PBmodcomp(sug, sug_no.sow, cl = clus))

Parametric bootstrap test; time: 46.34 sec; samples: 1000 extremes: 0;

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + harvest + (1 | block:harvest)

stat df p.value

LRT 85.203 4 < 2.2e-16 ***

PBtest 85.203 0.000999 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

First, it is noted that the p values reported from both KRmodcomp() and PBmodcomp() gen-
erally are (1) within the same order of magnitude and (2) close to the results of the exact
F test of Section 3.1. Hence the results would all suggest the same qualitative conclusion,
namely that there is little (if any) evidence for an effect of harvesting time and strong evidence
for an effect of sowing time. Secondly, it is noticed that KRmodcomp() is much faster than
PBmodcomp() in these examples. However the difference in computing time is much smaller
for other types of models/datasets; for example for certain random regression models (not
reported in this paper).

6.2. Warnings from the optimizers

The built-in optimizers for lmer() are the "bobyqa" method for bound constrained optimiza-
tion without derivatives from the minqa package, (Bates, Mullen, Nash, and Varadhan 2014b),
see also Powell (2009) and Nelder-Mead optimization as implemented in the Nelder_Mead()

function in the lme4 package.

The default optimization method in lmer() is the "bobyqa" method. When using this method
in connection with parametric bootstrap, as for example in

R> PBmodcomp(sug, sug_no.sow)

on may encounter warnings of the following form:
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Warning in optwrap(object@optinfo$optimizer, ff, x0, lower = lower,

control = control$optCtrl, :

convergence code 3 from bobyqa: bobyqa -- a trust region step failed

to reduce q

For the specific case above, this happens in a small number of simulations, say in up to 5%
of the cases. One may alternatively use Nelder-Mead optimization as:

R> sugNM <- lmer(sugpct ~ block + sow + harvest + (1 | block:harvest),

+ data = beets, REML = FALSE,

+ control = lmerControl(optimizer = "Nelder_Mead"))

R> sugNM_no.sow <- update(sugNM, . ~ . - sow)

R> PBmodcomp(sugNM, sugNM_no.sow)

Nelder-Mead optimization, on the other hand, can result in the following warning (which for
the specific case above happens very rarely, say in 5 out of 1000 simulations):

Warning message:

In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge: degenerate Hessian with 1 negative eigenvalues

In either case, the warnings indicate convergence problems and in practical use of PBmodcomp()
one must check that these do not happen in too many simulations.

6.3. How good are the parametric reference distributions?

In Section 5 the idea of approximating the bootstrap distribution by an F distribution, a
gamma distribution and a scaled χ2 distribution (Bartlett correction) was introduced. In this
section we illustrate how well these approximations work.

The results of these approximations are obtained using summary():

R> summary(sug.pb.h)

Parametric bootstrap test; time: 66.09 sec; samples: 1000 extremes: 37;

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + sow + (1 | block:harvest)

stat df ddf p.value

PBtest 12.9142 0.0379620 *

Gamma 12.9142 0.0321151 *

Bartlett 4.1764 1.0000 0.0409900 *

F 12.9142 1.0000 2.9559 0.0378266 *

LRT 12.9142 1.0000 0.0003261 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(sug.pb.s)



16 pbkrtest: Tests in Linear Mixed Models in R

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Nominal p−value

Tr
ue

 p
−

va
lu

e

χ1
2

F(1,2.96)
Bartlett scaled χ1

2

gamma(scale=4.94, shape=0.63)

Testing for no effect of harvesting time

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Nominal p−value
Tr

ue
 p

−
va

lu
e

χ4
2

F(1,8.58)
Bartlett scaled χ4

2

gamma(scale=2.56, shape=2.04)

Testing for no effect of sowing time

Figure 3: Comparisons of the p values of the bootstrapped null distribution with the p values
of the approximating parametric distributions. Left: Testing for no effect of harvesting time.
Right: Testing for no effect of sowing time.

Parametric bootstrap test; time: 46.34 sec; samples: 1000 extremes: 0;

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + harvest + (1 | block:harvest)

stat df ddf p.value

PBtest 85.203 0.0009990 ***

Gamma 85.203 1.393e-13 ***

Bartlett 65.343 4.000 2.179e-13 ***

F 21.301 4.000 8.5803 0.0001714 ***

LRT 85.203 4.000 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For a range of p values from 0.0001 to 0.200, i.e., those p values which are typically of practical
relevance, we have calculated the quantiles q in the bootstrap reference distribution. We have
then calculated the tail probabilities corresponding to these quantiles in the approximating
gamma distribution, F distribution, the Bartlett scaled distribution, and the asymptotic
χ2 distribution of the LR statistic. The results are shown in Figure 3. It is clear form these
plots that the Bartlett scaled distribution, the gamma distribution and (to a lesser extent) the
F distribution approximates the bootstrap distribution quite well whereas the χ2 distributions
approximate the reference distribution poorly.

6.4. A sequential version of parametric bootstrap

As mentioned above, one may create a sequential version of the parametric bootstrap scheme
as follows (where the aim is to speed up computations): Instead of fixing the number of
samples B in advance, on may draw samples until h (e.g., h = 20) values of the test statistic
which are more extreme than the observed test statistic have been obtained. If this takes B′
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samples then the p value to report is (h + 1)/(B′ + 1). If there is little evidence against the
hypothesis then only a small number B′ of simulations would be needed. This functionality
is not implemented in pbkrtest at the time of writing, but it is straight forward to create a
minimal implementation:

R> seqPBmodcomp <- function(largeModel, smallModel, h = 20, nsim = 1000) {

+ t.start <- proc.time()

+ chunk.size <- 50

+ nchunk <- nsim %/% chunk.size

+ LRTstat <- getLRT(largeModel, smallModel)

+ ref <- NULL

+ for (ii in 1:nchunk) {

+ ref <- c(ref, PBrefdist(largeModel, smallModel, nsim = chunk.size))

+ n.extreme <- sum(ref > LRTstat["tobs"])

+ if (n.extreme >= h)

+ break

+ }

+ ans <- PBmodcomp(largeModel, smallModel, ref = ref)

+ ans$ctime <- (proc.time() - t.start)[3]

+ ans

+ }

R> seqPBmodcomp(sug, sug_no.harv, h = 10)

Parametric bootstrap test; time: 20.34 sec; samples: 300 extremes: 10;

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : sugpct ~ block + sow + (1 | block:harvest)

stat df p.value

LRT 12.914 1 0.0003261 ***

PBtest 12.914 0.0365449 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Running PBmodcomp() without parallel computing takes about a minute so the saving in
computing time is significant.

6.5. The Mississippi influents example

For the Mississippi data of Section 3.4 our methods provide the following results:

R> KRmodcomp(miss1, miss0)

F-test with Kenward-Roger approximation; computing time: 0.18 sec.

large : y ~ Type + (1 | influent)

small : y ~ (1 | influent)

stat ndf ddf F.scaling p.value

Ftest 6.3690 2.0000 3.3195 0.99967 0.07307 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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R> summary(PBmodcomp(miss1, miss0, cl = clus))

Parametric bootstrap test; time: 64.72 sec; samples: 1000 extremes: 66;

large : y ~ Type + (1 | influent)

small : y ~ (1 | influent)

stat df ddf p.value

PBtest 9.9834 0.066933 .

Gamma 9.9834 0.056237 .

Bartlett 5.4047 2.0000 0.067046 .

F 4.9917 2.0000 4.3608 0.074557 .

LRT 9.9834 2.0000 0.006794 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hence we obtain p values which are in the order of 10 times the p value provided by the χ2

approximation. The p values we obtain are in good accordance with the p value obtained
when analyzing the means as done in Section 3.4.

6.6. Random coefficient regression – A simulation study

KR perform a small simulation study on a simple random coefficient regression model. We
made a simulation using the same model set-up and use it to compare the results between the
different tests we provide and to the KR approach as implemented by the MIXED procedure
of the SAS software system (SAS Institute Inc. 2013).

Kenward and Roger (1997, Table 4) consider the following random coefficient model

yjtj = β0 + β1 · tj +Aj +Bj · tj + εjtj

with

Cov(Aj , Bj) =

[
0.250 −0.133
−0.133 0.250

]
and Var(εjt) = 0.25. (19)

There are j = 1, . . . , 24 observed subjects divided into three groups of eight subjects. For each
group observations are made at the non overlapping times t = 0, 1, 2; t = 3, 4, 5 and t = 6, 7, 8.
The data for the simulation were generated under the assumption that β0 = β1 = 0, (Aj , Bj)
and εjt are normally distributed with zero expectation, (Aj , Bj) are independent from εtj and
observations from different subjects are independent.

The full model and the reduced models are fitted by:

R> Mod <- lmer(y ~ 1 + t + (1 + t | subject))

R> Mod_no.int <- lmer(y ~ 0 + t + (1 + t | subject))

R> Mod_no.slope <- lmer(y ~ 1 + (1 + t | subject))

The results are shown in Table 1. The LR test gives for both parameters and for all significance
levels (the α’s) anti-conservative p values as expected. For example, consider testing β0 = 0 on
the 5% significance level. The LR test rejects the hypothesis in 6.7% of the simulations, i.e.,
the tests overstate the evidence against the hypothesis that β0 = 0. For all other approaches,
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Parm α× 100 LR KR (R) KR (SAS) PBtest Bartlett Gamma F

β0 1 1.7 0.7 1.4 0.9 1.0 1.2 0.7
β1 1 1.4 1.0 1.0 0.8 0.9 1.0 0.7

β0 5 6.7 4.4 5.2 5.2 5.2 5.6 5.1
β1 5 6.1 5.1 5.1 4.9 4.9 5.1 4.7

β0 10 12.7 9.2 10.0 10.3 10.4 10.8 11.1
β1 10 11.5 10.1 10.0 9.8 9.8 10.0 10.0

Table 1: Observed test sizes (×100) for three test levels α = 0.01, 0.05, 0.1 for H0 : βk = 0
from the random coefficient model. The results are based on 20000 simulations, for the
bootstrapped p values 500 subsamples were taken. KR (R) and KR (SAS) are the KR ap-
proximations as implemented in KRmodcomp() and in SAS; the other results refer to the null
distribution of the LR test statistic, either the χ2 approximation (LR) or bootstrapped val-
ues. PBtest relates to the raw parametric bootstrap p value. The other p values are based
on approximations to the bootstrap distribution either via a Bartlett correction, a gamma or
an F distribution.

the observed test-levels are closer to the nominal levels than for the LR test and in most cases
the p values are anti-conservative.

The KR approach from our implementation yields slightly conservative results for the tests on
the intercept parameter β0 and the tests in column F yield conservative results for the lowest
nominal level. The difference of the results of the KR approach between our implementation
and that of SAS may lie in the different treatment of cases where the covariance matrix Γ is
singular.

6.7. Testing a hypothesis Lβ = LβH

We present now an example on testing a hypothesis L(β − βH) = 0 with KRmodcomp() via
the specification of a matrix L. We illustrate this with the sugar beets data. Assume that
one wants to test the hypothesis that the difference between the second and first sowing date
and between the third and second sowing date are equal to 0.1. The parameter vector β from
the model fit sug in Section 3.2 has the entries

R> names(fixef(sug))

[1] "(Intercept)" "blockblock2" "blockblock3" "sowsow2"

[5] "sowsow3" "sowsow4" "sowsow5" "harvestharv2"

The restriction matrix L is then given as

R> L <- matrix(0, nrow = 2, ncol = 8)

R> colnames(L) <- names(fixef(sug))

R> L[1, "sowsow2"] <- 1

R> L[2, c("sowsow2", "sowsow3")] <- c(-1, 1)

R> t(L)

[,1] [,2]

(Intercept) 0 0
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blockblock2 0 0

blockblock3 0 0

sowsow2 1 -1

sowsow3 0 1

sowsow4 0 0

sowsow5 0 0

harvestharv2 0 0

With c = (0.1, 0.1)>, a vector βH to be used in L(β − βH) = 0 is βH = L−c where L− is a
generalized inverse of L. A generalized inverse can be obtained with the function ginv() of
the package MASS (Venables and Ripley 2002).

R> library("MASS")

R> beta_H <- ginv(L) %*% c(0.1, 0.1)

R> t(beta_H)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0.1 0.2 0 0 0

The hypothesis is then tested with

R> KRmodcomp(sug, L, betaH = beta_H)

F-test with Kenward-Roger approximation; computing time: 0.14 sec.

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : L beta = L betaH

L=

2 x 8 sparse Matrix of class "dgCMatrix"

[1,] . . . 1 . . . .

[2,] . . . -1 1 . . .

betaH=

[,1]

[1,] 0.0

[2,] 0.0

[3,] 0.0

[4,] 0.1

[5,] 0.2

[6,] 0.0

[7,] 0.0

[8,] 0.0

stat ndf ddf F.scaling p.value

Ftest 1.5556 2.0000 20.0000 1 0.2356

If the restriction matrix is not of full row rank it will be replaced by a matrix of full row rank
using Gram-Schmidt orthogonalization as in the following example on the difference between
the third and second sowing date.
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R> L[1, c("sowsow2", "sowsow3")] <- c(1, -1)

R> L[2, c("sowsow2", "sowsow3")] <- c(-1, 1)

R> KRmodcomp(sug, L)

F-test with Kenward-Roger approximation; computing time: 0.14 sec.

large : sugpct ~ block + sow + harvest + (1 | block:harvest)

small : L beta = L betaH

L=

1 x 8 sparse Matrix of class "dgCMatrix"

[1,] . . . -0.7071068 0.7071068 . . .

betaH=

[1] 0

stat ndf ddf F.scaling p.value

Ftest 3 1 20 1 0.09866 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.8. Constructing tests manually

It is illustrative to see how to construct such tests manually using tools provided in pbkrtest.
We construct the t test statistic for testing Lβ = 0 for a specific choice of L. Consider an
unbalanced version of the beets data:

R> beetsUB <- subset(beets, !(harvest == "harv1" & block == "block1" &

+ (sow %in% c("sow1", "sow2"))))

R> ftable(xtabs(~ harvest + block + sow, data = beetsUB))

sow sow1 sow2 sow3 sow4 sow5

harvest block

harv1 block1 0 0 1 1 1

block2 1 1 1 1 1

block3 1 1 1 1 1

harv2 block1 1 1 1 1 1

block2 1 1 1 1 1

block3 1 1 1 1 1

A comparison of sowing times sow2 and sow3 can under an additive model be made with the
following choice of L:

R> sugUB <- lmer(sugpct ~ block + sow + harvest + (1 | block:harvest),

+ data = beetsUB)

R> L <- c(0, 0, 0, 1, -1, 0, 0, 0)

pbkrtest provides an adjusted variance-covariance matrix for the regression parameters and
the estimated degrees of freedom with:
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R> Va <- vcovAdj(sugUB)

R> ddf <- get_ddf_Lb(sugUB, L)

R> ddf

[1] 17.77283

From this we can construct the usual t statistic and corresponding p value:

R> b.hat <- fixef(sugUB)

R> Lb.hat <- sum(L * b.hat)

R> Va.Lb.hat <- t(L) %*% Va %*% L

R> t.stat <- as.numeric(Lb.hat / sqrt(Va.Lb.hat))

R> t.stat

[1] -1.191398

R> p.value <- 2 * pt(abs(t.stat), df = ddf, lower.tail = FALSE)

R> p.value

[1] 0.2491653

Notice that the same result (in terms of p value) is obtained with the following (where the
F statistic is the squared t statistic from above):

R> KRmodcomp(sugUB, matrix(L, nrow = 1))

6.9. Computing least-squares means with adjusted degrees of freedom

The doBy package (Højsgaard and Halekoh 2013) provides methods for computing least-
squares means (sometimes also called LS means) using adjusted degrees of freedom. Using
the model defined in Section 6.8, the least-squares means for harvest is obtained with

R> library("doBy")

R> LSmeans(sugUB, effect = "harvest")

estimate se df t.stat p.value lwr

1 16.87591 0.02228984 2.090753 757.1123 1.015562e-06 16.78389

2 16.76000 0.02127864 1.841845 787.6443 4.191143e-06 16.66048

upr harvest

1 16.96794 harv1

2 16.85952 harv2

If one wants to test all contrasts with the control, one can use the lsmeans() function of the
lsmeans package (Lenth 2013). The following code shows how to compute these comparisons
to the control sow = 1:
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R> library("lsmeans")

R> lsmeans(sugUB , spec = trt.vs.ctrl1 ~ sow)[[2]]

estimate SE df t.ratio p.value

sow2 - sow1 0.1400000 0.03022757 18.00368 4.63153 0.00083

sow3 - sow1 0.1751075 0.02946746 17.77283 5.94240 0.00005

sow4 - sow1 -0.0915592 0.02946746 17.77283 -3.10713 0.02439

sow5 - sow1 -0.3415592 0.02946746 17.77283 -11.59106 0.00000

p values are adjusted using the sidak method for 4 tests

7. Discussion

In this paper we have presented our implementation of a KR approximation for tests in linear
mixed models. In the implementation, there are several matrices of the order N ×N where N
is the number of observations. We have exploited that several of the matrices involved in the
computations in many cases will be sparse via the facilities in the Matrix package (Bates and
Maechler 2014). Nonetheless, the current implementation of the KR approximation does not
always scale to large datasets. As an example, consider a repeated measurement problem in
which repeated measurements are made on a collection of subjects. If there are many subjects
and the time series for each subject is short then there is a sparseness to be exploited. On
the other hand, if there are a few long time series then the matrices involved will have a
non-negligible number of non-zero elements. One approach to speed up the computations is
to compute the average of the observed and expected information matrices rather than the
expected information matrix. This can lead to substantial improvements in computing time
because some of the computationally most intractable terms vanish in the average information.
See Gilmour, Thompson, and Cullis (1995) and Jensen, Mantysaari, Madsen, and Thompson
(1996) for details. This may become available in later versions of pbkrtest. A very specific
issue which we have no clear answer to is how the KR approximation should be modified in
case of a singular estimate of the covariance matrix.

Contrary to the KR approximation, the parametric bootstrap approach has the advantage
that it is easy to implement; all that is required is a way of sampling data from the fitted model
under the hypothesis. Furthermore, parametric bootstrap is straightforward to implement for
many types of models. Parametric bootstrap is already implemented for generalized linear
models and for generalized linear mixed models in pbkrtest.

A problem with the parametric bootstrap approaches is the randomness of the results; re-
peated applications to the same dataset do not give entirely identical results. Moreover,
calculating the reference distribution by sampling is computationally demanding. However,
pbkrtest implements the possibility of parallel computing of the reference distribution using
multiple processors via the parallel package. There are various possibilities for speeding up
the parametric bootstrap computations: (1) Instead of fixing the number of parametric boot-
strap samples B in advance, one may adopt a sequential scheme in which sampling continues
until a pre-specified number of extreme samples have been obtained. This idea, which is
closely related to the approach of Besag and Clifford (1991) for calculating sequential Monte
Carlo p values, has been illustrated in the paper. (2) The Bartlett type correction we imple-
mented is such a possibility because the correction depends only on the mean of the simulated
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null distribution and the gamma approximation depends only on the mean and variance of
the simulated null distribution. Estimating these two moments will in general require fewer
simulations than estimating the tail of the null distribution. Hence, if one chooses to focus
on these two distributions then one may get credible results with fewer samples. (3) It may
also be possible to devise a sequential sampling scheme such that sampling stops when the
estimates of the first or the first two moments have stabilized.

In the beginning of the paper it is stated that we consider models which are nested with
respect to the structure of the mean values but where the random effects are the same. For
the KR approach, this is formally not a requirement, because it is only the random structure
of the large model that matters. The small model is only used for the construction of the
restriction matrix. In contrast, for the parametric bootstrap approach, it is only the structure
of the random effect of the smaller model that matters.

An important final comment is that we do not in any way claim to have an omnibus panacea
solution to a difficult problem. Instead we have provided two practically applicable alterna-
tives to relying on large sample asymptotics when testing for the reduction of the mean value
in general linear mixed models.
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A. Technical details for the KR approximation

A.1. Computations related to the KR approximation

In this appendix more details of the implementation of the approach of KR in KRmodcomp()

are given. First we describe the structure of the design matrix of the random effects Z and
the related structure of the covariance matrix Γ. Secondly, the sequence of computations with
the matrices available from a fitted model object from lmer() and the derived matrices are
given.

Structure for Z and Γ

The description of the structure of Z and Γ draws on the description given in a vignette of
the lme4 package for versions prior to 1.0 (Bates 2013). Structural changes in these matrices
for later versions have been accounted for in the following.

For a linear mixed model fitted with lmer() it is assumed that we have i = 1, . . . , f grouping
factors denoted by fi. It is allowed that fi = fi′ for i 6= i′. The ith grouping factor fi has gi
levels and there are qi random effects for each level. The random effects for group level j are
collected in the vector bij = (bij1, . . . , bijqi)

> and the random effects of fi are b>i = (b>ij).

It is assumed that the random effects from different grouping factors and from different levels
of a grouping factor are independent, i.e.,

Cov(bi,bi′) = 0 for i 6= i′ and Cov(bij ,bij′) = 0 for j 6= j′.

The covariance matrix of the random effects for grouping level j of factor fi is independent of
the grouping level and is denoted by

Var(bij) = Γqi×qii = (γi;rr′).

We assume that all of the elements of Γi are parameters that vary freely except that Γi must
be positive definite. Hence Var(bi) = Igi×gi⊗Γi where ⊗ denotes the Kronecker product and
Igi×gi the identity matrix of dimension gi.

For the sugar beets example there is one factor, the interaction Ui′j′ between block and
harvest. In the present notation f = 1, g1 = 6, q1 = 1, b1 = (b1,1, . . . , b1,6)

> and Z1 = I6 ⊗ 15

where 15 is a vector of ones.

For the random coefficient model of the simulation example there is one grouping factor,
subject, with 24 levels, hence f = 1, g1 = 24 and q1 = 2 random effects (Aj , Bj) for subject j
such that b1 = (A1, B1, . . . , A24, B24),

Z72×48
1 =



1 0
1 1
1 2

. . .
1 6
1 7
1 8


(20)
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and Γ1 is the matrix in (19). If in the simulation example the two random effects Aj and
Bj were assumed to be uncorrelated the model would be specified with lmer() as lmer(y

~ A + t + (1 | subject) + (0 + t | subject)). Now there are two grouping factors,
both are equal to subject, hence f = 2, g1 = g2 = 24, q1 = q2 = 1, b1 = (A1, . . . , A24)

>,
b2 = (B1, . . . , B24)

> and

Z72×24
1 =



1
1
1

. . .
1
1
1


, Z72×24

2 =



0
1
2

. . .
6
7
8


. (21)

Let γi = (γi;11, γi;2,1, . . . , γi;qi1, γi;22, . . . , γi;qiqi)
> denote the si = qi(qi + 1)/2 vector of the

elements of the lower triangular Γi. For the kth element γi;k of γi it holds that γi;k = γi;rr′

where k = (r − 1)(qi − r/2) + r′. Then we may write

Γi =

si∑
k=1

γi;kEi;k.

The Ei;k are the qi × qi symmetric incidence matrices with ones at the position (r, r′) and
(r′, r). Now,

Var(Zibi) = ZiVar(bi)Z
>
i = Zi(I

gi×gi ⊗ Γi)Z
>
i

= Zi(I
gi×gi ⊗

si∑
k=1

γi;kEi;k)Z
>
i =

si∑
k=1

γi;kZi(I
gi×gi ⊗Ei;k)Z

>
i .

With Di =
∑si

k=1 γi:kZi(I
gi×gi ⊗Ei;k)Z

>
i the covariance matrix Σ of Y is

Σ =

f∑
i=1

Var(Zibi) + Var (ε) =

f∑
i=1

Di + σ2IN×N , (22)

where f is the number of grouping factors. Let γ denote the vector of length M made by
concatenation of the vectors γi and, as the last element, the σ2. Let Gr = Zi(I

gi×gi⊗Ei;r)Z
>
i

where r refers to the rth element in γ and i is the group factor fi related to the covariance
parameter γr. Note that GM = IN×N .

Then Σ can be written as a linear combination of known matrices

Σ =

M∑
r=1

γrGr. (23)

For the sugar beets example G1 = I6×6⊗J5×5 where J = 1515>. For the simulation example
G1 = I24×24 ⊗ J3 is related to γ1 = 0.25 and G2 is related to the covariance γ2 = −0.133,
with G2 = diag(I3×3 ⊗A, I3×3 ⊗B, I3×3 ⊗C) and

A =

 0 1 2
1 2 3
2 3 4

 , B =

 6 7 8
7 8 9
8 9 10

 , C =

 12 13 14
13 14 15
14 15 16

 . (24)
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The representation (23) has two simplifying consequences. Firstly, the derivative of Σ with
respect to γ is (see e.g., Harville 1997, Equation 8.15)

∂Σ−1

∂γr
= −Σ−1GrΣ

−1.

Secondly, the estimate of the covariance matrix of β̂ can be expressed without using higher
derivatives of Σ−1 (cf. Kenward and Roger 1997, Equation 5).

Implementation of the KR approach in the KRmodcomp() function

The following estimates are directly provided by lmer(): (1) the parameter estimate β̂,
(2) the vector γ̂ of the REML estimated covariance parameters and (3) the estimate Φ(γ̂) of
the asymptotic covariance matrix of β̂.

The estimate of the covariance matrix for γ̂

Cov(γ̂) = WM×M

is not directly available from lmer(), but is estimated in (26) from the inverse information
matrix, (cf. also Kenward and Roger 1997, Equations 4 and 5).

The implementation of the KR approximation in pbkrtest is based on the following quantities.

1. For each covariance parameter γr in γ we use

GN×N
r = Zi(I

gi×gi ⊗Er)Z
>
i , (25)

where i refers to the group for the covariance parameter γr.

2. Then the estimated covariance matrix for Y becomes Σ̂ =
∑M

r γ̂rGr.

3. For the computations to follow, we define the following auxiliary matrices:

� TN×p = Σ−1X

� HN×N
r = GrΣ

−1, r = 1, . . . ,M

� ON×p
r = GrΣ

−1X = HrX, r = 1, . . . ,M

� ΩN×N
r = ∂Σ−1

∂γr
= −Σ−1GrΣ

−1, r = 1, . . . ,M . Notice that Ωr is not used in any
computation in the implementation in pbkrtest but Ωr appears in the derivations
below.

4. For each covariance parameter γr let

Pp×p
r = X>ΩrX = −X>Σ−1GrΣ

−1X = −T>GrT = −T>Or.

5. For each pair (γr, γs) of covariance parameters let

Qp×p
rs = X>ΩrΣ̂ΩsX = X>Σ−1GrΣ

−1GsΣ
−1X

= T>GrΣ
−1GsT = O>r Σ−1Os.

Notice that Qrs is generally not symmetric but Qrs = Q>sr and hence Qrs + Qsr is
symmetric. This symmetry property is exploited below. Moreover, tr(Qrs) = tr(Qsr).
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6. For each pair (γr, γs) of covariance parameters let

Krs = tr(ΩrΣΩsΣ)

= tr(Σ−1GrΣ
−1ΣΣ−1GsΣ

−1Σ) = tr(Σ−1GrΣ
−1Gs).

7. Twice the expected information matrix for γ̂ then becomes:

2 · {IE}rs = Krs − 2 · tr(ΦQrs) + tr(ΦPrΦPs).

Notice that tr(ΦQrs) = tr(ΦQsr) and tr(ΦPrΦPs) = tr(ΦPsΦPr).

8. The asymptotic covariance matrix of the random effects parameters becomes

Cov(γ̂) = WM×M = 2 · I−1E . (26)

9. Define

Up×p =

M∑
r=1

M∑
s=1

Wrs(Qrs −PrΦPs)

=
∑

1≤r<s≤M
Wrs(Qrs + Q>rs −PrΦPs −PsΦPr) +

M∑
r=1

Wrr(Qrr −PrΦPr).

Notice that the last equation holds because of Qsr = Q>rs.

Letting Ũ =
∑

1≤r<s≤M Wrs(Qrs −PrΦPs), one can write alternatively

U = Ũ + Ũ> +
M∑
r=1

Wrr(Qrr −PrΦPr).

10. The adjusted estimate of Cov(β̂) is then

Φ̂A = Φ(γ̂) + 2 · Λ̂, where Λ̂
p×p

= Φ̂UΦ̂,

and the adjusted test statistic is (where d is the rank of L)

F =
1

d
(β̂ − βH)>L>(LΦ̂AL>)−1L(β̂ − βH).

11. KR derive a scaling factor λ for the F statistic given above (such that the statistic they
finally propose is λF ) and a denominator degrees of freedomm by matching approximate
first and second moments of the λF statistic with the moments of an Fd,m distribution.
In this connection KR use the following quantities:

(a) Θ = L>(LΦL>)−1L

(b) A1 =
∑M

r=1

∑M
s=1Wrs tr(ΘΦPiΦ) tr(ΘΦPjΦ) (where Wrs are the elements of the

covariance matrix W from Equation 26).
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(c) With ◦ denoting the Hadamard product,

A2 =
M∑
s

M∑
s

Wrs tr(ΘΦPiΦΘΦPjΦ)

=
M∑
r

M∑
s

Wrs1
>
[
(ΦΘΦPi) ◦ (ΦΘΦPj)

]
1.

(d) B = 1
2d(A1 + 6A2)

(e) E∗ = 1/(1− A2
d )

(f) V ? = 2
d

(
1+c1B

(1−c2B)2(1−c3B)

)
. The cis are simple functions of A1, A2 and d.

(g) ρ = V ∗/(2[E∗]2)

E? and V ? are approximate expectation and variance of F based on the first order
Taylor expansion of F .

12. Then KR end up with the following values for m and λ:

m = 4 +
d+ 2

dρ− 1
and λ =

m

E∗(m− 2)
. (27)

A.2. Some numerical issues

In the computation of ρ we encountered numerical problems in the calculation of ρ for some
models where the division of two numbers both equal to zero are encountered. One can write
ρ as

ρ =
1

2

(
D

V1

)2

· V0
V2
,

where V0 = 1 + c1B, V1 = 1− c2B, V2 = 1− c3B and D = 1− A2/d. V1 and D can become
simultaneously very small yielding an unreliable ratio D/V1. We resolve this problem by
setting the ratio to 1 if max(|D|, |V1|) < 10−11.

For example, for a simple block design,

Ybt = µ+ αt + εb + εbt, b = 1, . . . , nb, t = 1, . . . , nt, (28)

one has for nt = 2 and nb = 3 or for nt = 3 and nb = 2 an exact F test with m = 2
denominator degrees of freedom. We have for a specific application of this model found that
D and V1 were very close to zero. If we define the ratio to be 1 in this case then we end up
with the correct answer, i.e., with m = 2. For the same design but for nt = 2 and nb = 5
or nt = 3 and nb = 3 we have for a specific application found that V2 = 0 which leads to
ρ = ∞. This caused no problem since the correct m = 4 degrees of freedom are obtained
from Equation 27.
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B. From model matrix to restriction matrix and vice versa

Referring to (1) and (2), let X and X0 be model matrices with full column rank and dimensions
N×p and N×p0. We wish to construct a restriction matrix L such that E(Y) = Xβ∧Lβ = 0
is equivalent to E(Y) = X0β0.

Let P and P0 denote the orthogonal projection matrices onto C(X) and C(X0). One choice
of L is L = (I−P0)PX = (P−P0)X, where (P−P0) is the orthogonal projection onto the
orthogonal complement of C(X0) in C(X).

Any element of C(X) can be written as Xβ for some β such that

Xβ = PXβ = (I−P0)PXβ + P0PXβ = Lβ + P0Xβ. (29)

If Lβ = 0 then Xβ = P0Xβ ∈ C(X0). On the other hand, if E(Y) = X0β0, then there exists
a β such that X0β0 = Xβ = P0Xβ and hence from (29) Lβ = 0. Now L is an N × p matrix
but it only contains d = p− p0 linearly independent rows, and we only need to extract these
to obtain a valid restriction matrix.

The computations in pbkrtest are done via the QR decomposition of the augmented matrix
D = [X0 : X], i.e. D = QR. The matrix Q0 of the first p0 columns of Q has C(Q0) = C(X0).
The matrix Q1 of the following p−p0 columns of Q is a basis for the orthogonal complement of
C(X0) in C(X). Hence Q1Q

>
1 is the orthogonal projection onto this complement and therefore

L = Q1Q
>
1 X. Since Q1Q

>
1 and Q>1 have the same nullspace, a (p−p0)×p restriction matrix

L is obtained as L = Q>1 X.

Next consider the opposite situation: Given X and L we want to derive X0. Let W denote
a p× p0 matrix such that C(W) is equal to the nullspace of L. In pbkrtest, W is found from
a QR decomposition of L>. Hence for m = Xβ ∧ Lβ = 0 we have β = Wz, say, and hence
m = Xβ = XWz so that X0 can be taken as X0 = XW.
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